|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
+ ?# ~5 K z X煮酒正熟 发表于 2013-12-20 12:05 ![]()
1 L3 w z) L# b8 N9 M, [% N基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
4 R- C" z/ g0 C2 \! H
4 f1 H% B* e6 y3 I这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。 ) d6 j' Z) a) X4 i5 M
% Q4 w. t1 B: q0 S! X4 p结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981); Y9 v9 n# C3 F4 M; j
! S/ Z8 D' N; H7 t
R example:
$ `) S/ F2 i1 Q: i4 N9 H- e2 ]* u3 I9 Q5 F: U
> M<-as.table(rbind(c(1668,5173),c(287,930)))6 t5 j( o% B& c7 E8 ]
> chisq.test(M)) z" l/ |5 m; @" @$ ^, N; [/ G) b
& c6 V* p% m2 g' O) m Pearson's Chi-squared test with Yates' continuity correction0 `6 S: q' Y& k
0 x- A" G% x( V9 E& {* u
data: M
. C; ^3 a# J' }7 c# b" a$ oX-squared = 0.3175, df = 1, p-value = 0.57318 {( {3 E& G4 P* m
) m' ~0 B$ U0 i# p! |Python example:
$ C3 ?! P/ G5 ?& f4 _3 ], z1 ~# ~/ c
>>> from scipy import stats
7 r n+ }- ^; m3 |1 x+ f0 U>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])# T$ ^. U: `" I0 R$ D* d3 b/ W
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
/ ~1 t: C- n0 L) Y [ 295.26371308, 921.73628692]])) |
|