|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
6 B8 w! r- {' N! u6 j# [, d) L" U煮酒正熟 发表于 2013-12-20 12:05 ![]()
2 w. x% ]5 i6 G/ Y! w X8 k# {基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
. @( F. q g" Z+ T7 \: F; e! a5 m4 \* {4 S I
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。 - w* x' f- i/ z! j/ L/ K
& f, J7 N9 s& B3 o5 z
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
0 z$ H9 Q8 f9 g/ S6 P8 m; \6 s4 S/ C8 I
R example:+ A& R' u6 }/ n& V: O2 h0 J x
" f* D6 a5 h+ R p9 e- h/ Z* a
> M<-as.table(rbind(c(1668,5173),c(287,930)))( x( a7 b+ @/ p
> chisq.test(M)! M. T5 d# R" j1 s% U" B1 p+ v. P
7 @: c- D$ f% Y! _. a
Pearson's Chi-squared test with Yates' continuity correction& T. u7 Z9 l% ?3 k! U* F$ K b
# P( K( `3 w+ g4 J/ m' o+ A' f
data: M
# f+ x1 j: C+ Q& E N" V: vX-squared = 0.3175, df = 1, p-value = 0.5731( X: J* Q3 d' Z0 d5 K
7 {8 M6 \- O8 B( |
Python example:: U$ j% x: q# r1 Y4 T; g
* `3 n3 X! y# q) h$ O6 S, h
>>> from scipy import stats& Y9 X' }0 _( L, u. W
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])7 l+ V3 a, |2 x8 b. ?
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],9 \7 G, e7 V# t/ w% N; u" U+ H+ [
[ 295.26371308, 921.73628692]])) |
|