设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
楼主: 晨枫
打印 上一主题 下一主题

[科研心得] 问题:如何从数据里估算普瓦松分布的均值?

[复制链接]
  • TA的每日心情
    开心
    前天 04:12
  • 签到天数: 1953 天

    [LV.Master]无

    101#
    发表于 2019-2-5 08:47:33 | 只看该作者
    本帖最后由 数值分析 于 2019-2-5 09:07 编辑
    # [" e, S# H9 w1 g  ]- B7 y
    holycow 发表于 2019-2-5 02:42
    % |) i1 }* F9 G$ Q* l. T1. 极值出在哪里,只要估计出lambda即可$ ]+ C3 P. ]3 }2 P+ O+ ]; b
    2. Lambda的估计需要依赖于归一% A" h/ D: \% J/ s# U- B
    3. 归一的分母是可以主观确定的  ...

    1 \) N: e# L4 i1 V! u: I$ @
    8 V4 O8 [) O1 e& E; ^; k4 b" ?如果是对称的单峰分布的话,期望存在的时候,期望和峰度Kurtosis(也就是你说的陡峭程度)无关,一定在众数Mode,即峰值的地方.唯一的例外是积分不收敛,即期望不存在(比如柯西分布,这时候没有重心).对于不对称的单峰分布,唯一能影响期望的是偏度Skewness.9 z3 j9 s0 F+ q: O. ^6 o8 K: w7 h

    9 {! f: u9 f. G- o- s" ^这很直观,您再想想?

    点评

    手误了.多谢.改过来了.  发表于 2019-2-5 09:07
    后面应该是“不对称的单峰分布”吧?对称就没有skewness了。  发表于 2019-2-5 09:04
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    前天 04:12
  • 签到天数: 1953 天

    [LV.Master]无

    102#
    发表于 2019-2-5 08:49:26 | 只看该作者
    tanis 发表于 2019-2-5 03:26
    / j# a+ w& n/ ?5 ~' I/ k, b冒昧的问一句,你搞过竞赛么~ % x" p4 ?% C  \+ l
    6 K. b/ }7 U: f, g" K: J
    思维方式挺像的~
    ' N* ~- ?- v( d* t+ E
    我希望我搞过.可以当年没赶上机会.
    3 w6 v: H* D: ]1 \0 V: h2 w) A# F% z8 D- ~( ]! ~4 x
    不谦虚一下啊,我一直觉得我要是搞竞赛的话能有点小成绩的...呵呵...
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    前天 04:12
  • 签到天数: 1953 天

    [LV.Master]无

    103#
    发表于 2019-2-5 08:54:08 | 只看该作者
    Dracula 发表于 2019-2-5 03:43+ ^& f; |8 J+ m# S6 s
    问题就是这个0度在哪儿你并不知道。至于曲线下的面积必须是1这一点,只要各个点同乘或同除一个数就都可以 ...

    # Q3 z; @; m- m& H" r. `嗯...这个问题其实有点像"人择原理",不好表达清楚. & b! j0 R' A& z8 o5 j
    这一切讨论的开始都是晨司机觉得这个曲线像泊送分布曲线.只有这个"0度"的位置合适,温度曲线才长得像泊松分布.如果你上下平移一下,他就不像泊送分布了.我不知道我说明白了没有...
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    6 天前
  • 签到天数: 2112 天

    [LV.Master]无

    104#
    发表于 2019-2-5 08:56:55 | 只看该作者
    数值分析 发表于 2019-2-4 16:470 B  c; w7 H+ C3 {# N7 b
    如果是单峰分布的话,期望存在的话,期望和峰度Kurtosis(也就是你说的陡峭程度)无关,一定在峰值的地方.唯一 ...
    ; g. L/ ?2 p0 T1 O! c$ h: J( v
    你是对的,有影响的是分布的skewness. 所以归根结底还是晨司机在零度原点图上扫了一眼,觉得看上去像是泊松分布
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    前天 04:12
  • 签到天数: 1953 天

    [LV.Master]无

    105#
    发表于 2019-2-5 09:01:03 | 只看该作者
    holycow 发表于 2019-2-5 08:56
    0 h- d6 ?2 S9 j) z1 Z你是对的,有影响的是分布的skewness. 所以归根结底还是晨司机在零度原点图上扫了一眼,觉得看上去像是泊 ...
    , b$ v- ~& [6 R# l! q0 l
    对,我们可以管这个叫"晨择原理".这是这个讨论的出发点.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    106#
     楼主| 发表于 2019-2-5 11:33:06 | 只看该作者
    数值分析 发表于 2019-2-4 19:014 }1 B: n) `7 e. Z
    对,我们可以管这个叫"晨择原理".这是这个讨论的出发点.
    9 F+ `2 B: C0 E- q

    6 ]: }, L! u" |2 X就像那个“哥德巴赫猜想”一样……
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    107#
    发表于 2019-2-12 11:55:43 | 只看该作者
    春节一直没来。现在来看到问题,这个问题是不是,prob(X=?|T=max(T))?实话实说,我没看太懂问题,我感觉不是统计问题,而是数值拟合问题。如果已经找到解决方案,就不用专门答复我啦
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    108#
     楼主| 发表于 2019-2-12 13:45:31 | 只看该作者
    老马丁 发表于 2019-2-11 21:557 Y2 k; W. ]6 O" F" w! W
    春节一直没来。现在来看到问题,这个问题是不是,prob(X=?|T=max(T))?实话实说,我没看太懂问题,我感觉不 ...

    ; j# k) z$ h- z; g1 M- U; r( A1 B6 d; I' o: {
    是的,已经解决。这个确实不是统计问题,是数值积分和重心估计问题。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-10-29 15:33 , Processed in 0.029851 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表