设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
楼主: 晨枫
打印 上一主题 下一主题

[科研心得] 问题:如何从数据里估算普瓦松分布的均值?

[复制链接]
  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    41#
    发表于 2019-2-4 14:40:54 | 只看该作者
    本帖最后由 Dracula 于 2019-2-4 14:45 编辑
    9 x* }; v$ x* d& U6 ]
    晨枫 发表于 2019-2-4 14:34
    9 A# v. d) d2 Q/ |' t有了 μ和 σ想计算峰值就容易了,我的问题是如何从histogram计算log normal的 μ和 σ。看来这也是个办 ...

    2 Y5 T8 ], D  |, f2 t0 l# [8 p
    4 \4 j0 y3 `  N% ?' L怎么计算分布参数的问题,你的题目我没看明白,不好说,但是正态分布你会做,log-normal 没有任何本质区别,一样的办法,就是数学公式不一样就是的了。应该不难。  ~: a' d3 Z0 x2 B0 x

    8 ^* @. _8 ]2 {, |8 q+ V
    1 i6 m& [4 k6 {1 i2 |! R( E(标准的统计学问题,估计log-normal分布参数也是有公式的,你到网上去查个公式就是的了。)
    3 G7 q+ [3 f' k9 j/ V! _! H* m
    , e. j( y/ ~6 v' G4 E) _
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    15 小时前
  • 签到天数: 1754 天

    [LV.Master]无

    42#
    发表于 2019-2-4 14:56:30 | 只看该作者
    本帖最后由 数值分析 于 2019-2-4 15:05 编辑 4 R! w* [0 i9 E- {0 K

    2 ]. t' ^' u8 r2 Y你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位置一定是 x=lambda,(这里lambda不一定是整数),那么剩下的就是从样本里推断lambda了,这是个典型的估计啊. 对于泊松分布,lambda正好是期望,所以一般来用样本均值估计期望。
    ! k5 E* C5 W1 b7 E/ x9 O1 w, a你给每一个板子从最左边顺序编个号,i=0,1,2,3。。。,然后设每块板子i的对应温度样本值xi,,然后计算sum(i*xi)/n [即累加所有的(板号乘以对应温度)然后除以板数】 (因为你的分布曲线可能和泊松分布差一个常数,所以最后结果得scale一下)不就可以了么?当然,这得假设你的histogram真的得长得像泊松分布分布。
    1 ]0 k( M  h) {& \9 o9 {( x

    点评

    给力: 5.0
    给力: 5
      发表于 2019-2-4 22:28
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    43#
    发表于 2019-2-4 17:40:34 | 只看该作者
    石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。% N2 n- l1 O1 K7 k8 o
    数据送到电脑上算,算了以后在送回去。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    44#
    发表于 2019-2-4 18:02:11 | 只看该作者
    晨枫 发表于 2019-2-4 13:337 K& D  e: N1 a; l
    唉,MATLAB里有histfit命令,干的正是我要的,可惜没法“偷”过来用啊

    " T2 b& U% h4 x$ m( M5 {我记得MATLAB支持OPC
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    15 小时前
  • 签到天数: 1754 天

    [LV.Master]无

    45#
    发表于 2019-2-4 18:34:42 | 只看该作者
    数值分析 发表于 2019-2-4 14:56
    ( j  E/ D! l: \8 m2 g你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...
    ; a* {' a* u$ A- E) |8 a
    多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和泊松分布差一个常数。你求出来的lambda的估计要用你histogram的面积归一一下。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    46#
    发表于 2019-2-4 20:39:47 | 只看该作者
    可以试试GMM Guassian Mixed Model去拟合统计分布
    ) T7 o4 d, H' Z/ q
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2019-10-12 04:17
  • 签到天数: 1014 天

    [LV.10]大乘

    47#
    发表于 2019-2-4 21:47:53 | 只看该作者
    晨枫 发表于 2019-2-4 12:305 M* I2 j; G/ a5 s
    没人理我?都在忙着吃年夜饭?
    5 V8 ?, f( c: M& l, X& k) b) \/ l
    5 r2 O& T+ A, {1 G' Q- L@煮酒正熟 @holycow @tanis @关中农民 @老马丁 @Dracula  ...

    * K* r; w% E7 ?2 x& ^晨大,这得数学博士才中啊,额完全外行了,看见这个只能联想到面条
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    48#
    发表于 2019-2-4 22:07:12 | 只看该作者
    我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density function的形状,在这条曲线上你已知坐标是x=1,x=2,... x=20,这20个点的值,你想要知道的是曲线的最大值是在那个点上。不知道我这个理解对不对。
    9 C% Z6 v$ T. w0 a
    + V# ~, r' S+ O- j3 g如果我的理解是对的话,这不是个统计学问题。你画的那个也不是histogram,因为histogram的纵坐标是在每个值观测到的sample size,而你的图的纵坐标是温度,不是一回事。因此统计学的书你不用查,查了也没用。解决这个问题最显而易见的办法就是最小二乘法,但应该是没有分析解,你不能用。我好奇的是如果假设假设曲线的形状类似于正态分布的density function,你们是怎么解的,使用最小二乘法应该是一样没有分析解。如果解正态分布有特别的巧妙的办法的话,或许稍微修改一下就可以用到log-normal的情况。
    . i2 n4 G( @4 C, k3 o
    3 u% s2 g0 y! M. y( g+ _' {4 N* V/ H3 D/ f% n7 n  ^

    # }4 z7 o, L! m2 q; J. f" A4 |( ^- O* C$ |& E
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    49#
     楼主| 发表于 2019-2-4 22:17:54 | 只看该作者
    数值分析 发表于 2019-2-4 00:56
    ' D' y- y' i' h' h' k' C你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...

    + O) a* O' T8 }' ?% J# Z+ }这个办法好!回头试一下!我是打算用这个办法当正态分布处理的,没想到也可以相当直接地套到泊松分布。可能这就解决我的问题了!多谢!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    50#
     楼主| 发表于 2019-2-4 22:20:16 | 只看该作者
    Dracula 发表于 2019-2-4 08:07
    # U  ~' y# _/ M4 I我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density f ...
    / v# C5 Q9 L0 C# n: B5 ?. r: k
    对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就是我一开始想到的办法,但只想到那能用于正态分布,正想改造为对数正态,没想到可以直接套泊松。这就好了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    51#
     楼主| 发表于 2019-2-4 22:21:02 | 只看该作者
    小刀 发表于 2019-2-4 06:39" J8 z7 g! e% a4 |
    可以试试GMM Guassian Mixed Model去拟合统计分布
    0 C9 m9 {! J- o
    这个还是太复杂了。用在控制回路里,必须KISS。但还是要谢一个!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    52#
     楼主| 发表于 2019-2-4 22:23:42 | 只看该作者
    视觉错误 发表于 2019-2-4 03:406 q1 j3 |' `3 `+ z5 U. @) W( C. x! Z
    石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。7 V) X5 `% Q. }/ M$ t/ {. B" N0 Z1 ~8 S
    数据送到电脑上算,算了以后在送回去。 ...
    0 ~4 s% w& O" D' _, u  s
    我们有OPC,问题是可靠性。用以下层基本的回路控制一般不用OPC,当机或者“交通堵塞”的后果太大。这是惯例。只有上层的APC可以用OPC,当了就自动shed到基本控制。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    53#
     楼主| 发表于 2019-2-4 22:25:29 | 只看该作者
    视觉错误 发表于 2019-2-4 04:02* {/ t8 C" v  @
    我记得MATLAB支持OPC

    9 d' k: Z2 H& ~6 @" }是的,我以前还试过用MATLAB C通过OPC与DCS相连,在技术上这是做得到的,但可靠性达不到要求。OPC是不作为可靠的控制信息通道使用的,只能传送点监视数据或者一般数据采集。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    54#
     楼主| 发表于 2019-2-4 22:26:25 | 只看该作者
    gnomegordon 发表于 2019-2-4 00:39
    . N; U+ X9 E6 \; U% n5 Bapologize. 网上搜code太麻烦,还得验证。最好有本书可以翻翻 或者搜library

    4 Y2 r& O' |' u' d4 ]; X再次感谢。楼下45楼有好办法,我先试试那个办法,比kernel density简单多了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    55#
     楼主| 发表于 2019-2-4 22:26:58 | 只看该作者
    松叶牡丹 发表于 2019-2-4 00:36/ y3 \! W8 L& k) C+ L& J, d. e
    晨大辛苦,您太客气了。祝新年快乐!
    # Q  \$ x" g  v/ P- n' j! u% S# V3 @
    松叶MM新年快乐!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    56#
    发表于 2019-2-4 22:31:30 | 只看该作者
    晨枫 发表于 2019-2-3 23:46; v5 U; g. B( r1 s
    是我描述得不好。再来一遍。
    1 ]0 s! m6 n: n1 ?7 W. m7 r5 {' R
    - X- A2 z* T2 d& V3 y7 x7 T我有一条样子像泊松分布的温度分布曲线,但只有几个稀疏的点,想用类似泊松 ...
    ) [; R- |* y7 {! w
    就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    57#
    发表于 2019-2-4 22:33:46 | 只看该作者
    晨枫 发表于 2019-2-4 22:20; f; p& i( R7 J0 ~* o
    对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就 ...

    $ e6 `/ O8 f3 V7 y( f42楼那个办法不对。那是把这当成个统计学的问题来处理,但这不是个统计学问题。你的纵坐标是温度,不是sample size,不能这么用。最明显的是,那个办法解出来的量纲是温度,而你想要的应该是具体是那块板,因此那个解和你想要的没什么关系。& r5 J8 X6 K9 W5 d' g: z, c6 w- Y" j
    # }9 L( l7 D: X* b& @
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    58#
     楼主| 发表于 2019-2-4 22:35:21 | 只看该作者
    数值分析 发表于 2019-2-4 04:34
    6 m' o9 R7 @3 X, \0 K; }1 M8 S多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和 ...
    " \4 \- R, {* n: A
    多谢!记住了!1 l+ B. z' X4 r
    : o$ B9 F5 ^) s& `7 i& _- x
    其实你说的办法我已经试过。我把正态分布一边的尾巴砍掉,至少外观上接近泊松或者对数正态。只要有峰在,估计出来均值就还不错,越对称越准确,就有点窃喜。但对道理不摸底,不敢放手用。除非在数学上站得住脚,否则在线的时候没人看着,给我乱估一个就完蛋了。现在看来,道理就是你说的,这个办法不只适用于正态分布。曲线只有只有半边的话,就有点悬,这个可以理解。一般到不了这个情况,程序里简单判别一下也不难,另作处理。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    59#
    发表于 2019-2-4 22:37:37 | 只看该作者
    晨枫 发表于 2019-2-4 00:035 k% E; e) G6 d
    咳咳,这个其实不是统计问题,是从有限的温度测量估计温度分布曲线的问题。吸收塔一共20块塔板,每块塔板 ...

    0 i' P! }- h' f! z& [# G6 D1. 20个数据点在分布上有没有规律。比如两头低中间高。" C, c% z1 S% I9 V7 z% ~
    2。规律稳定么?5 d% f, u$ k  s0 O  t0 w
    3。可不可以简化成20个点里找最大值。0 m1 u- x  M& A4 _) G* ^; L" ]
    4。峰值如果不在采样点(塔板),而在塔板之间,只能按相邻塔板的问题计算温度曲线斜率,然后插值,而其要比较峰值塔板两侧的斜率,取较大的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    60#
     楼主| 发表于 2019-2-4 22:38:00 | 只看该作者
    雨楼 发表于 2019-2-4 08:31
    $ \# k# \! q+ e) I& A- s7 c( V就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.

    ) g2 r$ s$ @8 H差不多。我开始也想过用抛物线然后平移,但平移量本身也要最小二乘出来。可能还是可以线性化然后用简单的最小二乘。我来试试看。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2024-12-25 15:52 , Processed in 0.043034 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表