设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
楼主: 晨枫
打印 上一主题 下一主题

[科研心得] 问题:如何从数据里估算普瓦松分布的均值?

[复制链接]
  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    41#
    发表于 2019-2-4 14:40:54 | 只看该作者
    本帖最后由 Dracula 于 2019-2-4 14:45 编辑
    , F) O; w. X& b$ q3 r& r4 ~
    晨枫 发表于 2019-2-4 14:34  c4 J% e3 H! z" G* m
    有了 μ和 σ想计算峰值就容易了,我的问题是如何从histogram计算log normal的 μ和 σ。看来这也是个办 ...
    ( o. ]; Y7 o* g) f2 V- T6 s  }, s9 E& N
    ; ^8 E4 j  u# J+ K4 D
    怎么计算分布参数的问题,你的题目我没看明白,不好说,但是正态分布你会做,log-normal 没有任何本质区别,一样的办法,就是数学公式不一样就是的了。应该不难。" z5 i1 S$ V5 K) M. p$ K2 |

    ( D7 ^1 J  U0 C! d
    9 K7 q. v( j: s6 _9 o  F' b+ g(标准的统计学问题,估计log-normal分布参数也是有公式的,你到网上去查个公式就是的了。)
      O2 Y# M  I. I1 N% m% O+ i  F) R8 j+ J$ h0 R6 R, g5 L
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    17 小时前
  • 签到天数: 1944 天

    [LV.Master]无

    42#
    发表于 2019-2-4 14:56:30 | 只看该作者
    本帖最后由 数值分析 于 2019-2-4 15:05 编辑
    + Z8 w9 A  |9 Z# `0 z4 u8 y- l2 ?1 [* G5 q# Y
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位置一定是 x=lambda,(这里lambda不一定是整数),那么剩下的就是从样本里推断lambda了,这是个典型的估计啊. 对于泊松分布,lambda正好是期望,所以一般来用样本均值估计期望。1 [! A' V# F# {0 G* k
    你给每一个板子从最左边顺序编个号,i=0,1,2,3。。。,然后设每块板子i的对应温度样本值xi,,然后计算sum(i*xi)/n [即累加所有的(板号乘以对应温度)然后除以板数】 (因为你的分布曲线可能和泊松分布差一个常数,所以最后结果得scale一下)不就可以了么?当然,这得假设你的histogram真的得长得像泊松分布分布。+ {+ V1 X# q6 u9 K# m

    点评

    给力: 5.0
    给力: 5
      发表于 2019-2-4 22:28
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    43#
    发表于 2019-2-4 17:40:34 | 只看该作者
    石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。; Z" A& y* b' `% E3 U% G8 t# b
    数据送到电脑上算,算了以后在送回去。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    44#
    发表于 2019-2-4 18:02:11 | 只看该作者
    晨枫 发表于 2019-2-4 13:33
    * y+ c" }- n& M2 [3 m唉,MATLAB里有histfit命令,干的正是我要的,可惜没法“偷”过来用啊
    - ]6 H- ?  j) j1 C6 V/ R- @
    我记得MATLAB支持OPC
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    17 小时前
  • 签到天数: 1944 天

    [LV.Master]无

    45#
    发表于 2019-2-4 18:34:42 | 只看该作者
    数值分析 发表于 2019-2-4 14:56; l( D; I/ L6 z4 h7 z/ Z
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...

    $ g4 v1 S) _8 g: `多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和泊松分布差一个常数。你求出来的lambda的估计要用你histogram的面积归一一下。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    46#
    发表于 2019-2-4 20:39:47 | 只看该作者
    可以试试GMM Guassian Mixed Model去拟合统计分布, n+ D, ^5 a, k6 u5 @( G% g; [
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2019-10-12 04:17
  • 签到天数: 1014 天

    [LV.10]大乘

    47#
    发表于 2019-2-4 21:47:53 | 只看该作者
    晨枫 发表于 2019-2-4 12:30
    + G. W. @6 Q! t1 n* X( x没人理我?都在忙着吃年夜饭?7 ?0 T0 L# b: m% K9 O: y  d6 q% K+ |
    7 c0 M0 I- G& F' y( ^+ v
    @煮酒正熟 @holycow @tanis @关中农民 @老马丁 @Dracula  ...

    3 ~1 J8 ?+ F% j" N) i晨大,这得数学博士才中啊,额完全外行了,看见这个只能联想到面条
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    48#
    发表于 2019-2-4 22:07:12 | 只看该作者
    我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density function的形状,在这条曲线上你已知坐标是x=1,x=2,... x=20,这20个点的值,你想要知道的是曲线的最大值是在那个点上。不知道我这个理解对不对。
    7 V: a' y0 E# `7 F+ u  G
    " ^/ Q. E# O' a' c6 H/ P' V如果我的理解是对的话,这不是个统计学问题。你画的那个也不是histogram,因为histogram的纵坐标是在每个值观测到的sample size,而你的图的纵坐标是温度,不是一回事。因此统计学的书你不用查,查了也没用。解决这个问题最显而易见的办法就是最小二乘法,但应该是没有分析解,你不能用。我好奇的是如果假设假设曲线的形状类似于正态分布的density function,你们是怎么解的,使用最小二乘法应该是一样没有分析解。如果解正态分布有特别的巧妙的办法的话,或许稍微修改一下就可以用到log-normal的情况。
    * J8 _6 s/ T; w( \6 `6 Q7 J0 S: i) N) F4 e" e) l5 `

    # ?9 S) g; t2 C+ Q8 ~6 k5 `
    9 S  P4 l; J! X! Y+ i( B  w; o' ]
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    49#
     楼主| 发表于 2019-2-4 22:17:54 | 只看该作者
    数值分析 发表于 2019-2-4 00:56
    5 R- n3 _( ^  i, r/ n你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...

    0 S; a/ o- _' h# y4 r$ b这个办法好!回头试一下!我是打算用这个办法当正态分布处理的,没想到也可以相当直接地套到泊松分布。可能这就解决我的问题了!多谢!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    50#
     楼主| 发表于 2019-2-4 22:20:16 | 只看该作者
    Dracula 发表于 2019-2-4 08:07
    3 e9 \, D2 P( t) h3 A+ P我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density f ...

    : o2 R: D5 j. P对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就是我一开始想到的办法,但只想到那能用于正态分布,正想改造为对数正态,没想到可以直接套泊松。这就好了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    51#
     楼主| 发表于 2019-2-4 22:21:02 | 只看该作者
    小刀 发表于 2019-2-4 06:39
    5 h- Y$ x8 h" @/ Q可以试试GMM Guassian Mixed Model去拟合统计分布

    ! ^/ f! q" y, C4 e这个还是太复杂了。用在控制回路里,必须KISS。但还是要谢一个!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    52#
     楼主| 发表于 2019-2-4 22:23:42 | 只看该作者
    视觉错误 发表于 2019-2-4 03:40) @! M9 j% R: U. [; [: Y0 T
    石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。
    $ z! O; P3 c; H4 N* G数据送到电脑上算,算了以后在送回去。 ...

    0 ?0 _# F) j( [9 e- X我们有OPC,问题是可靠性。用以下层基本的回路控制一般不用OPC,当机或者“交通堵塞”的后果太大。这是惯例。只有上层的APC可以用OPC,当了就自动shed到基本控制。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    53#
     楼主| 发表于 2019-2-4 22:25:29 | 只看该作者
    视觉错误 发表于 2019-2-4 04:02
    0 P' o) B4 i2 a" h  k: x4 n我记得MATLAB支持OPC
    " j, U* W" z0 w; S
    是的,我以前还试过用MATLAB C通过OPC与DCS相连,在技术上这是做得到的,但可靠性达不到要求。OPC是不作为可靠的控制信息通道使用的,只能传送点监视数据或者一般数据采集。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    54#
     楼主| 发表于 2019-2-4 22:26:25 | 只看该作者
    gnomegordon 发表于 2019-2-4 00:39
    9 y! {8 P# H0 c/ o9 r9 h* Wapologize. 网上搜code太麻烦,还得验证。最好有本书可以翻翻 或者搜library

    2 P; G  l/ X% ^" N- {7 `再次感谢。楼下45楼有好办法,我先试试那个办法,比kernel density简单多了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    55#
     楼主| 发表于 2019-2-4 22:26:58 | 只看该作者
    松叶牡丹 发表于 2019-2-4 00:36  S1 n, m0 S' e; w8 E, s9 G
    晨大辛苦,您太客气了。祝新年快乐!
    ) E. c6 |' D1 w6 \! \
    松叶MM新年快乐!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    56#
    发表于 2019-2-4 22:31:30 | 只看该作者
    晨枫 发表于 2019-2-3 23:46
    8 K$ s7 z0 p& N是我描述得不好。再来一遍。/ S' \( X0 n; Y2 [3 e, D
    : g0 L! m  P9 e( R1 R; @
    我有一条样子像泊松分布的温度分布曲线,但只有几个稀疏的点,想用类似泊松 ...

    3 E3 r5 R- e! P# j# @4 p就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    57#
    发表于 2019-2-4 22:33:46 | 只看该作者
    晨枫 发表于 2019-2-4 22:20. F( m& Q+ K3 I$ G$ A6 w
    对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就 ...
    / k# I2 m3 A+ w' `2 D1 m' `* v( T( Q
    42楼那个办法不对。那是把这当成个统计学的问题来处理,但这不是个统计学问题。你的纵坐标是温度,不是sample size,不能这么用。最明显的是,那个办法解出来的量纲是温度,而你想要的应该是具体是那块板,因此那个解和你想要的没什么关系。
    " B4 f3 t% h4 W  U! [. `" C4 V, }# V1 @4 Q4 Y' N3 f1 M
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    58#
     楼主| 发表于 2019-2-4 22:35:21 | 只看该作者
    数值分析 发表于 2019-2-4 04:34
    ' x' l2 C8 N3 P( t$ v$ c多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和 ...
    " W% r5 r( d' I% d; F
    多谢!记住了!$ R$ ^. \5 N. d5 ]. Z/ W
    ( |2 ]: O/ C0 S* m4 T: W
    其实你说的办法我已经试过。我把正态分布一边的尾巴砍掉,至少外观上接近泊松或者对数正态。只要有峰在,估计出来均值就还不错,越对称越准确,就有点窃喜。但对道理不摸底,不敢放手用。除非在数学上站得住脚,否则在线的时候没人看着,给我乱估一个就完蛋了。现在看来,道理就是你说的,这个办法不只适用于正态分布。曲线只有只有半边的话,就有点悬,这个可以理解。一般到不了这个情况,程序里简单判别一下也不难,另作处理。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    59#
    发表于 2019-2-4 22:37:37 | 只看该作者
    晨枫 发表于 2019-2-4 00:03! T4 V( E5 B+ B9 s% H  L9 H. R' `1 @8 [
    咳咳,这个其实不是统计问题,是从有限的温度测量估计温度分布曲线的问题。吸收塔一共20块塔板,每块塔板 ...
    ( m+ N$ ~( M0 Y/ h5 |4 `! E9 e
    1. 20个数据点在分布上有没有规律。比如两头低中间高。  w. B6 d( a) G, w, e0 J3 U2 w
    2。规律稳定么?
    4 s- l( N5 f- Q* `2 _6 }3。可不可以简化成20个点里找最大值。
    + J' o; [5 O2 t: w* V4。峰值如果不在采样点(塔板),而在塔板之间,只能按相邻塔板的问题计算温度曲线斜率,然后插值,而其要比较峰值塔板两侧的斜率,取较大的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    60#
     楼主| 发表于 2019-2-4 22:38:00 | 只看该作者
    雨楼 发表于 2019-2-4 08:31, G: ]" U- U4 ?" F  f- y
    就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.

    - U1 T5 |. ?5 X; N差不多。我开始也想过用抛物线然后平移,但平移量本身也要最小二乘出来。可能还是可以线性化然后用简单的最小二乘。我来试试看。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-10-5 19:56 , Processed in 0.041341 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表