|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 ( w) U( m& }9 O; _! Z
煮酒正熟 发表于 2013-12-20 12:05 ![]()
* Z J T, v) r" q3 e, s, L基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... 8 i O7 N$ \0 O$ d4 `% y+ E: c/ o
0 _4 ^/ Z& G* d1 h: v7 [" G这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。 * a8 H" P1 h% m$ ^
. f; q4 f+ p/ g+ g: R: S8 H结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981); D/ ?! \/ m$ B; h7 R9 y+ D
/ k6 u$ r9 f5 NR example:
) x! K* D7 ] R }, s% i% D# k3 U
3 {, B1 x5 D' p- N/ R- t> M<-as.table(rbind(c(1668,5173),c(287,930)))
/ @; X- e3 A3 O" H: S' [2 w. u> chisq.test(M)7 M) c: B+ r8 b4 H( v( s
" ^, i0 s0 A' ?, B* }. t
Pearson's Chi-squared test with Yates' continuity correction
1 S/ K* o# k+ N
- B0 t$ } x8 W1 {5 F" A! h4 \data: M. k$ a' R; Z; U" u9 S
X-squared = 0.3175, df = 1, p-value = 0.5731
x+ ?/ R- u- b. n! r" j% E( v N
( D; `5 c7 z. l; a3 O: iPython example:: q/ n7 j# S$ y* V5 z. W* ?0 D
9 T s; o$ R& }$ M5 s2 R. r q
>>> from scipy import stats
: H8 o$ [9 R* O1 M, e, E>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]]), t, m2 |$ |' V: s! g5 T
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],: d/ N0 k4 Q$ X' i; a; V
[ 295.26371308, 921.73628692]])) |
|