TA的每日心情 | 开心 16 小时前 |
---|
签到天数: 1722 天 [LV.Master]无
|
本帖最后由 数值分析 于 2022-1-4 20:25 编辑
& i" F v' i( ]2 R- ]
1 e% b$ {2 Q+ ]9 G大家好.0 w; {% h" s6 ]2 s* x; f: r' e
9 @9 A/ x$ W' u/ T; c+ l5 P5 A, Y! U" V
首先感谢大家的支持.看到这么多人愿意听我在这叨叨,还给我爱元打赏,出乎我的意料,令我感动.
' a" f( w0 N7 u! o7 {( R1 ~, z* R- @. F2 a# X' k: S7 P! J) s
有的同学说了,说我这是坑,这可是冤枉我了.上有老下有小,养家不易啊.昨天还有同学祝我三年两胎,还双胞胎,为稻梁谋,不得不加班加点打工挣嚼裹儿啊.这不刚得点空,咱就继续了么.% J0 F' p, c- c. ]$ D
$ [. i3 x R. c8 Y* b
还有的同学说不承认我是理科生.嗐,我这儿是求认同来了么?自己的场子,得自己凭本事找回来.具体怎么找,您往下看就知道了.7 M+ K2 B( a5 t6 Z$ n" e
% U; z7 Q1 G& @0 {闲话少叙,书归正传.
- c# W( }7 D( |! f N; @, `4 C% J4 A2 i
上次说到:有没有办法,用宏观物体演示一下这个1/2自旋呢?还真有,这就得提我们这行的祖师爷之一,狄拉克老先生了。其实当时停在这个地方我挺后怕的,怕什么呢?怕有懂行的来刨活啊.这个提示已经挺明显了,要是懂行的估计已经知道我下面要说什么了.还好,看来爱坛咱们这儿懂行的不多啊,那就好办了.
) b6 N& p0 d/ S9 A8 b( H) F
8 R. C* k" L/ c* \$ U一般来说,要说明1/2自旋,或者三维空间里为什么会存在有旋转2周才回到原始状态的物体,正经的数学工具是group theory和representation theory.这个思路简单来说如下:先证明三维空间中的旋转可以用SO(3)群来"表示"(SO means special orthogonal, 3 for 3D).然后再证明电子的自旋状态的改变可以用SU(2)群来"表示"(SU means special unitary, 2 for 2D),最后证明SU(2)群 double-covers SO(3)群即可.
) b1 _: o8 @3 A% O. z( O. W- N
* ^# v3 X. U2 @别怕,咱们先不管这个正经的证明啊,就说怎么用一个宏观物体的实验,演示类似1/2自旋的效果.这是狄拉克老先生想出来的.根据挖坑大法,此处应该转去叙述狄拉克老先生的生平,轶事等等若干.狄拉克老先生真有不少轶事可以讲的.不过鉴于已经有同学投诉大坑了,咱们就略过这段不表,直接进入正题"Dirac Trick".我这就给您演示,三维空间中旋转720度才恢复原状的物体.(您瞧,这么良心的楼主还不赶紧打赏...)
9 P) B! r* E" ?- E& _' S0 k
, E- J$ |! O- s4 ?0 e: o1 r您看,我这手里拿着一个杯子,哦,您说我没开摄像头,您看不见.这不打紧,我请个外国小哥给您演示,您上眼啦.
5 R' |! H$ R# T9 x) J7 J
& g: L6 G' `0 P: z3 [+ y+ R5 U: T& l: E; Ehttps://www.youtube.com/watch?v=JDJKfs3HqRg
) F4 [9 y/ ?. I6 \5 w) l9 z
4 N5 i, ~ d8 z1 v4 c3 H不知道演示您看明白了没有.这外国小哥的一条胳膊再加上他手里的那个杯子一起就相当于电子,这整个物件要旋转720度才能回到原来的状态.您可能有疑问啊,如果说杯子就相当于电子,那么为什么要多加一条胳膊呢?好问题,因为电子不像乒乓球,并不是一个确定位置的球.您可能听说过测不准原理,单个电子并不在某一个位置上,而是依概率分布在空间中各个位置,甚至于无穷远处,只是在某处的概率特别大而已.概率最高的地方就相当于那个杯子,但还有一条长长的尾巴(波函数),将这个电子和整个空间连接起来.
( m! R! Z- G9 p' C& G2 M- q6 b0 u; f" Z# X/ _
这回您都明白了吧,不过视频看来终觉浅,绝知此事要躬行.何况这个演示当中,还有一处关键,外国小哥并没有说明,不得不说是一个遗憾.下面我就为您说明这处关键,补上这处遗憾.(又有点忙,且待我去去就来.大家可以再次稍候,给点打赏什么的...)+ ]4 i# x8 P$ c' `9 O+ v
( h$ s( v" I- J# ^6 v
更新了:号外2.5 http://www.aswetalk.net/bbs/forum.php?mod=viewthread&tid=154184&page=1&extra=#pid1327993 |
评分
-
查看全部评分
|