|
本帖最后由 ctt1984111 于 2014-1-1 01:19 编辑
% c" }2 b4 f" Q# p; V# M6 g* {; W7 [! r4 y8 I" K1 A3 _+ R$ `/ I
两种办法作proportion test, 一种前面已经提过用Chi-square test,而且已经用R给出了答案:p-value = 0.5731。这种方法除了在R里面用chisq.test(),也可以用prop.test():" |, u) ~0 O8 S* X/ S8 ^6 m
0 N5 k& x' }8 q4 Q2 q4 B8 G0 M+ `a: prop.test(x=c(5173,930),n=c(6841,1217)) (p-value = 0.5731) N; W) O1 [( p
或者
) Y" u( {& }8 c8 H9 gb: prop.test(x=c(5173,930),n=c(6841,1217),correct=F) (p-value = 0.5487)6 f! V0 K, @# Y- p) f# {0 m
1 N0 w& x( Y; Ua与chisq.test()完全相同
3 Z. y6 X- ?) y7 c
1 c* O5 Y% }4 B9 a而b其实就是Z test(Z test用来比较sample proportion, 而T test用以比较sample mean),那Z test怎么用R来做呢?# s7 Z: E1 j' M6 t9 W: m% a
, i; B0 b3 E% S }. J z/ Z> p=(5173+930)/(6841+1217)
+ s/ Z1 C3 |; p) v9 v+ L4 D! j; o# T> z=(5173/6841-930/1217)/sqrt(p*(1-p)*((1/6841)+(1/1217)))
% C$ f: U3 s* ?4 Z0 ^" N$ l" _> 2*pnorm(z) C& u6 c! M& W; c
[1] 0.5486768
: X1 E7 I$ c8 x3 s+ D% U$ T, T6 x# ^( F H+ R
最后就是Z test得到的p-value,跟b的结果一模一样。公式大家可以google:Z test.2 e* ~& d! U# u5 L. p1 J' E; K
s, M1 \0 A" ^/ p7 E9 b: p结论是无论用哪种方法,无论是在90%还是95%的confidence level,无论是one tail还是two tail(我这里只做了two tail,one tail稍微改一改就可以得到),null hypothesis(proportion相等)都无法推翻,所以楼主认为可能存在的“睡狗”现象不能通过统计test证实,只能说交叉销售没有起到促进销售的作用。 |
评分
-
查看全部评分
|