设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
楼主: 晨枫
打印 上一主题 下一主题

[科研心得] 问题:如何从数据里估算普瓦松分布的均值?

[复制链接]
  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    41#
    发表于 2019-2-4 14:40:54 | 只看该作者
    本帖最后由 Dracula 于 2019-2-4 14:45 编辑 ( H9 m6 e$ y& U1 F3 `1 u. j
    晨枫 发表于 2019-2-4 14:34
    8 K: R* h/ y6 q3 y. j8 S有了 μ和 σ想计算峰值就容易了,我的问题是如何从histogram计算log normal的 μ和 σ。看来这也是个办 ...

    & h+ B9 U5 `  `% N- |7 X7 H! {8 q  c3 R& Z3 B* I0 P: \- T" Z
    怎么计算分布参数的问题,你的题目我没看明白,不好说,但是正态分布你会做,log-normal 没有任何本质区别,一样的办法,就是数学公式不一样就是的了。应该不难。( o4 J6 k# u( |# I' p0 d

    8 U+ |# K7 C' Q! Y
    : D; Y/ k4 A( P( y5 r(标准的统计学问题,估计log-normal分布参数也是有公式的,你到网上去查个公式就是的了。)
    2 x0 J! y/ l. e& r( ~. s; i% v6 F' f
    1 b5 F: r5 ]' q( I/ \* ]$ Q$ s
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    4 小时前
  • 签到天数: 1894 天

    [LV.Master]无

    42#
    发表于 2019-2-4 14:56:30 | 只看该作者
    本帖最后由 数值分析 于 2019-2-4 15:05 编辑
    : G5 Y" Y$ D, x' o  K0 r. p* [: h& x4 E3 G. p4 |, t% m
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位置一定是 x=lambda,(这里lambda不一定是整数),那么剩下的就是从样本里推断lambda了,这是个典型的估计啊. 对于泊松分布,lambda正好是期望,所以一般来用样本均值估计期望。! p: F. _; p; H
    你给每一个板子从最左边顺序编个号,i=0,1,2,3。。。,然后设每块板子i的对应温度样本值xi,,然后计算sum(i*xi)/n [即累加所有的(板号乘以对应温度)然后除以板数】 (因为你的分布曲线可能和泊松分布差一个常数,所以最后结果得scale一下)不就可以了么?当然,这得假设你的histogram真的得长得像泊松分布分布。0 j+ b; ]/ ?* c3 }% ]* g5 f

    点评

    给力: 5.0
    给力: 5
      发表于 2019-2-4 22:28
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    43#
    发表于 2019-2-4 17:40:34 | 只看该作者
    石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。- R% X& v+ ^0 {9 ^  v: ?
    数据送到电脑上算,算了以后在送回去。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    44#
    发表于 2019-2-4 18:02:11 | 只看该作者
    晨枫 发表于 2019-2-4 13:330 W4 E2 _& @* Q6 Z1 C' a  a
    唉,MATLAB里有histfit命令,干的正是我要的,可惜没法“偷”过来用啊

    * C: @5 l) q2 ]9 ?# Z, A- s/ ^. a9 T* C我记得MATLAB支持OPC
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    4 小时前
  • 签到天数: 1894 天

    [LV.Master]无

    45#
    发表于 2019-2-4 18:34:42 | 只看该作者
    数值分析 发表于 2019-2-4 14:56" [- d1 g* P# Q: u8 n' {
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...
    2 s# Z- l$ E* B3 O# p2 l
    多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和泊松分布差一个常数。你求出来的lambda的估计要用你histogram的面积归一一下。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    46#
    发表于 2019-2-4 20:39:47 | 只看该作者
    可以试试GMM Guassian Mixed Model去拟合统计分布, g, u. N; A" L) \( l& P  k
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2019-10-12 04:17
  • 签到天数: 1014 天

    [LV.10]大乘

    47#
    发表于 2019-2-4 21:47:53 | 只看该作者
    晨枫 发表于 2019-2-4 12:30
    : t; t( A8 ]$ g# D7 X/ t4 x+ T没人理我?都在忙着吃年夜饭?
    ; A8 J; y) L. I" V, h+ b
    ' }- D9 X- s5 ?! q@煮酒正熟 @holycow @tanis @关中农民 @老马丁 @Dracula  ...
    % z5 i- j/ N' B0 Y* [: G: ^6 f
    晨大,这得数学博士才中啊,额完全外行了,看见这个只能联想到面条
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    48#
    发表于 2019-2-4 22:07:12 | 只看该作者
    我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density function的形状,在这条曲线上你已知坐标是x=1,x=2,... x=20,这20个点的值,你想要知道的是曲线的最大值是在那个点上。不知道我这个理解对不对。
    % r" \4 e% [& G' |7 s4 H# X/ M
    # p7 s: D6 f) f' \如果我的理解是对的话,这不是个统计学问题。你画的那个也不是histogram,因为histogram的纵坐标是在每个值观测到的sample size,而你的图的纵坐标是温度,不是一回事。因此统计学的书你不用查,查了也没用。解决这个问题最显而易见的办法就是最小二乘法,但应该是没有分析解,你不能用。我好奇的是如果假设假设曲线的形状类似于正态分布的density function,你们是怎么解的,使用最小二乘法应该是一样没有分析解。如果解正态分布有特别的巧妙的办法的话,或许稍微修改一下就可以用到log-normal的情况。
    0 d2 `. }% p" }- g( e2 {( |2 H# d

    ) m. |$ V, K& V0 z- ^% ^2 T
    3 \6 @* g) Y) O; m' P6 t7 _0 a6 l
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    49#
     楼主| 发表于 2019-2-4 22:17:54 | 只看该作者
    数值分析 发表于 2019-2-4 00:56) k+ Q' g4 O0 Z$ ^# B/ Q' l  ]. n
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...
    / ~8 u% H" Q  A, o8 ], M5 j
    这个办法好!回头试一下!我是打算用这个办法当正态分布处理的,没想到也可以相当直接地套到泊松分布。可能这就解决我的问题了!多谢!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    50#
     楼主| 发表于 2019-2-4 22:20:16 | 只看该作者
    Dracula 发表于 2019-2-4 08:07
    1 J8 U! n% Z1 A6 L我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density f ...
    0 G: S$ g2 K' o, a3 _7 Q$ J) r
    对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就是我一开始想到的办法,但只想到那能用于正态分布,正想改造为对数正态,没想到可以直接套泊松。这就好了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    51#
     楼主| 发表于 2019-2-4 22:21:02 | 只看该作者
    小刀 发表于 2019-2-4 06:39; s6 o8 U' U5 r% ]
    可以试试GMM Guassian Mixed Model去拟合统计分布
    $ y. Z7 }' n) U" O) y7 f1 O
    这个还是太复杂了。用在控制回路里,必须KISS。但还是要谢一个!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    52#
     楼主| 发表于 2019-2-4 22:23:42 | 只看该作者
    视觉错误 发表于 2019-2-4 03:40
    + ~, F- h: g5 J, \+ T# a2 S/ X9 J6 |石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。6 s# j. i' u% H; _
    数据送到电脑上算,算了以后在送回去。 ...
    $ `. s; R) Q9 B
    我们有OPC,问题是可靠性。用以下层基本的回路控制一般不用OPC,当机或者“交通堵塞”的后果太大。这是惯例。只有上层的APC可以用OPC,当了就自动shed到基本控制。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    53#
     楼主| 发表于 2019-2-4 22:25:29 | 只看该作者
    视觉错误 发表于 2019-2-4 04:02
    : X* v& s$ D8 j' h4 `6 h我记得MATLAB支持OPC

    ( |9 Y: Q' _3 W9 X$ t是的,我以前还试过用MATLAB C通过OPC与DCS相连,在技术上这是做得到的,但可靠性达不到要求。OPC是不作为可靠的控制信息通道使用的,只能传送点监视数据或者一般数据采集。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    54#
     楼主| 发表于 2019-2-4 22:26:25 | 只看该作者
    gnomegordon 发表于 2019-2-4 00:39( C  }- |0 F% F. ]1 G
    apologize. 网上搜code太麻烦,还得验证。最好有本书可以翻翻 或者搜library

    " h" ~0 Z0 @3 Y+ c( Y0 G1 \  X再次感谢。楼下45楼有好办法,我先试试那个办法,比kernel density简单多了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    55#
     楼主| 发表于 2019-2-4 22:26:58 | 只看该作者
    松叶牡丹 发表于 2019-2-4 00:365 V# `) v' j3 U* p. r7 b7 D
    晨大辛苦,您太客气了。祝新年快乐!

    * R+ o! [" m: k% h& |. \& `松叶MM新年快乐!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    56#
    发表于 2019-2-4 22:31:30 | 只看该作者
    晨枫 发表于 2019-2-3 23:46
    % m, \2 G# }) l# ^9 Y是我描述得不好。再来一遍。" r" Q3 p4 G- l: ^/ Q1 h6 q

    / r: _6 P; ~9 o( D$ ^1 S  U我有一条样子像泊松分布的温度分布曲线,但只有几个稀疏的点,想用类似泊松 ...
    9 m' b+ m# q( x: \6 C( ?+ o% O0 ~
    就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    57#
    发表于 2019-2-4 22:33:46 | 只看该作者
    晨枫 发表于 2019-2-4 22:20
    4 x6 q8 A0 e1 K* s# S对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就 ...
    6 C( y- Q4 }  l% P8 G9 d
    42楼那个办法不对。那是把这当成个统计学的问题来处理,但这不是个统计学问题。你的纵坐标是温度,不是sample size,不能这么用。最明显的是,那个办法解出来的量纲是温度,而你想要的应该是具体是那块板,因此那个解和你想要的没什么关系。
    4 F* r  a) F$ H& }  V! \3 s2 r6 }, }" w2 B
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    58#
     楼主| 发表于 2019-2-4 22:35:21 | 只看该作者
    数值分析 发表于 2019-2-4 04:34
    ' t( Q8 e7 t6 X" \多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和 ...
    3 j6 g; r% A8 J" [& p% s4 y
    多谢!记住了!
    9 P( A. ^/ n4 g6 R2 s( N) |( [: f# w4 E" r8 b' F% ^4 Q
    其实你说的办法我已经试过。我把正态分布一边的尾巴砍掉,至少外观上接近泊松或者对数正态。只要有峰在,估计出来均值就还不错,越对称越准确,就有点窃喜。但对道理不摸底,不敢放手用。除非在数学上站得住脚,否则在线的时候没人看着,给我乱估一个就完蛋了。现在看来,道理就是你说的,这个办法不只适用于正态分布。曲线只有只有半边的话,就有点悬,这个可以理解。一般到不了这个情况,程序里简单判别一下也不难,另作处理。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    59#
    发表于 2019-2-4 22:37:37 | 只看该作者
    晨枫 发表于 2019-2-4 00:03! ~6 j6 `, s  k6 q
    咳咳,这个其实不是统计问题,是从有限的温度测量估计温度分布曲线的问题。吸收塔一共20块塔板,每块塔板 ...
    ( F" J5 Z1 X6 V1 m  J+ T
    1. 20个数据点在分布上有没有规律。比如两头低中间高。, M2 h1 X6 z* M8 r
    2。规律稳定么?
    8 N- B9 D+ v) N  M* K3。可不可以简化成20个点里找最大值。# @+ g+ P: c' t. a! N5 a1 _3 ]
    4。峰值如果不在采样点(塔板),而在塔板之间,只能按相邻塔板的问题计算温度曲线斜率,然后插值,而其要比较峰值塔板两侧的斜率,取较大的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    60#
     楼主| 发表于 2019-2-4 22:38:00 | 只看该作者
    雨楼 发表于 2019-2-4 08:31
    : n! ^/ k4 W- F; R6 {# r' B1 ?就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.

    " u; \% q# N3 {1 v7 w差不多。我开始也想过用抛物线然后平移,但平移量本身也要最小二乘出来。可能还是可以线性化然后用简单的最小二乘。我来试试看。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-5-24 04:24 , Processed in 0.042293 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表