设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
楼主: 晨枫
打印 上一主题 下一主题

[科研心得] 问题:如何从数据里估算普瓦松分布的均值?

[复制链接]
  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    41#
    发表于 2019-2-4 14:40:54 | 只看该作者
    本帖最后由 Dracula 于 2019-2-4 14:45 编辑 7 c7 T/ j, [/ e" l- X3 g
    晨枫 发表于 2019-2-4 14:346 N3 c8 |% p/ A4 `4 l* Q* n" r' D# g
    有了 μ和 σ想计算峰值就容易了,我的问题是如何从histogram计算log normal的 μ和 σ。看来这也是个办 ...

    2 k! C2 J6 N1 m* k8 f( g' h! B5 @* f+ _/ {' h+ F
    怎么计算分布参数的问题,你的题目我没看明白,不好说,但是正态分布你会做,log-normal 没有任何本质区别,一样的办法,就是数学公式不一样就是的了。应该不难。
    ; Z* ?2 |' J) u0 s6 G% U6 C8 f) m: O. H$ y5 |! e9 Z
    3 K- H& Z4 u6 e0 A0 i; \& l
    (标准的统计学问题,估计log-normal分布参数也是有公式的,你到网上去查个公式就是的了。)7 s( ~5 Q0 Z- N" ^( d+ m
    . x, I2 f; r' R$ S$ \' L) K
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2025-12-26 03:23
  • 签到天数: 1954 天

    [LV.Master]无

    42#
    发表于 2019-2-4 14:56:30 | 只看该作者
    本帖最后由 数值分析 于 2019-2-4 15:05 编辑
    * X5 p0 e) S% B2 ]$ H! X" n  l# {4 x# i7 ]5 k& e4 d# }7 p2 h
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位置一定是 x=lambda,(这里lambda不一定是整数),那么剩下的就是从样本里推断lambda了,这是个典型的估计啊. 对于泊松分布,lambda正好是期望,所以一般来用样本均值估计期望。
    0 Y/ K0 Q5 u7 h; h" |' P你给每一个板子从最左边顺序编个号,i=0,1,2,3。。。,然后设每块板子i的对应温度样本值xi,,然后计算sum(i*xi)/n [即累加所有的(板号乘以对应温度)然后除以板数】 (因为你的分布曲线可能和泊松分布差一个常数,所以最后结果得scale一下)不就可以了么?当然,这得假设你的histogram真的得长得像泊松分布分布。
      c( f  _* [+ m1 F9 b6 n3 u* E- S) j

    点评

    给力: 5.0
    给力: 5
      发表于 2019-2-4 22:28
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    43#
    发表于 2019-2-4 17:40:34 | 只看该作者
    石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。
      c* g4 p7 P# B* s数据送到电脑上算,算了以后在送回去。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    44#
    发表于 2019-2-4 18:02:11 | 只看该作者
    晨枫 发表于 2019-2-4 13:33- L9 L. ]# ^/ M# b3 S( l, S) `
    唉,MATLAB里有histfit命令,干的正是我要的,可惜没法“偷”过来用啊
    7 m- S! ]$ ]' \) E2 p+ q8 |- H
    我记得MATLAB支持OPC
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2025-12-26 03:23
  • 签到天数: 1954 天

    [LV.Master]无

    45#
    发表于 2019-2-4 18:34:42 | 只看该作者
    数值分析 发表于 2019-2-4 14:56$ f# Z7 g/ [3 W' T. W/ ]6 n
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...
    7 b5 ~$ h( I3 [3 P3 B  |6 ?
    多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和泊松分布差一个常数。你求出来的lambda的估计要用你histogram的面积归一一下。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    46#
    发表于 2019-2-4 20:39:47 | 只看该作者
    可以试试GMM Guassian Mixed Model去拟合统计分布7 b: g4 b3 q( h6 Q/ e
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2019-10-12 04:17
  • 签到天数: 1014 天

    [LV.10]大乘

    47#
    发表于 2019-2-4 21:47:53 | 只看该作者
    晨枫 发表于 2019-2-4 12:30( M  |# k5 d2 H- G0 T5 c
    没人理我?都在忙着吃年夜饭?
    " _, b6 r& }, X  T1 E* @& k5 Y+ Q, H" h4 ?) A' C
    @煮酒正熟 @holycow @tanis @关中农民 @老马丁 @Dracula  ...
    # d. b+ v( M' A% M  z2 z* @. i2 |2 o
    晨大,这得数学博士才中啊,额完全外行了,看见这个只能联想到面条
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    48#
    发表于 2019-2-4 22:07:12 | 只看该作者
    我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density function的形状,在这条曲线上你已知坐标是x=1,x=2,... x=20,这20个点的值,你想要知道的是曲线的最大值是在那个点上。不知道我这个理解对不对。- K4 i* y' A& f8 ]6 d( L

    + S6 w) i7 }) ?如果我的理解是对的话,这不是个统计学问题。你画的那个也不是histogram,因为histogram的纵坐标是在每个值观测到的sample size,而你的图的纵坐标是温度,不是一回事。因此统计学的书你不用查,查了也没用。解决这个问题最显而易见的办法就是最小二乘法,但应该是没有分析解,你不能用。我好奇的是如果假设假设曲线的形状类似于正态分布的density function,你们是怎么解的,使用最小二乘法应该是一样没有分析解。如果解正态分布有特别的巧妙的办法的话,或许稍微修改一下就可以用到log-normal的情况。
    . H) k2 `- @5 f& C! U8 ~
    8 H" I, r/ w, f# d2 ~
    6 t& v* a9 i" H2 V7 z3 r- y  M6 H* a6 H2 W' M  i
    : F( n# v) t4 c' s5 R6 z. _
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    49#
     楼主| 发表于 2019-2-4 22:17:54 | 只看该作者
    数值分析 发表于 2019-2-4 00:56
    , Y) x" ?6 p. |. H( H7 P你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...

    " R9 N5 @# Y( }这个办法好!回头试一下!我是打算用这个办法当正态分布处理的,没想到也可以相当直接地套到泊松分布。可能这就解决我的问题了!多谢!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    50#
     楼主| 发表于 2019-2-4 22:20:16 | 只看该作者
    Dracula 发表于 2019-2-4 08:07
    - g9 i5 E; R; U0 v0 r1 M8 ~我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density f ...

    : ~' P- A# C- {* ?1 T1 P对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就是我一开始想到的办法,但只想到那能用于正态分布,正想改造为对数正态,没想到可以直接套泊松。这就好了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    51#
     楼主| 发表于 2019-2-4 22:21:02 | 只看该作者
    小刀 发表于 2019-2-4 06:397 B7 i3 S7 Q4 }( y2 l
    可以试试GMM Guassian Mixed Model去拟合统计分布
    ; E. F5 t9 a" o: z- d9 q
    这个还是太复杂了。用在控制回路里,必须KISS。但还是要谢一个!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    52#
     楼主| 发表于 2019-2-4 22:23:42 | 只看该作者
    视觉错误 发表于 2019-2-4 03:40
    - W% g+ I) Z; J$ P石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。; r  @& y9 K7 }2 G. ^" [; q3 b2 p
    数据送到电脑上算,算了以后在送回去。 ...
    / q9 ?# Z' [1 l: Q- a( V: {) n! y
    我们有OPC,问题是可靠性。用以下层基本的回路控制一般不用OPC,当机或者“交通堵塞”的后果太大。这是惯例。只有上层的APC可以用OPC,当了就自动shed到基本控制。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    53#
     楼主| 发表于 2019-2-4 22:25:29 | 只看该作者
    视觉错误 发表于 2019-2-4 04:02
    - t) k; N6 M& H( R我记得MATLAB支持OPC

    ; x1 W4 e4 O! w. H  x. R4 u是的,我以前还试过用MATLAB C通过OPC与DCS相连,在技术上这是做得到的,但可靠性达不到要求。OPC是不作为可靠的控制信息通道使用的,只能传送点监视数据或者一般数据采集。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    54#
     楼主| 发表于 2019-2-4 22:26:25 | 只看该作者
    gnomegordon 发表于 2019-2-4 00:39" x( m0 c9 l) u: S2 o% _3 H
    apologize. 网上搜code太麻烦,还得验证。最好有本书可以翻翻 或者搜library
    : y. r( P% s$ _# F3 G
    再次感谢。楼下45楼有好办法,我先试试那个办法,比kernel density简单多了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    55#
     楼主| 发表于 2019-2-4 22:26:58 | 只看该作者
    松叶牡丹 发表于 2019-2-4 00:36
    4 K. w6 Y, e; L9 ^7 b晨大辛苦,您太客气了。祝新年快乐!

    0 b) e0 A5 @- s8 ~1 t! ?7 I: c松叶MM新年快乐!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    56#
    发表于 2019-2-4 22:31:30 | 只看该作者
    晨枫 发表于 2019-2-3 23:46
    : I$ F- a9 E4 R2 h是我描述得不好。再来一遍。
    + g- p8 K/ ]$ Q- h+ Q
    . V5 D$ A7 X) a7 h0 f我有一条样子像泊松分布的温度分布曲线,但只有几个稀疏的点,想用类似泊松 ...
    ) x2 i& [$ x/ g( ^; j  F
    就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    57#
    发表于 2019-2-4 22:33:46 | 只看该作者
    晨枫 发表于 2019-2-4 22:20
    : x1 M0 M0 N4 q8 Q0 Z/ ^6 L对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就 ...

    7 r8 _) c3 `" B& ~! Q& l" C! r42楼那个办法不对。那是把这当成个统计学的问题来处理,但这不是个统计学问题。你的纵坐标是温度,不是sample size,不能这么用。最明显的是,那个办法解出来的量纲是温度,而你想要的应该是具体是那块板,因此那个解和你想要的没什么关系。
    / X: l, a9 o0 k$ }+ @
    8 y$ X" V, |  ]8 {' E. N% G3 C$ q+ \
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    58#
     楼主| 发表于 2019-2-4 22:35:21 | 只看该作者
    数值分析 发表于 2019-2-4 04:34, J: x+ p7 I% Q8 `
    多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和 ...

    ' y! l( z9 k' e  r4 X9 j7 i多谢!记住了!) m4 k( w, l/ t+ }

    5 {3 d" Q; o2 S其实你说的办法我已经试过。我把正态分布一边的尾巴砍掉,至少外观上接近泊松或者对数正态。只要有峰在,估计出来均值就还不错,越对称越准确,就有点窃喜。但对道理不摸底,不敢放手用。除非在数学上站得住脚,否则在线的时候没人看着,给我乱估一个就完蛋了。现在看来,道理就是你说的,这个办法不只适用于正态分布。曲线只有只有半边的话,就有点悬,这个可以理解。一般到不了这个情况,程序里简单判别一下也不难,另作处理。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    59#
    发表于 2019-2-4 22:37:37 | 只看该作者
    晨枫 发表于 2019-2-4 00:03( ?1 x5 T' e0 q, A; I+ o1 l
    咳咳,这个其实不是统计问题,是从有限的温度测量估计温度分布曲线的问题。吸收塔一共20块塔板,每块塔板 ...

    $ e( O$ ^2 s0 W  y/ Y1. 20个数据点在分布上有没有规律。比如两头低中间高。
    0 {3 u& S/ [' C$ W2。规律稳定么?
    ' a9 [$ Y; [$ ~  p6 K4 ?3。可不可以简化成20个点里找最大值。0 r. F0 Z0 u9 J2 H& s7 \
    4。峰值如果不在采样点(塔板),而在塔板之间,只能按相邻塔板的问题计算温度曲线斜率,然后插值,而其要比较峰值塔板两侧的斜率,取较大的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    60#
     楼主| 发表于 2019-2-4 22:38:00 | 只看该作者
    雨楼 发表于 2019-2-4 08:31. ]8 q# Q; y; ^2 W
    就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.

    # E' o* R/ t9 l2 s差不多。我开始也想过用抛物线然后平移,但平移量本身也要最小二乘出来。可能还是可以线性化然后用简单的最小二乘。我来试试看。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-5 09:53 , Processed in 0.048419 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表