|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 # W" z! t0 u% R+ w/ ?: L
煮酒正熟 发表于 2013-12-20 12:05 ![]()
6 B8 }# J/ m, F& t& v基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
+ c3 p& g/ q" h1 n: z* F7 T @) Y- w* c9 F6 V$ s6 R
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
% c" M/ P1 L7 _& c+ l* ~ W5 t9 Y3 [; G9 e# Q0 [4 x6 X
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)8 \" g% L6 `$ D) i5 M- L7 ]
" v* `( X4 A- K7 x% a
R example:$ q+ e/ l- g* r
8 \% f& R/ L% k4 ]+ F. v> M<-as.table(rbind(c(1668,5173),c(287,930)))
- y; T C" n- s: o' C q E> chisq.test(M)2 q) x2 X, a$ J2 S/ ], M
z5 k* U! ?6 e
Pearson's Chi-squared test with Yates' continuity correction: ?0 `2 z) P" K8 l1 x6 c
/ j: \; u; J4 v, p Qdata: M1 Z9 q) s- U) f8 X! [ n3 S. k" S
X-squared = 0.3175, df = 1, p-value = 0.57319 D: t M& J6 j& O+ z
) |0 o5 a6 H0 l. _! n! d. u) p
Python example:8 \- \5 x* I8 B0 @6 P( z
7 n+ A, g% z$ q' W# e>>> from scipy import stats
* q8 c% k o, w" w; D0 z>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
0 k# `( _2 V1 P* ]5 \% {(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],* ^2 \; {: b# C. u( \
[ 295.26371308, 921.73628692]])) |
|