|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 G1 n2 g7 c; i3 R. N
煮酒正熟 发表于 2013-12-20 12:05 ( r5 S+ E8 n5 u. S9 }& c( I+ j" @
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... , H4 A4 a3 ^' i1 G) C! i4 f5 J
, h0 C- g, x- f( Z' \9 Z这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
% U# x( K$ P6 E; Y$ c) _4 H8 d! N: ?4 u
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
: `3 m9 I) } {2 \
6 e0 n( r3 h0 g- JR example:
5 a) X$ W2 D$ x$ R" }
! i1 j, W% Z5 O0 V2 o6 V> M<-as.table(rbind(c(1668,5173),c(287,930)))
, i1 c2 ^( C4 W4 J3 f, i> chisq.test(M)
) N! A* n( E& ~' i6 \; W0 p# v7 p5 P6 L# c- U( E) k1 P
Pearson's Chi-squared test with Yates' continuity correction
; _" ~3 H/ ^* t+ k2 k' ?3 h. D8 j# y) x- p. L* R+ e, i& @
data: M; d! {! q4 F5 M. M: s$ L. J
X-squared = 0.3175, df = 1, p-value = 0.5731( V9 k2 d: p6 A! |* t6 q' D
/ o+ E8 D& k: |4 S ^) `1 C1 D
Python example:
* O) k r+ v: A! o
8 n, P! r) w1 D6 p% F C>>> from scipy import stats% X& j* Y8 M& h: n0 O
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
) R9 i1 p8 [! O# Q, ?) N(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
, H; p7 T7 M) U; ]+ ~; { [ 295.26371308, 921.73628692]])) |
|