设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2950|回复: 5
打印 上一主题 下一主题

[科普知识] 我理解的拉普拉斯变换

[复制链接]
  • TA的每日心情
    奋斗
    2021-4-20 05:43
  • 签到天数: 300 天

    [LV.8]合体

    跳转到指定楼层
    楼主
     楼主| 发表于 2023-9-27 11:25:14 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 可梦之 于 2023-9-27 11:33 编辑
    0 U2 M4 T, D$ Q5 F
    # _5 G7 X5 }4 n+ e最近工作需要,又重温了一下电路知识,对拉氏变换有了“新”的理解。
    ; E4 S7 p8 F- b# ^) G2 f/ I& h0 e4 e. l. y6 }: [7 \+ l
    众所周知,高斯小时候就原创了求和公式。求和公式就是将大量的加法运算变成了简单的乘法。换个思路看,天地自然宽。
    7 H6 n6 h7 Q, ]  W# E) s; N6 k! `! x! H) F  `
    电路中很多微积分方程,如何解就很烦人。我们能否换一个工作域,将微积分变成我们熟悉的乘除法呢?2 E0 m# w6 e- X9 U. x+ s) Y6 W/ A
    $ M) m6 M+ j9 J8 H3 y! T& Y# L8 x
    ' }: B. Z; a( P& D- t, O

    7 \  Q# {! T8 D" m' r- J; ~1 m  Z/ f翻开数学工具箱,复数看着靠谱。复数有三种表达方式,欧拉公式将其转成简单的指数表达方式:6 m  T: w: r  V- c. s

    + a$ K1 ^: v4 u6 d0 ?5 H& Q. ?/ l3 H% U4 u8 u+ B1 b: I
    9 A) j$ Q* C( z
    不去管复数的具体含义,运算从实数转成复数后,乘除法变成了加减法,微积分变成乘除法; p( M3 U" d' ?4 W* E& \
    8 }& Q( c- c! g. q
    + V) I5 ]! l. P4 }
    - s. ^/ c- F/ ]0 A$ S+ Y' |
    数转为复数域,那么函数呢?从上面我们看到指数很有用。哪个积分变换用到了指数呢?大名鼎鼎的傅里叶变换啊。不负众望,时域的微积分变成了频域的乘除法。
    ! ~( G5 V5 A; ^6 o. l6 r2 I* C5 U' X+ c

    1 c- O* l4 ~1 o2 \8 w. y4 g$ Z7 j- Y" X6 ?. m/ z
    傅里叶变换有一个小问题,要求函数绝对可积,也就是积分是要有限的,否则搞出来都是无穷就没有意义了。但是电路中很多函数不满足这个条件,比如x^2。那怎么办呢?4 v6 M/ P. u+ x4 L( s
    / F2 d( Y) Z3 ]9 Z( e
    拉普拉斯跳出来说,我可以把他变小啊。指数是增长/衰减最快的了。不管你函数多大,我给你乘上一个衰减因子e^-at,在t足够大的时候,都能给你拉下来,满足傅里叶条件了。1 \, O+ \# ]  ^1 v; w3 G( ^3 V
    8 p+ _1 \  a  S
    / q6 s. J" X1 O3 f  t

      f& z, W% [9 I) b指数相乘可以合并为加法,a+jw不就是一个复数s吗?这样就成了大名鼎鼎的拉氏变换了。0 J) S. z0 M9 L. S* s) Q
    % ~" Q+ I" p  ]3 I
    有了这些数学工具,我们可以将电路中的各种变量变成复数,方程转到复频域,这样微积分就变成了我们熟悉的多项式。做完操作再用逆拉普拉斯变换转回来就好了。

    评分

    参与人数 13爱元 +102 学识 +2 收起 理由
    mezhan + 10
    喜欢 + 8
    老票 + 18 + 2 精彩
    testjhy + 10 谢谢!有你,爱坛更精彩
    helloworld + 6 涨姿势

    查看全部评分

  • TA的每日心情
    开心
    2025-10-27 04:12
  • 签到天数: 1953 天

    [LV.Master]无

    沙发
    发表于 2023-9-27 12:05:26 | 只看该作者
    高斯小时候提出的 只是等差数列求和公式吧?
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2020-3-8 17:23
  • 签到天数: 94 天

    [LV.6]出窍

    板凳
    发表于 2023-9-27 12:06:14 | 只看该作者
    高手就是信手拈来6 p* ?$ T& t, b& D! S2 k
    以前看卡文迪许扭秤、云室,感叹设计的巧妙,没想到数学也有这种操作
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2021-4-20 05:43
  • 签到天数: 300 天

    [LV.8]合体

    地板
     楼主| 发表于 2023-9-27 13:20:28 | 只看该作者
    数值分析 发表于 2023-9-27 12:05
      t2 ?4 @2 y3 n8 n高斯小时候提出的 只是等差数列求和公式吧?
    6 m$ T. }+ \9 U9 f& D1 l, a
    对对对,1+...+100,本来想说高斯公式,但是高斯公式太多了
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2025-10-27 04:12
  • 签到天数: 1953 天

    [LV.Master]无

    5#
    发表于 2023-9-28 04:40:41 | 只看该作者
    又看了一遍,时域变频域的好处似乎应该加上卷积变乘法,在电路里输入卷积上冲激响应等于输出实在是太好用了。

    评分

    参与人数 2爱元 +16 学识 +2 收起 理由
    helloworld + 6
    老票 + 10 + 2 涨姿势

    查看全部评分

    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2021-4-20 05:43
  • 签到天数: 300 天

    [LV.8]合体

    6#
     楼主| 发表于 2023-9-28 08:43:42 | 只看该作者
    数值分析 发表于 2023-9-28 04:40$ R  s9 @+ V, n- ?- U
    又看了一遍,时域变频域的好处似乎应该加上卷积变乘法,在电路里输入卷积上冲激响应等于输出实在是太好用了 ...
    9 o0 S+ D; T  M: `9 v  \
    对,还有反着用的。频域乘法后逆拉氏变换不好算,可以用时域的卷积

    评分

    参与人数 1爱元 +6 收起 理由
    helloworld + 6

    查看全部评分

    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-8 08:49 , Processed in 0.030651 second(s), 17 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表