设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2124|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . x: W: r% [; u! M! I$ ~; Z" F4 i0 }1 o8 A  P/ V( u
    解释的不错2 G1 ]/ F: {* v

    - b/ e) \6 C6 t1 S) O递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    1 ~5 D2 I; R4 d, B; [, D4 M( `0 ?; N5 K" @, q- Z
    关键要素! j% O4 h. u+ s4 R6 I8 F
    1. **基线条件(Base Case)**' t/ k- O/ V; Z7 a, ~* u: m1 I+ f
       - 递归终止的条件,防止无限循环$ N6 s( w& w/ _0 y8 M5 m
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& f% o# Z8 D- `9 \3 A. M/ i* E
    6 Y- s6 c% j, ~9 ]& C
    2. **递归条件(Recursive Case)**
    ' V) T0 A! V6 J/ F   - 将原问题分解为更小的子问题, l6 }+ D# d: O4 e
       - 例如:n! = n × (n-1)!
    - y! C5 p. T0 [3 k( C+ b' \" F" @: @; A
    经典示例:计算阶乘
    & l/ v5 h& W7 |. \% Lpython* w4 m. r  E7 a- j4 H% z( I
    def factorial(n):8 l8 V$ L' |+ p5 |$ C2 s1 }
        if n == 0:        # 基线条件2 B( v' V; z, U7 V/ |3 A: m% Z
            return 1
    3 @+ {) r0 a# C1 c6 d! y" y+ X4 ~    else:             # 递归条件
    . s' o1 U  f; e3 K        return n * factorial(n-1)6 v2 s3 I9 O* M0 j3 l. O
    执行过程(以计算 3! 为例):  s) E  P2 Y. }$ V0 D
    factorial(3)
    5 m6 o0 E; _( q' E! k3 * factorial(2)& O4 U4 u- k5 F( d! X
    3 * (2 * factorial(1))
    - c1 X: k" j0 w* V* B# y( B3 * (2 * (1 * factorial(0)))9 U4 V. _$ P: k7 i
    3 * (2 * (1 * 1)) = 6
    8 [7 F& |6 S; a
    / @/ s. V/ q9 _  e2 U; g, o7 ` 递归思维要点+ }/ j  v7 K% z* o' N; r0 h
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + r" V7 \4 w* y6 L+ [3 v2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    , m$ l0 `" `; P1 ^2 @: U" M8 Q3. **递推过程**:不断向下分解问题(递)' n2 D+ _! x7 _# \9 g9 _6 n% P
    4. **回溯过程**:组合子问题结果返回(归)# _+ k& r2 {' L' l! l
    ; Y, I6 E1 B- Y
    注意事项
    - U' |7 C% i! ?# m必须要有终止条件, L$ d7 _# H: ]
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ {! o% @- ?+ X" y
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
      k6 j% [: h9 i# M% \0 M尾递归优化可以提升效率(但Python不支持)
    9 }& |6 C4 B* X
    $ O/ b- q- }& k# r 递归 vs 迭代
    / [7 m' P. t, i: O: e2 E) H$ n' W|          | 递归                          | 迭代               |! P; L' G# k8 ^+ r
    |----------|-----------------------------|------------------|
    0 e$ B- ?3 k  j% G| 实现方式    | 函数自调用                        | 循环结构            |
    * Z7 F8 O4 q; }5 h/ H: C5 }2 n0 || 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |9 Q$ o0 n+ u" q: G( f, ~
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |% s) L# G: D+ U' a  T
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    # Z) f# |8 B! f1 X4 @" |7 l$ e3 q0 h2 l! ^
    经典递归应用场景. k0 i7 G  [0 ~5 R* Z
    1. 文件系统遍历(目录树结构)
    ; v3 n- L* g  O  m: K+ p/ @2. 快速排序/归并排序算法# [5 k) T0 t! E9 C! r
    3. 汉诺塔问题
    " z3 S$ H. o% U4 \4. 二叉树遍历(前序/中序/后序)/ f7 }% C6 J, H! N/ H1 u, Q3 p
    5. 生成所有可能的组合(回溯算法)
    # f- g- {& d1 f3 _4 b3 N% G6 l* Q7 ?  A" a2 B, z& g& [
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    16 小时前
  • 签到天数: 3180 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) u7 L8 {: }; I# ~4 f( ~
    我推理机的核心算法应该是二叉树遍历的变种。
    2 P$ {' w$ J2 j0 ^1 {! @另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:4 P; n" P$ \7 N$ L8 c+ z
    Key Idea of Recursion
    ' m! L5 R3 X# k1 k$ x6 D( u; @7 H5 \! n% j, @' k( v
    A recursive function solves a problem by:
    + v5 U, F- ?# J9 A
    * T2 M$ `& N, U) c    Breaking the problem into smaller instances of the same problem.
    # b7 s. J# c$ @5 O+ [2 ?! I
    " m; N% {# L; |, ]) r    Solving the smallest instance directly (base case).! |+ G$ b1 f% V9 d  u
    ! a- W- A% L, l# X3 C" v
        Combining the results of smaller instances to solve the larger problem.
    $ `0 R5 G, x1 p$ ^3 ^3 a! F6 K1 T" P
    : ~% f: @" x4 S9 {Components of a Recursive Function
    + A2 i2 E% H9 i) d
    . j; Q$ a4 @$ ?1 j3 k! F4 x    Base Case:
    6 t- b: [3 _7 u9 j+ q: P
    ( ~* L; ~. Y- {- H/ \  l        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    0 a" C8 q% A  P/ o
    7 N- {, N' W+ y2 I. p. u& U0 z        It acts as the stopping condition to prevent infinite recursion.
    - z* Q& \2 R: N- r$ s& c. S& E0 b- A, `
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    " b* y4 a; B" ]6 n8 E- D. f
    3 }4 Q* e8 t% _* z( s$ E    Recursive Case:! e4 i/ `1 L9 u. T5 u: n: E! M

    4 C( s) k/ K! V, M        This is where the function calls itself with a smaller or simpler version of the problem.
    & O* S& K# G& \5 P, B& A# ~/ Q
    * \' @0 D' Q7 \3 Z: ?        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    $ ?: e0 L4 t9 z/ K- Z" W6 K0 D8 v' k4 r
    Example: Factorial Calculation
    / Q! ?+ j. \' s1 L$ T2 v$ H$ v: D3 J& r- y$ f
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    / `, `, A2 a; Q* i
    9 C+ ~2 \* C- L; c9 \% f    Base case: 0! = 1
    + P, ]  B) W% N& \/ ~/ ?( i# l) u0 i  _" k7 ?6 I; r# `$ V0 ~# \
        Recursive case: n! = n * (n-1)!5 D' Z4 a( k/ R( Z( x# H8 \
    % p& g' g( j3 c6 n* Z
    Here’s how it looks in code (Python):
    + H" E" B* ~5 P! xpython! @, t% h: i$ W& R# _  g
    / V, l; `, O* a

    2 j/ u/ S6 F2 {) [" \def factorial(n):
    ( K* b/ X: `* e    # Base case  l' J8 W7 E, j) A$ X
        if n == 0:
    % k& V3 V5 `7 O! m* G        return 19 h$ S) h7 ^9 }1 ^) `
        # Recursive case
    " G9 Q6 M5 E. Z1 e$ s    else:1 }/ J" t5 W9 n# R
            return n * factorial(n - 1)
    1 R2 Z' `+ U( I1 y- O" r+ _2 |" ~" o3 }$ ~. Z" ]
    # Example usage8 _  b  f: G0 t0 ?, ~" f9 B# @/ d/ D
    print(factorial(5))  # Output: 120
    ) L8 s" Z9 b. E. U' O* L+ F) u/ V3 c% V5 t6 p% g
    How Recursion Works6 N, t2 K# \; F1 y, z; `2 ^7 _
    * Q# X6 o/ }. t# B! r: l
        The function keeps calling itself with smaller inputs until it reaches the base case.
    & A" w  w0 A5 U& j% ?/ v: q: ^  G( ^! N6 M8 E4 b
        Once the base case is reached, the function starts returning values back up the call stack.: A% b& W5 D3 o4 v. `9 \6 F+ m& I! H

    6 c8 q5 B. P; |    These returned values are combined to produce the final result.3 K) a, |; N: M; S! p7 {& p9 Y
    5 T: p9 O; I$ T
    For factorial(5):
    0 M- v0 f: ^/ T3 \- _. y3 r" R
    . G6 u) D5 c% ^2 w( @6 O
    : l/ R: s3 R, F' |factorial(5) = 5 * factorial(4)
    1 `% r6 v0 d6 {& z5 v. Y, r% j" H6 U; rfactorial(4) = 4 * factorial(3); q1 F5 Y5 a- i
    factorial(3) = 3 * factorial(2)
    . `  o8 G* E6 _  qfactorial(2) = 2 * factorial(1)( T7 c7 p  c& F6 i* o# s, I
    factorial(1) = 1 * factorial(0); [7 l4 @% P$ J+ i; @1 d' U/ H
    factorial(0) = 1  # Base case
    # L. v  j' _& u% e1 ]( x( a% V* V; G/ Y* g6 x$ m
    Then, the results are combined:
    8 Z3 z2 z* K6 H+ t1 W0 O
    1 r4 F' u, l# Y, A1 Y; z% b9 ^6 K
    : d5 _; k; c! S+ T! Nfactorial(1) = 1 * 1 = 1
    ( Z* t3 u! p4 i, X. q# V+ \factorial(2) = 2 * 1 = 29 m9 @; l: ?' z5 x8 T* X2 `+ d2 t
    factorial(3) = 3 * 2 = 6, i, q% s* z3 X- X7 ]9 w# M
    factorial(4) = 4 * 6 = 24! i/ W: J: o4 J3 X% B
    factorial(5) = 5 * 24 = 120
    $ o, ]% D; D4 q9 `4 W4 C  e8 ~4 S( d7 {$ @
    Advantages of Recursion5 A' ^; L$ Q5 L* a- u- D$ Q2 h  u

    6 x1 E; F0 w- Y, u    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    - L! |6 _( K5 Y; k' X/ s, a% a7 O8 q, b1 }; b% o
        Readability: Recursive code can be more readable and concise compared to iterative solutions.8 v3 F/ [  i6 v  ^8 S

    : I! s4 A0 L& y5 C2 KDisadvantages of Recursion
    5 p2 s1 w% H/ l8 c  }$ e' t5 ~% ^9 S
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    2 h0 _; V8 P) I0 L! m. n+ X- B! r  V0 X# H. Z9 C
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).( A2 [0 @  `4 f8 {- K1 `0 J

    4 {4 G, r1 x9 @$ ^: }: Q1 a, @When to Use Recursion
    ) }& E8 e0 c7 V% Q, J* [' t; j6 P" J. \, `6 r2 N& P' k5 o
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* j) j" ~6 J6 K, ?: \2 c
    + Z9 T1 E$ F  j- c& h
        Problems with a clear base case and recursive case.( q- p* _9 R( M' z+ f8 G
    ' H+ l0 Q  ~1 V# K3 T
    Example: Fibonacci Sequence7 Z7 M4 M1 {# W3 C$ E# b
    * O5 D4 b- q& f! W3 P+ O: N
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    0 n  q" v* i5 d2 E0 K8 z0 G. j4 r. G6 o2 t9 A
        Base case: fib(0) = 0, fib(1) = 14 `( s% D- ?* }  w1 n

    ( k# I) C& {* o) Y# I    Recursive case: fib(n) = fib(n-1) + fib(n-2)% J2 h2 l0 w2 A# `4 _

    5 }1 G6 d; O& f. i* @% ?python
    + Z# U9 N1 p2 M' f1 p" {( D' X# X. y0 B/ E5 h
    & @" |# V2 I. U5 Z' I, w# M
    def fibonacci(n):$ B2 [+ O5 A  {7 [
        # Base cases
    ) d5 ^" U" }- N$ p4 o    if n == 0:: G' g4 T! @, m
            return 0
    ; e$ J% g$ Y$ e( L: Q6 y    elif n == 1:# ^6 R& }/ ^; D; X
            return 13 |) m. a9 K8 m: W! v
        # Recursive case
    9 x# R+ e0 Z# g5 h# A. d    else:% b7 X; M. s  C- |' o
            return fibonacci(n - 1) + fibonacci(n - 2)4 a2 h) a+ r* _: k
    " T  j# {# N  K1 x8 l0 l
    # Example usage
    , |) D- S2 i; k# rprint(fibonacci(6))  # Output: 8
    ; v8 ?0 E/ ~" X; t! B
    9 ?% l0 y) e: PTail Recursion
    , U. w' g  G6 `! G; s. N4 }* f( N: a) T3 m' K- X4 R" b$ `  }
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).% d* K. @4 {9 q! O. |

    7 g. Q. y2 N. l$ A9 e. \% }In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-21 22:19 , Processed in 0.056326 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表