|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
9 Z8 o* n9 ^3 _! c( u煮酒正熟 发表于 2013-12-20 12:05 ![]()
: l& F* d% ]8 v+ v基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... : P+ t7 M8 s0 U, ]4 k
7 e1 G" G# Q6 C& l: J, b
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
) A. u" W Z- l P! z& \- r* U; w* w, ~" v5 ?
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
( @8 @+ t8 l7 _0 [. g+ ^& U% z6 s. X. [" w% O. r, p
R example:
8 L( r+ l/ \; U( f! X. h5 _3 w% M/ q; Y& Q# h. A% i2 b( D0 |5 q
> M<-as.table(rbind(c(1668,5173),c(287,930)))
" d o* F( Y0 S- ?$ w! {+ y> chisq.test(M)" l) ]6 H) C5 z
) `: `' Y2 f$ |& m, g8 x4 ? Pearson's Chi-squared test with Yates' continuity correction
, C$ K4 O F* R) Q
. h q5 n& O$ G& R ^data: M
$ L% |* G; ~" q9 Z0 `* UX-squared = 0.3175, df = 1, p-value = 0.5731
4 M5 ?0 m" A: K& g- a1 p9 a; n/ ^* L
8 s7 H; V r0 _& ^/ qPython example:
0 f& @+ q8 T/ v5 V! O, X/ ~- A
9 o! w, P; u ?' {>>> from scipy import stats
4 L: C$ l& z6 I! P>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
) M( c ]" l& g- U(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],7 L1 D+ e5 w2 U
[ 295.26371308, 921.73628692]])) |
|