TA的每日心情 | 郁闷 2016-2-4 15:19 |
---|
签到天数: 7 天 [LV.3]辟谷
|
科学方法论这个东西其实并没有什么特别多的可以说的。因为大家一致公认的原则基本都在那,几乎没啥歧义。
, ?9 A# P) M/ l那么,我们要谈的是什么?
* T2 _* A( d3 y3 Q% y& O
/ B p1 J, D% ` z! l% Z4 F+ a3 C4 H就像毛主席语录一样,一模一样的文字就摆在那,但是不同的人却可以有不同的解读。这种现象在人类历史上多次存在。绝大多数哲学,宗教都有这种不同解读导致分歧甚至战争的现象。& ~$ D9 Q/ Q7 f3 ?
' h: k r% }' @$ g5 ^自然科学相对好一点,因为对象很明确也很稳定。建立在自然科学基础上的科学方法论也就很少歧义。但是,去哦们惊讶的发现,在这个问题上依然会出现不同的解读。
& A/ y- y9 i' U2 {; z+ X. X; L9 Z( W% C. T/ }) D% w6 r
比如,对同一个自然现象,如雾霾,如石墨烯,大家各自发表了不同的观点。这时,就有人说:要有数据。用数据说话,不要拍脑袋。) ` s5 g. X) Z, T. T
似乎很科学,数据说话。1 \( X \$ o* Y3 ]- n! _9 t
6 `' K, G7 b0 r" Z; }2 f" E+ B" g" E
问题是,用哪些数据,谁的数据,如何取舍,是需要判断力的。; ~/ g( r" V; D5 O& S- l" A
难道数据不是客观中立的吗?谁的不都一样吗?
7 O2 f; q1 Z: ]这个在理论上是的。实际上是很难实现的。即使在自然科学中,也有学科的差异。
|' Q. R- f2 V1 o8 j( F0 d0 g物理学,相对较好,数据的客观性基本可以保证。
+ R0 ^* D4 Y# r5 L化学,也能基本保证。
, A2 I! P9 R. n; z生物学,有点悬。以为内很多生物学的数据依赖于样本数量和统计方法。最讨厌的是,往往需要较长的时间周期才能获得明确的结论。
9 @6 h1 U& L3 o$ b- c7 J) C环境科学更特殊一点。它采用的是化学的方法,面对的对象却是生物对象。所以,环境科学的不靠谱的事情就多一点。
* Y" z/ I6 Y& g$ d) {/ D与之类似的还有一些亚学科,如食品科学,化妆品科学。都是这种情况,化学方法,面对的是人。评估和检测的周期与样本都很繁杂,不容易得出结论。
/ Q: _6 }' c2 O; w% e2 b8 Z. v( x' g( P* Y- U% S
这个时候,判断力就非常有意义。
1 D8 t: @- r3 L说到这里,就不可避免的要说到专家了。
9 C, G. B' k9 D+ Z8 E: E( p- ]( J; D
* ~8 P q8 D6 b3 U2 F专家现在有点骂人的意思。说一个人是专家,基本等同于挖人家祖坟的意思。' ]+ P2 Q4 C$ F8 f" ~1 @# e0 k
但是,我们还是要承认专家的存在,否则就是否定我们自己。因为我们多少也算某个领域的专家。更重要是,我们要承认专业门槛的存在。有门槛,才有专家。但是,这有出现学科差异了。$ {+ f3 Z- ]& T3 \
! }3 | Y, V9 |/ `* O
有的学科和领域,实践性特别强。这个领域的专家就要求具有经验值,越多越好。比如炒股票。无论你研究过多少数据,写过多少著作,发表多少论文,甚至提出了数学模型得诺贝尔经济学奖,你不一定是炒股专家。因为这个领域是以实际操作为评价标准的。
, j) k4 j* h; \9 P
; r2 A& P, M; ]% m化学学科也有类似特点。在一些应用性很强的分支领域,实践的重要性要远远超过理论。因为化学学科的理论本身还处于一个待建过程。所以i,很多顶着很多光环的人物,不一定是真正意义上的专家。这个人可能是院士,是诺奖得主,但是不一定是好的工程师,好的配方师和工艺师。如果这个大人物在配方,工艺和设备等纯粹的应用领域随便说话,结果很可能是出问题甚至闹笑话。
3 |: E, c0 C/ {* x/ `
% D5 \5 f$ i+ r) s同时,同样背景的人,其判断力可能天差地远。我见过一位教授,年纪轻轻。一次,他的学生拿着烘干的粉末样品疑惑的说,这一次的样品怎么感觉有点不一样,好像滑滑的。我的试验条件没变啊。原料也没变啊。* P9 [3 z# Z$ g$ a% Z) g3 o# X
. u5 v6 x& q! ]( E' w
这个教授听了,想了想,问,你这一次烘干的温度是多少?# R2 Q( W X- @) ]& v. k% B
学生说:120啊。和上次一样。
; z0 [& l! ]: ^6 ?教授问:是到了120放进去还是先放进去升温到120?
( q+ Q! e! e+ [3 M6 {/ T! y- p1 k2 i; y# L; R, {" s
学生说:这次是120时放进去。上一次是先放进去再升温的。
( @: ?8 H% s! J. Q7 _教授说:这就很容易理解了。带水的样品直接放到120°和自然升温到120 °,颗粒的聚集形态是不一样的,表现在摩擦系数就会有差异。4 h7 Q% L9 J* }. \% R. L, X
- _0 V. I5 q+ i1 F
我在一边听了,心中叹服。这就是扎实的理论知识加上出色的判断力。他具备深入事物本质思考的能力,同时又不缺乏相应的知识储备。& U, ?6 Y4 S/ Z1 H3 t6 K1 `
) r G0 L' B, y; S1 v+ k但是,我也见过另一种。一个金融学教授做报告,讨论人民币是否应该升值。他的结论是应该升值。但是依据却是一些现象的罗列,没有逻辑的分析和递进,说了半天,基本上都是废话。其深度和街头大妈要买房的思维方式差不多。比如,升值有什么好处,进口占便宜;不升值有什么坏处,美国人可能会不高兴。等等。最后提问时,我忍不住说,按照你这个逻辑,我也可以说,吸毒是应该的。因为吸毒也有很多好处,如可以让我快活,刺激灵感。判断一个事物,最基本的原则是分清主要矛盾和次要矛盾。而不是先有结论,在找依据。说的大家哄堂大笑,教授面红耳赤。2 O7 t6 K$ i5 ^: {
( S1 g% n9 Q9 B9 j1 o
说到这里,我必须要回答:什么样的方法论才是真正意义上的科学方法论。不是按照教科书的教导,在充分占有全部完整数据的基础上警醒逻辑分析和判断。因为这个前提在现实中很多情况下是不具备的。我们几乎都是在数据不完整,甚至是在彼此矛盾的数据面前进行分析和判读。
& a5 a' ^+ H i- \- P0 {2 z0 s6 R+ `
这就需要我们按照不唯上,不唯书的原则,用理论知识和逻辑分析(演绎与归纳),对数据加以验证,然后才可能得出一个比较接近于真实的判断。: Z' E& E: Z) W5 i+ T4 o& H
这个时候,首先要求我们采用的数据是基本靠谱的。比如,最可靠的数据是实证数据。说雾霾导致肺癌,那就用病例和对比分析说事。但是,实证数据数量稀少,不足以完全消除干扰因素。这个时候,就需要严谨的实验室设计的试验数据。这种数据的发布一般都是在行业内的专业杂志和期刊。
4 X: F2 g& M, v/ K2 w: ?9 Q+ t) }+ K
最后在说一点对新型技术和产品的判断。
0 s) H$ l. y+ P d: p9 |3 ~, {" ?这种东西最有说服力的就是实际应用。尤其是涉及到新材料,新工艺和新设备的情况。一般的说,市场的反应最有说服力。其次是业内的专业生产商。学术界对这类问题的发言权一般是最小的。因为思考的角度和立足点不同。
! z+ Z! Q# }! h7 F5 o8 }3 @: t; W; s. a. [1 _9 {( t* ?
如果说,一个新材料20年都不能应用,至少说明在这个阶段内它不具备可以应用的价值和条件,无论听起来多么神奇和高大上,一定是有着致命的缺陷。我们在评审项目时,来自高校的项目基本都会说自己的技术解决了国内或者和国际空白,处于何等领先。但是我们知道,这种话也就是说说而已。, H2 ?- f, x/ X0 O& E) J5 F
真的要解决一个行业内长期存在和问题谈何容易!绝不是一个老师带着几个学生就可以完成的工作。他们完成的仅仅是这个额工作的最前期的部分,即可行性论证而已。保证这个东西在理论上不至于做不出。至于事实上能不能做得出,天知道!
) Q- x4 Z+ z3 X5 ]( B
4 Y- Y9 h5 m3 m( P# l, | |
评分
-
查看全部评分
|