设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 3142|回复: 5
打印 上一主题 下一主题

[科普知识] 我理解的拉普拉斯变换

[复制链接]
  • TA的每日心情
    奋斗
    2021-4-20 05:43
  • 签到天数: 300 天

    [LV.8]合体

    跳转到指定楼层
    楼主
     楼主| 发表于 2023-9-27 11:25:14 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 可梦之 于 2023-9-27 11:33 编辑
    6 [% n. f! Y/ Z& \. O, ?' q1 t- E: \2 U3 n/ j7 k
    最近工作需要,又重温了一下电路知识,对拉氏变换有了“新”的理解。0 H% p! V& {/ @: E7 }

    4 T' |# J* o- a" C  h- g, F众所周知,高斯小时候就原创了求和公式。求和公式就是将大量的加法运算变成了简单的乘法。换个思路看,天地自然宽。) Z5 f% v$ Z+ F! r! w

    ! V* |/ b- |" A8 Y电路中很多微积分方程,如何解就很烦人。我们能否换一个工作域,将微积分变成我们熟悉的乘除法呢?! |4 S7 R/ Z4 Z9 H- ?* B) E
    * ^: ?+ P1 Y7 T

    ; l* v( \  v, M. c( r. Z0 Z* h) F# g- K' {
    翻开数学工具箱,复数看着靠谱。复数有三种表达方式,欧拉公式将其转成简单的指数表达方式:
    8 k! R; _0 ^' I8 f9 S* B' c
    3 |4 |( M+ c6 I# A7 T
    . [" c. {3 S9 J* }4 u0 u1 T9 U5 [+ j$ J* h' b) I( U; S
    不去管复数的具体含义,运算从实数转成复数后,乘除法变成了加减法,微积分变成乘除法2 U" `1 L7 Z5 e" \0 Z) a" Q3 K
    2 O- }. o/ D: U0 G" e- b

    9 R) ]& B) `# }. t- d: U3 g) W' }9 @# Y/ X7 I# V# |- }
    数转为复数域,那么函数呢?从上面我们看到指数很有用。哪个积分变换用到了指数呢?大名鼎鼎的傅里叶变换啊。不负众望,时域的微积分变成了频域的乘除法。$ j- i9 p( d" F( d' z; r1 A; p

    # ^0 P; E3 k+ i( R  k- e* ]4 O' n  p/ Z/ F: K+ s
      N+ F8 E: i  Q% ~2 C
    傅里叶变换有一个小问题,要求函数绝对可积,也就是积分是要有限的,否则搞出来都是无穷就没有意义了。但是电路中很多函数不满足这个条件,比如x^2。那怎么办呢?8 F! T9 D2 r, G! @
    2 u: `( n1 E" K9 @" C
    拉普拉斯跳出来说,我可以把他变小啊。指数是增长/衰减最快的了。不管你函数多大,我给你乘上一个衰减因子e^-at,在t足够大的时候,都能给你拉下来,满足傅里叶条件了。  b2 R8 Q  p! `/ z
    ) h7 G4 @& f( t

    # S6 e' \5 @; y5 D9 Q2 Q
    2 F5 b8 M' m3 t3 A% C. H指数相乘可以合并为加法,a+jw不就是一个复数s吗?这样就成了大名鼎鼎的拉氏变换了。2 k/ Q3 U- G; Y& ~0 ?

    . v- `& s/ |4 c' x, g有了这些数学工具,我们可以将电路中的各种变量变成复数,方程转到复频域,这样微积分就变成了我们熟悉的多项式。做完操作再用逆拉普拉斯变换转回来就好了。

    评分

    参与人数 13爱元 +102 学识 +2 收起 理由
    mezhan + 10
    喜欢 + 8
    老票 + 18 + 2 精彩
    testjhy + 10 谢谢!有你,爱坛更精彩
    helloworld + 6 涨姿势

    查看全部评分

  • TA的每日心情
    开心
    2025-12-26 03:23
  • 签到天数: 1954 天

    [LV.Master]无

    沙发
    发表于 2023-9-27 12:05:26 | 只看该作者
    高斯小时候提出的 只是等差数列求和公式吧?
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2020-3-8 17:23
  • 签到天数: 94 天

    [LV.6]出窍

    板凳
    发表于 2023-9-27 12:06:14 | 只看该作者
    高手就是信手拈来0 c' v0 ~; ^1 S
    以前看卡文迪许扭秤、云室,感叹设计的巧妙,没想到数学也有这种操作
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2021-4-20 05:43
  • 签到天数: 300 天

    [LV.8]合体

    地板
     楼主| 发表于 2023-9-27 13:20:28 | 只看该作者
    数值分析 发表于 2023-9-27 12:05
    - s0 X0 h6 t8 i$ l* A* s/ w- K' N高斯小时候提出的 只是等差数列求和公式吧?

    + A- d1 f" O! F- c对对对,1+...+100,本来想说高斯公式,但是高斯公式太多了
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2025-12-26 03:23
  • 签到天数: 1954 天

    [LV.Master]无

    5#
    发表于 2023-9-28 04:40:41 | 只看该作者
    又看了一遍,时域变频域的好处似乎应该加上卷积变乘法,在电路里输入卷积上冲激响应等于输出实在是太好用了。

    评分

    参与人数 2爱元 +16 学识 +2 收起 理由
    helloworld + 6
    老票 + 10 + 2 涨姿势

    查看全部评分

    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2021-4-20 05:43
  • 签到天数: 300 天

    [LV.8]合体

    6#
     楼主| 发表于 2023-9-28 08:43:42 | 只看该作者
    数值分析 发表于 2023-9-28 04:40, C4 s; x4 z; ^1 `5 U+ q. O
    又看了一遍,时域变频域的好处似乎应该加上卷积变乘法,在电路里输入卷积上冲激响应等于输出实在是太好用了 ...

    ' l0 W, ~( E: `. S8 [: x/ c对,还有反着用的。频域乘法后逆拉氏变换不好算,可以用时域的卷积

    评分

    参与人数 1爱元 +6 收起 理由
    helloworld + 6

    查看全部评分

    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-19 16:28 , Processed in 0.030285 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表