|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 * ?' T4 E( z( ~4 E2 ~
煮酒正熟 发表于 2013-12-20 12:05 ![]()
. j" y" Q! n9 a基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... * c. C. [: p$ T
/ O3 J( y. a$ m5 K
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
+ r) E; j8 t& F, }, R& G. F# U9 a( q: N5 a4 Q2 n/ u. i5 R0 Z* B9 x
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)+ N. s3 D3 |1 ]% O; i2 T
; s# q( M% S* C, yR example:
2 S6 o, N1 Z Y
" B5 j) i; Q/ Z> M<-as.table(rbind(c(1668,5173),c(287,930)))3 N1 W9 E; ~6 c- F" [
> chisq.test(M)
0 K6 B4 I$ \) v( Z
$ K6 g* ^& K# B% h9 V Pearson's Chi-squared test with Yates' continuity correction* E0 T, w% d! b1 C7 [/ a" ~
0 h5 {+ f& N# w& ^; \% y) K
data: M1 {1 ]0 M2 C; h: ]5 Y& y
X-squared = 0.3175, df = 1, p-value = 0.5731$ P- q7 s$ h' Y' H
3 L9 |% F9 N4 E; E; `4 X
Python example:, u1 X O* ?6 Y
- q6 ^# H) D9 p3 J>>> from scipy import stats
/ i. J1 q% a V5 w>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])+ e8 C: X: f* v8 F
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
; W) D2 o- e. e( e% y [ 295.26371308, 921.73628692]])) |
|