设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
楼主: 晨枫
打印 上一主题 下一主题

[科研心得] 问题:如何从数据里估算普瓦松分布的均值?

[复制链接]
  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    41#
    发表于 2019-2-4 14:40:54 | 只看该作者
    本帖最后由 Dracula 于 2019-2-4 14:45 编辑   h" m. G( _4 N' n# \$ j  R
    晨枫 发表于 2019-2-4 14:34* Z% r3 ~0 p/ O# q1 g+ L) ?  i7 p" U- R
    有了 μ和 σ想计算峰值就容易了,我的问题是如何从histogram计算log normal的 μ和 σ。看来这也是个办 ...
    ; o- C/ ?6 m3 G- W7 K) H

    0 f8 n% b) ^$ c; X% N怎么计算分布参数的问题,你的题目我没看明白,不好说,但是正态分布你会做,log-normal 没有任何本质区别,一样的办法,就是数学公式不一样就是的了。应该不难。' b/ F9 T7 ]* L% ]; m8 Z
    ) |; a- P! J. w  z- @$ C7 ?4 `
    ) p. _; P7 h- M  _) _6 W
    (标准的统计学问题,估计log-normal分布参数也是有公式的,你到网上去查个公式就是的了。)- I) T8 C( B1 I0 s  V, R& g
    0 I2 I% ?2 L( F8 }% |- ?
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    5 天前
  • 签到天数: 1936 天

    [LV.Master]无

    42#
    发表于 2019-2-4 14:56:30 | 只看该作者
    本帖最后由 数值分析 于 2019-2-4 15:05 编辑 : |2 q& |  @! T) l" Z6 h

    7 V" ]' {7 S! I3 ?3 N你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位置一定是 x=lambda,(这里lambda不一定是整数),那么剩下的就是从样本里推断lambda了,这是个典型的估计啊. 对于泊松分布,lambda正好是期望,所以一般来用样本均值估计期望。
    5 N8 D, {. U! ]" a/ D  J" s. M, O你给每一个板子从最左边顺序编个号,i=0,1,2,3。。。,然后设每块板子i的对应温度样本值xi,,然后计算sum(i*xi)/n [即累加所有的(板号乘以对应温度)然后除以板数】 (因为你的分布曲线可能和泊松分布差一个常数,所以最后结果得scale一下)不就可以了么?当然,这得假设你的histogram真的得长得像泊松分布分布。, o; L7 ~, e" o0 w3 J

    点评

    给力: 5.0
    给力: 5
      发表于 2019-2-4 22:28
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    43#
    发表于 2019-2-4 17:40:34 | 只看该作者
    石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。
    ! F' k6 v6 ]' L& g# Q" H) c数据送到电脑上算,算了以后在送回去。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    44#
    发表于 2019-2-4 18:02:11 | 只看该作者
    晨枫 发表于 2019-2-4 13:33
    " n  x4 a* ^  D, i0 S# T0 R唉,MATLAB里有histfit命令,干的正是我要的,可惜没法“偷”过来用啊
    ; e7 J. r6 k9 X, w2 i% _
    我记得MATLAB支持OPC
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    5 天前
  • 签到天数: 1936 天

    [LV.Master]无

    45#
    发表于 2019-2-4 18:34:42 | 只看该作者
    数值分析 发表于 2019-2-4 14:56% T- \) c2 D6 m- C( `7 G
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...
    3 @/ x5 E" i) Y# o
    多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和泊松分布差一个常数。你求出来的lambda的估计要用你histogram的面积归一一下。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    46#
    发表于 2019-2-4 20:39:47 | 只看该作者
    可以试试GMM Guassian Mixed Model去拟合统计分布
    % Q) Q, g# x- K. {5 e
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2019-10-12 04:17
  • 签到天数: 1014 天

    [LV.10]大乘

    47#
    发表于 2019-2-4 21:47:53 | 只看该作者
    晨枫 发表于 2019-2-4 12:30* I' Y  W3 p4 U# ^6 N: A. \
    没人理我?都在忙着吃年夜饭?
    - H2 n6 E* S$ J' A! N3 E* J/ X
    * ^0 J, @- A/ n4 d& r% y@煮酒正熟 @holycow @tanis @关中农民 @老马丁 @Dracula  ...

    7 \: _5 Z' e# H2 q2 h晨大,这得数学博士才中啊,额完全外行了,看见这个只能联想到面条
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    48#
    发表于 2019-2-4 22:07:12 | 只看该作者
    我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density function的形状,在这条曲线上你已知坐标是x=1,x=2,... x=20,这20个点的值,你想要知道的是曲线的最大值是在那个点上。不知道我这个理解对不对。
    9 N+ `  q, F0 G0 h0 Z$ c  O$ {. G+ ]+ z5 s+ V% ~0 Z
    如果我的理解是对的话,这不是个统计学问题。你画的那个也不是histogram,因为histogram的纵坐标是在每个值观测到的sample size,而你的图的纵坐标是温度,不是一回事。因此统计学的书你不用查,查了也没用。解决这个问题最显而易见的办法就是最小二乘法,但应该是没有分析解,你不能用。我好奇的是如果假设假设曲线的形状类似于正态分布的density function,你们是怎么解的,使用最小二乘法应该是一样没有分析解。如果解正态分布有特别的巧妙的办法的话,或许稍微修改一下就可以用到log-normal的情况。
    & F- U6 N; Z4 M& Z; b+ h( F+ T
    ' o* a' V3 h7 ]! \7 \7 w1 J1 h2 E" m* `, W! x* u* k

    . z1 R* \/ e7 O) L2 |
    5 B! u4 F" D5 p) G$ y
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    49#
     楼主| 发表于 2019-2-4 22:17:54 | 只看该作者
    数值分析 发表于 2019-2-4 00:56- U' ]' u4 p% d
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...
    6 M! H+ o( V. z  Q. |5 M  z
    这个办法好!回头试一下!我是打算用这个办法当正态分布处理的,没想到也可以相当直接地套到泊松分布。可能这就解决我的问题了!多谢!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    50#
     楼主| 发表于 2019-2-4 22:20:16 | 只看该作者
    Dracula 发表于 2019-2-4 08:07  [$ A; E0 v# C* l' c
    我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density f ...

    ; S( k  C' {( S8 b- g" i2 W0 Z对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就是我一开始想到的办法,但只想到那能用于正态分布,正想改造为对数正态,没想到可以直接套泊松。这就好了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    51#
     楼主| 发表于 2019-2-4 22:21:02 | 只看该作者
    小刀 发表于 2019-2-4 06:39
    * a  v. ]! z8 a7 w4 K1 Z! k; w可以试试GMM Guassian Mixed Model去拟合统计分布
    3 l5 N1 ]4 e& ~0 g  x1 R( x! z& Y
    这个还是太复杂了。用在控制回路里,必须KISS。但还是要谢一个!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    52#
     楼主| 发表于 2019-2-4 22:23:42 | 只看该作者
    视觉错误 发表于 2019-2-4 03:40
    # H; Q( T0 W7 U" U9 @& ]  u石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。0 |8 H8 ~1 C* B' a, g
    数据送到电脑上算,算了以后在送回去。 ...
    ) i* C1 A6 \8 W" e& [
    我们有OPC,问题是可靠性。用以下层基本的回路控制一般不用OPC,当机或者“交通堵塞”的后果太大。这是惯例。只有上层的APC可以用OPC,当了就自动shed到基本控制。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    53#
     楼主| 发表于 2019-2-4 22:25:29 | 只看该作者
    视觉错误 发表于 2019-2-4 04:02
    " s: Q) S. @* t5 P1 m我记得MATLAB支持OPC
    8 @  \2 e9 \# p
    是的,我以前还试过用MATLAB C通过OPC与DCS相连,在技术上这是做得到的,但可靠性达不到要求。OPC是不作为可靠的控制信息通道使用的,只能传送点监视数据或者一般数据采集。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    54#
     楼主| 发表于 2019-2-4 22:26:25 | 只看该作者
    gnomegordon 发表于 2019-2-4 00:39
    $ Y4 K  L" H! x4 g" M. m/ ?apologize. 网上搜code太麻烦,还得验证。最好有本书可以翻翻 或者搜library
    ; R% m: x* p( s! W6 P# _! X7 s
    再次感谢。楼下45楼有好办法,我先试试那个办法,比kernel density简单多了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    55#
     楼主| 发表于 2019-2-4 22:26:58 | 只看该作者
    松叶牡丹 发表于 2019-2-4 00:36& ^0 y1 \! P# {, b9 v+ J
    晨大辛苦,您太客气了。祝新年快乐!

    2 Z+ y# _* s. \2 Q! M松叶MM新年快乐!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    56#
    发表于 2019-2-4 22:31:30 | 只看该作者
    晨枫 发表于 2019-2-3 23:46
    4 F; ?' ]( L) L是我描述得不好。再来一遍。
    / l) T+ i$ o  u4 K+ D
    % S% v! y2 S: h, t/ a- P1 T3 c我有一条样子像泊松分布的温度分布曲线,但只有几个稀疏的点,想用类似泊松 ...
    ! W- V# ]. d. ~3 t
    就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    57#
    发表于 2019-2-4 22:33:46 | 只看该作者
    晨枫 发表于 2019-2-4 22:20
      w' x- b1 |2 }6 J对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就 ...

    - s  V: Q: M  m. }) h42楼那个办法不对。那是把这当成个统计学的问题来处理,但这不是个统计学问题。你的纵坐标是温度,不是sample size,不能这么用。最明显的是,那个办法解出来的量纲是温度,而你想要的应该是具体是那块板,因此那个解和你想要的没什么关系。0 R' t4 e  z8 g3 S) D% f: o

    - }$ ^4 o& z& N8 t, i, d8 f
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    58#
     楼主| 发表于 2019-2-4 22:35:21 | 只看该作者
    数值分析 发表于 2019-2-4 04:34$ M8 l* l* x4 @! W
    多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和 ...
    7 g; ~+ v  h& Z: \1 D
    多谢!记住了!$ o3 J" o4 N( B) b1 T

    1 O) W+ r3 g* R' H其实你说的办法我已经试过。我把正态分布一边的尾巴砍掉,至少外观上接近泊松或者对数正态。只要有峰在,估计出来均值就还不错,越对称越准确,就有点窃喜。但对道理不摸底,不敢放手用。除非在数学上站得住脚,否则在线的时候没人看着,给我乱估一个就完蛋了。现在看来,道理就是你说的,这个办法不只适用于正态分布。曲线只有只有半边的话,就有点悬,这个可以理解。一般到不了这个情况,程序里简单判别一下也不难,另作处理。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    59#
    发表于 2019-2-4 22:37:37 | 只看该作者
    晨枫 发表于 2019-2-4 00:03& S8 d$ V5 K8 x: p; X1 E
    咳咳,这个其实不是统计问题,是从有限的温度测量估计温度分布曲线的问题。吸收塔一共20块塔板,每块塔板 ...
    . H* ^1 _. B6 s! `3 j
    1. 20个数据点在分布上有没有规律。比如两头低中间高。
    & p1 X. r3 A+ d/ \) F$ v2。规律稳定么?
    ) U/ b5 e; B0 }  N3。可不可以简化成20个点里找最大值。
    + d; T$ [9 n9 {( w$ m9 A4。峰值如果不在采样点(塔板),而在塔板之间,只能按相邻塔板的问题计算温度曲线斜率,然后插值,而其要比较峰值塔板两侧的斜率,取较大的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    60#
     楼主| 发表于 2019-2-4 22:38:00 | 只看该作者
    雨楼 发表于 2019-2-4 08:31
    - R; p$ y( [3 j2 ]9 \就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.

    7 s5 p# l4 i+ y3 ^- g差不多。我开始也想过用抛物线然后平移,但平移量本身也要最小二乘出来。可能还是可以线性化然后用简单的最小二乘。我来试试看。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-9-3 13:22 , Processed in 0.047220 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表