|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 + G* A2 m8 t7 ]1 q* W9 J1 I
煮酒正熟 发表于 2013-12-20 12:05 6 k: w5 u4 l9 n$ g: r! I, M1 E
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
8 B6 b3 u6 o% G9 O% r e; h3 a) I. i) ?8 j8 _! Y% E7 v
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
' z* }- q, P) W8 ?, M( u: x z( Y& Z! }& ]) u8 P( ^
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981), _. d) R X1 H$ A4 `% Z" L
& N' G0 P! v4 o2 B9 h5 q
R example:
8 }2 |) s( R8 s' Y* ?0 v4 y$ l" G
: c5 b- n" D ^4 N4 i1 d> M<-as.table(rbind(c(1668,5173),c(287,930)))# j0 e0 ~. m2 K2 \! U( U
> chisq.test(M)
4 d; C; r. Y- G
0 ^3 J# k4 \, Y/ ^ Pearson's Chi-squared test with Yates' continuity correction
& _3 L2 |- `8 G$ z! E0 U% O. I
5 Z$ |7 L; {8 r! ?data: M) @8 e$ l6 v' k7 x7 T$ }5 N' z
X-squared = 0.3175, df = 1, p-value = 0.57316 P, t# l9 N2 k" e; ] h: f
& n$ w0 N9 B7 N+ HPython example:
`! l+ n1 F7 Q' F4 T. u# F- S* K0 z8 `) P8 m
>>> from scipy import stats5 M# R+ x D3 e' v/ R
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
2 m# D) K3 {; f(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],# }9 k+ i. D; K5 {6 @" h' x
[ 295.26371308, 921.73628692]])) |
|