设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
楼主: 晨枫
打印 上一主题 下一主题

[科研心得] 问题:如何从数据里估算普瓦松分布的均值?

[复制链接]
  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    41#
    发表于 2019-2-4 14:40:54 | 只看该作者
    本帖最后由 Dracula 于 2019-2-4 14:45 编辑
    - n# O1 l/ O) {; Z( P1 a8 W
    晨枫 发表于 2019-2-4 14:34
      K% h+ h* [' h2 U  J  Y有了 μ和 σ想计算峰值就容易了,我的问题是如何从histogram计算log normal的 μ和 σ。看来这也是个办 ...
    $ |6 f1 f* u5 a8 t

    4 \9 G$ O- i/ k& d怎么计算分布参数的问题,你的题目我没看明白,不好说,但是正态分布你会做,log-normal 没有任何本质区别,一样的办法,就是数学公式不一样就是的了。应该不难。# y( p! j% ~. g( \' _
    : G7 D8 x0 e# }4 Y0 h' `
    , L0 b: e( ]# g* b2 }
    (标准的统计学问题,估计log-normal分布参数也是有公式的,你到网上去查个公式就是的了。)3 B( d; j0 I3 ~+ @8 L: ?

    * P3 Q( D2 e7 m+ y6 G6 J9 L$ M
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    23 小时前
  • 签到天数: 1722 天

    [LV.Master]无

    42#
    发表于 2019-2-4 14:56:30 | 只看该作者
    本帖最后由 数值分析 于 2019-2-4 15:05 编辑
    + K, \4 C4 r7 v0 f7 Y3 y9 H% o! b8 Y+ ?2 Y  r) d5 ]8 m; L2 R, G
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位置一定是 x=lambda,(这里lambda不一定是整数),那么剩下的就是从样本里推断lambda了,这是个典型的估计啊. 对于泊松分布,lambda正好是期望,所以一般来用样本均值估计期望。
    3 l5 C9 f# p2 ~$ L8 Q8 a你给每一个板子从最左边顺序编个号,i=0,1,2,3。。。,然后设每块板子i的对应温度样本值xi,,然后计算sum(i*xi)/n [即累加所有的(板号乘以对应温度)然后除以板数】 (因为你的分布曲线可能和泊松分布差一个常数,所以最后结果得scale一下)不就可以了么?当然,这得假设你的histogram真的得长得像泊松分布分布。
    2 B: ]3 c. J4 r! _7 A! V

    点评

    给力: 5.0
    给力: 5
      发表于 2019-2-4 22:28
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    43#
    发表于 2019-2-4 17:40:34 | 只看该作者
    石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。0 ?; o+ ?8 J* T2 H6 p
    数据送到电脑上算,算了以后在送回去。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    44#
    发表于 2019-2-4 18:02:11 | 只看该作者
    晨枫 发表于 2019-2-4 13:33
    ' x0 ^- b- a5 s' y$ E( x唉,MATLAB里有histfit命令,干的正是我要的,可惜没法“偷”过来用啊
    3 j7 ?8 ^+ P/ [' y  {
    我记得MATLAB支持OPC
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    23 小时前
  • 签到天数: 1722 天

    [LV.Master]无

    45#
    发表于 2019-2-4 18:34:42 | 只看该作者
    数值分析 发表于 2019-2-4 14:56+ ^. [/ D4 A6 Y5 d
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...
    4 f" a3 U3 b! p2 v! K5 c) h+ U
    多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和泊松分布差一个常数。你求出来的lambda的估计要用你histogram的面积归一一下。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    46#
    发表于 2019-2-4 20:39:47 | 只看该作者
    可以试试GMM Guassian Mixed Model去拟合统计分布
    + I9 F. E3 _/ E
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2019-10-12 04:17
  • 签到天数: 1014 天

    [LV.10]大乘

    47#
    发表于 2019-2-4 21:47:53 | 只看该作者
    晨枫 发表于 2019-2-4 12:30
    8 U; m# l4 R7 U' U没人理我?都在忙着吃年夜饭?4 z8 \, p  g# Z
    % E" s, ]0 D/ @0 M8 A7 a! y  n- j0 h
    @煮酒正熟 @holycow @tanis @关中农民 @老马丁 @Dracula  ...

    - z9 f9 I0 e/ P4 {8 j晨大,这得数学博士才中啊,额完全外行了,看见这个只能联想到面条
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    48#
    发表于 2019-2-4 22:07:12 | 只看该作者
    我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density function的形状,在这条曲线上你已知坐标是x=1,x=2,... x=20,这20个点的值,你想要知道的是曲线的最大值是在那个点上。不知道我这个理解对不对。
    : F: ~' R" j/ X3 g4 s0 o" ?6 g
    9 x# Y' I) S1 N3 Y+ w如果我的理解是对的话,这不是个统计学问题。你画的那个也不是histogram,因为histogram的纵坐标是在每个值观测到的sample size,而你的图的纵坐标是温度,不是一回事。因此统计学的书你不用查,查了也没用。解决这个问题最显而易见的办法就是最小二乘法,但应该是没有分析解,你不能用。我好奇的是如果假设假设曲线的形状类似于正态分布的density function,你们是怎么解的,使用最小二乘法应该是一样没有分析解。如果解正态分布有特别的巧妙的办法的话,或许稍微修改一下就可以用到log-normal的情况。
    7 |. ]4 j7 a5 R/ i" ~
    0 ~! A. f/ B1 ?! h7 E3 r' H8 G  M* o/ r

    ( y  o- |8 |- [8 n5 h; N9 n5 v  ~+ s7 J* f/ h) O$ a2 F
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    49#
     楼主| 发表于 2019-2-4 22:17:54 | 只看该作者
    数值分析 发表于 2019-2-4 00:56
    8 \9 F( _& G* z, h/ L+ }, {你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...

    ! b4 @& M  p3 {& s7 j, E$ ]这个办法好!回头试一下!我是打算用这个办法当正态分布处理的,没想到也可以相当直接地套到泊松分布。可能这就解决我的问题了!多谢!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    50#
     楼主| 发表于 2019-2-4 22:20:16 | 只看该作者
    Dracula 发表于 2019-2-4 08:07. B; N7 c# D. Q2 y9 }
    我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density f ...

    4 ]; d5 v& x- k对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就是我一开始想到的办法,但只想到那能用于正态分布,正想改造为对数正态,没想到可以直接套泊松。这就好了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    51#
     楼主| 发表于 2019-2-4 22:21:02 | 只看该作者
    小刀 发表于 2019-2-4 06:39$ A1 |* |; D! [) J# ?
    可以试试GMM Guassian Mixed Model去拟合统计分布

    2 w; w8 s; j' F% _/ u9 U3 Z6 @这个还是太复杂了。用在控制回路里,必须KISS。但还是要谢一个!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    52#
     楼主| 发表于 2019-2-4 22:23:42 | 只看该作者
    视觉错误 发表于 2019-2-4 03:40
    0 w1 x, ]' j' U石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。
    ; D7 z+ ]( Q. O, w; ]数据送到电脑上算,算了以后在送回去。 ...

    7 {! F' W3 ^) l* R; p我们有OPC,问题是可靠性。用以下层基本的回路控制一般不用OPC,当机或者“交通堵塞”的后果太大。这是惯例。只有上层的APC可以用OPC,当了就自动shed到基本控制。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    53#
     楼主| 发表于 2019-2-4 22:25:29 | 只看该作者
    视觉错误 发表于 2019-2-4 04:02
    * W, ]  Z* n# K) o我记得MATLAB支持OPC
    0 G8 w4 a) J1 C1 S" z
    是的,我以前还试过用MATLAB C通过OPC与DCS相连,在技术上这是做得到的,但可靠性达不到要求。OPC是不作为可靠的控制信息通道使用的,只能传送点监视数据或者一般数据采集。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    54#
     楼主| 发表于 2019-2-4 22:26:25 | 只看该作者
    gnomegordon 发表于 2019-2-4 00:390 B$ K' w! ]6 y6 B
    apologize. 网上搜code太麻烦,还得验证。最好有本书可以翻翻 或者搜library
    ( ]% t; ]* o: K4 x9 H4 W
    再次感谢。楼下45楼有好办法,我先试试那个办法,比kernel density简单多了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    55#
     楼主| 发表于 2019-2-4 22:26:58 | 只看该作者
    松叶牡丹 发表于 2019-2-4 00:36
    0 V0 r9 V0 `/ s( n, J0 M6 [! v: Z晨大辛苦,您太客气了。祝新年快乐!
    3 D3 A% q! Z7 k0 G6 l7 S0 w) ?6 L5 X. d
    松叶MM新年快乐!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    56#
    发表于 2019-2-4 22:31:30 | 只看该作者
    晨枫 发表于 2019-2-3 23:46+ d( O2 x+ |/ u, J. F
    是我描述得不好。再来一遍。
    5 E# t. W% L% K& M2 D1 x- K/ n
    : E$ I' J7 m" R- E8 {3 E- \! t我有一条样子像泊松分布的温度分布曲线,但只有几个稀疏的点,想用类似泊松 ...

    3 Q0 c4 H+ E( e就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    57#
    发表于 2019-2-4 22:33:46 | 只看该作者
    晨枫 发表于 2019-2-4 22:20
    4 |2 M' y8 r! m; h: Y, ~对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就 ...
    1 D8 l$ |& }. q1 G: G0 X
    42楼那个办法不对。那是把这当成个统计学的问题来处理,但这不是个统计学问题。你的纵坐标是温度,不是sample size,不能这么用。最明显的是,那个办法解出来的量纲是温度,而你想要的应该是具体是那块板,因此那个解和你想要的没什么关系。1 v1 r# Q6 B! X1 Z

    % |% K  R" c0 |* [7 w/ R9 Q
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    58#
     楼主| 发表于 2019-2-4 22:35:21 | 只看该作者
    数值分析 发表于 2019-2-4 04:341 a/ S$ ^0 A. G9 a2 d
    多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和 ...

    ) i/ [0 w4 n* O% p多谢!记住了!
    ! K. h6 B) C/ p
    4 J2 L5 y. K" j  R其实你说的办法我已经试过。我把正态分布一边的尾巴砍掉,至少外观上接近泊松或者对数正态。只要有峰在,估计出来均值就还不错,越对称越准确,就有点窃喜。但对道理不摸底,不敢放手用。除非在数学上站得住脚,否则在线的时候没人看着,给我乱估一个就完蛋了。现在看来,道理就是你说的,这个办法不只适用于正态分布。曲线只有只有半边的话,就有点悬,这个可以理解。一般到不了这个情况,程序里简单判别一下也不难,另作处理。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    59#
    发表于 2019-2-4 22:37:37 | 只看该作者
    晨枫 发表于 2019-2-4 00:03
    ) {6 h- ^( D, m) K9 a9 V咳咳,这个其实不是统计问题,是从有限的温度测量估计温度分布曲线的问题。吸收塔一共20块塔板,每块塔板 ...

    - i$ i' ]: L- r2 |1. 20个数据点在分布上有没有规律。比如两头低中间高。
    4 f  O3 q7 v8 t: u  o! [2。规律稳定么?
    7 X0 c, d' I4 X- n% T% b: a3。可不可以简化成20个点里找最大值。6 _9 ]  w% W0 U, i8 v- S. t% F" s
    4。峰值如果不在采样点(塔板),而在塔板之间,只能按相邻塔板的问题计算温度曲线斜率,然后插值,而其要比较峰值塔板两侧的斜率,取较大的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    60#
     楼主| 发表于 2019-2-4 22:38:00 | 只看该作者
    雨楼 发表于 2019-2-4 08:31
    & D' a8 D9 i* m* Q  O就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.

    : {+ v0 u  p; O& Y/ |( k, Z差不多。我开始也想过用抛物线然后平移,但平移量本身也要最小二乘出来。可能还是可以线性化然后用简单的最小二乘。我来试试看。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2024-11-22 23:34 , Processed in 0.045499 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表