|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
9 p% M, [) P; J: @* B煮酒正熟 发表于 2013-12-20 12:05 ![]()
. c9 V: q `( v9 E6 t8 F2 U基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
% u* E: E& w7 X, W& E4 b
# G( \ X3 Q" v/ q0 k这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。 " U5 e- b3 t/ q2 }; Q+ _' N
D5 m& X0 @4 L% B
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
! U$ p9 R% h/ Q; t c( c
& q4 \7 \& H# c( O' _& C) _5 iR example:
7 I1 K5 J {0 T: E( N* X- D& l+ [
, ~, ^( x* `5 a4 x0 {7 M4 ^> M<-as.table(rbind(c(1668,5173),c(287,930)))
/ \" U8 h( n3 ]4 y* Y> chisq.test(M)$ [: C" ^9 B7 S/ `
1 F6 c) }( z8 w. u Pearson's Chi-squared test with Yates' continuity correction
# u1 V# |0 H. \9 A& j
0 H; B& s) z4 @4 S% ]data: M
$ _* N1 k3 h/ ~3 bX-squared = 0.3175, df = 1, p-value = 0.5731# a# ^( V: [1 m+ t3 H7 ^( _& m
& O+ A& T5 \. [( {2 A
Python example:
. R; C7 J( d6 J$ S/ X5 i, i
% H& ]. L/ Q2 _6 a5 W! W( A, M>>> from scipy import stats; {5 R) `# I3 O4 Y: R c5 C. O! K
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])8 A7 l; R2 H5 m( s; e
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
! P) y2 ^5 b2 Q6 @1 H) z& [" } [ 295.26371308, 921.73628692]])) |
|