|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
, F) f% X2 I+ L/ r- u5 E煮酒正熟 发表于 2013-12-20 12:05 ![]()
0 e- G: ~0 C, |4 }! Z基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... 7 }' m g% T' H i S4 j9 E! X6 G
1 [) T- v9 P% @3 }这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
+ @3 X! U( i4 f7 A1 e' K
0 A7 l3 W8 I' w( H. N8 G$ C结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
2 f6 ?6 A; ~; a8 u3 a/ j- ~" i9 G( `/ `2 o8 y3 O, g! X J5 Q
R example:
8 }* ]% x1 I8 N5 Y( u, Y
( }7 K& @: T* R> M<-as.table(rbind(c(1668,5173),c(287,930)))6 T* @ L r# I V3 D' P$ [) ~4 K6 V( F
> chisq.test(M)/ `$ V2 V% D$ I# n/ x
* C w! e: \1 x1 e' k* g/ W Pearson's Chi-squared test with Yates' continuity correction
9 J% d, K% G! K5 ^) v* v
' n- [' N# r+ Q% [3 @data: M
. P4 J; N0 h6 h C. D* }( T) HX-squared = 0.3175, df = 1, p-value = 0.5731
# U3 q( }" Z7 u: \
2 \8 D1 ^1 F. X" G8 GPython example:2 O4 ~% S9 i8 j" m" o
" H }0 n; N! S2 {9 |" B>>> from scipy import stats
n- L5 M; U! j>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])' e( i) j' z9 \1 r: Y0 i/ b
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
/ ^& Y: Z! @5 g [ 295.26371308, 921.73628692]])) |
|