TA的每日心情 | 开心 2025-12-26 03:23 |
|---|
签到天数: 1954 天 [LV.Master]无
|
本帖最后由 数值分析 于 2019-2-4 15:05 编辑
1 L: z+ C# H4 j3 K9 C( }, a' n7 [6 O+ a; A4 B; d3 M
你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位置一定是 x=lambda,(这里lambda不一定是整数),那么剩下的就是从样本里推断lambda了,这是个典型的估计啊. 对于泊松分布,lambda正好是期望,所以一般来用样本均值估计期望。
5 I( O+ N, T, h3 Z' v/ V: U你给每一个板子从最左边顺序编个号,i=0,1,2,3。。。,然后设每块板子i的对应温度样本值xi,,然后计算sum(i*xi)/n [即累加所有的(板号乘以对应温度)然后除以板数】 (因为你的分布曲线可能和泊松分布差一个常数,所以最后结果得scale一下)不就可以了么?当然,这得假设你的histogram真的得长得像泊松分布分布。4 q6 ?3 t& @; _) Z/ v8 J( |
|
|