|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
% A i+ d6 c5 U+ r! B1 h2 j煮酒正熟 发表于 2013-12-20 12:05 ![]()
% O$ E$ b: v( P基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... - W0 B/ g0 ?5 f1 ]5 K
4 M i* p' K+ F8 n v这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
( n4 N) u5 L$ A4 A6 ~8 O% e
1 { w9 U5 U% Y7 j结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
! {% I$ B1 \) b) y+ w' Y
1 n4 ^2 C! Y7 B9 B; Q2 U: {8 g: j5 cR example:" h6 O2 C; P W5 L* T: e" e
7 G# [) X& c7 b8 x3 b2 {8 H( b
> M<-as.table(rbind(c(1668,5173),c(287,930)))
, x- L2 C- o$ @- c# t0 a> chisq.test(M)
/ Y- {8 B1 }3 G! u7 E8 ^: o. V# g' }4 ]1 J/ r
Pearson's Chi-squared test with Yates' continuity correction
1 k9 r4 p+ B& o* {2 i! a) o
9 x, g4 s- u% |7 W/ R" }4 Z; y5 }/ {data: M
+ ~. b: K5 f% z; h4 b$ m! N* H4 yX-squared = 0.3175, df = 1, p-value = 0.5731
3 s' L1 o: y# \5 U! U7 Z! `/ c- B& |% \ h( T# d
Python example:
1 L1 G. h2 b8 T
3 I. {# P9 Z6 s, x>>> from scipy import stats
2 {2 Z# ^2 D. e0 z1 p>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
. e$ p, ~9 ]; k _ Y4 F(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],$ j( @) q8 Z" R
[ 295.26371308, 921.73628692]])) |
|