|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
T0 W% Z) H5 `% g煮酒正熟 发表于 2013-12-20 12:05 ; e. M4 N$ T6 R) w: `# O2 K
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... 5 [* R- u% b* U/ Y$ o
2 l# j- l/ Q% K, }. W这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。 9 q* j2 q/ {7 m# K& }% ~ c* K* u
( |. r0 H6 I% Y0 y3 w) {
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
, ~( z* R5 o8 I/ G" N0 F" M( E3 u! V/ F, Y" g; H8 |
R example:8 x8 a3 f) p7 w, M/ H) Y7 a
6 [, Y r% @( |8 u/ R> M<-as.table(rbind(c(1668,5173),c(287,930)))
& X" z( g& e+ ~, `5 _. C> chisq.test(M)
2 V) ~, |+ l/ V. f: [4 H2 S% |! N4 }- |( b) P9 m
Pearson's Chi-squared test with Yates' continuity correction; Y# g9 t/ v+ x. a- E& \$ U
9 u0 f2 t7 C- W& kdata: M
# H7 ]7 i9 q6 _& V5 l1 k# U7 pX-squared = 0.3175, df = 1, p-value = 0.5731
& @: G4 q& |/ O& T8 g j& ^* V/ T5 b, w/ [( z: q$ ^
Python example:
% D" U% s) r( P/ H. X; w7 b' ], Z& k2 h+ \0 K W( `' R0 Y1 ^
>>> from scipy import stats" z& A! t* T3 f3 B
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
: [$ ]% N2 r* P& @ @ C5 d! } [7 p(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
0 i. d- v. a Q% H [ 295.26371308, 921.73628692]])) |
|