|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
8 K/ ]0 p1 m7 l W" {* z& l煮酒正熟 发表于 2013-12-20 12:05 ![]()
# j7 u; H6 {+ t* ]: D: O基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... 0 A7 u* d j' U2 v/ w" @. p4 x0 ~' S
5 E3 [ f6 k1 g6 R! l
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。 R" j, N4 N) J6 m3 H: x# L T
% L5 G" A2 K1 J6 Y! Q Z. `8 K结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)7 X" L; U4 A9 o. {* Z
/ K3 r* E: D$ yR example:
7 \- U1 u5 K. A" M
6 G" q% B& H+ r& |2 n& U> M<-as.table(rbind(c(1668,5173),c(287,930)))# x( [0 @2 }# T$ G* W y$ S9 w3 N
> chisq.test(M)
- A9 O% J2 `# d( i4 g8 j# y+ l& V3 _2 }6 Z# h- _4 n$ N. M" t
Pearson's Chi-squared test with Yates' continuity correction! m" I6 I% Y8 e% u2 D' L
, Q5 @2 {" h2 N" Q8 E* D8 z" Rdata: M
; k: t( [& u; CX-squared = 0.3175, df = 1, p-value = 0.5731
+ ?7 z8 X* l- c' v# L' [% B, p( f
Python example:; L" P, k- J9 g. t" P) S8 Z6 U
( \ d) {# ?. Q/ h' N3 |" F>>> from scipy import stats
! y- G' g( s& o4 P( ^>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]]). A+ z; Z( M5 \5 W' r
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
2 _6 @! a+ Y4 G8 B+ N [ 295.26371308, 921.73628692]])) |
|