设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1975|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    1 H; f  f  r2 D9 z& j! o( k: H
    " S! |  c: U! j0 }3 ?$ A5 H解释的不错) F" w7 v: l  j3 a3 g0 ]
    2 o' A- P. b+ q5 M
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    # y; x4 s' ]- Y; }) _. ^( l/ F1 ^5 Q% R/ D; x& d5 T5 C$ @
    关键要素- ?9 Q, `- ^+ c  Y* E* I
    1. **基线条件(Base Case)**  @0 [7 h8 c# a& D6 H
       - 递归终止的条件,防止无限循环
    , {: F# B# l) H. M7 t7 w   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    & y! c. y& Y. F! ]- l9 x4 l5 `8 W6 Z! e7 `/ p0 K" v7 E! X1 g5 w! m
    2. **递归条件(Recursive Case)**
    - K* y' P2 t. |. o   - 将原问题分解为更小的子问题- z  i7 V9 Y2 Q9 |4 u% F, r
       - 例如:n! = n × (n-1)!' X5 h8 m! z+ ^7 B0 s" q7 o

    : L& J+ y6 ?/ I/ ?* A6 r/ i, k 经典示例:计算阶乘- t% D  E5 R1 L1 {) F- \
    python7 l7 g# W) k6 e2 ?; @
    def factorial(n):' I1 ^5 F. X8 T+ L
        if n == 0:        # 基线条件
    8 q+ L3 r8 _9 J( ?: t3 l9 p        return 1* D- b+ T1 ^! o2 y9 k5 w8 L
        else:             # 递归条件  [2 N! @! i# B8 q( R3 @* P
            return n * factorial(n-1)
    & K/ Y: R1 N) @, V* H: ~! X9 `$ v* l执行过程(以计算 3! 为例):
    & R0 S- r. ~2 l2 O) tfactorial(3)
    ' }5 f/ g1 \  Z! Y7 r+ T- @3 * factorial(2)
    9 d# p2 _4 W$ Q3 * (2 * factorial(1))
    3 U* [7 x& K# v* W  @+ l7 V3 * (2 * (1 * factorial(0)))# [, j, W' U2 w6 p, C6 ]
    3 * (2 * (1 * 1)) = 65 \3 d: u2 ?; n+ g2 b5 M/ p
      a1 L8 S' `7 D- k: f& [6 \
    递归思维要点/ h; I6 l; o+ T1 l# m
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    1 A9 y* o/ e2 h- A0 z2. **栈结构**:每次调用都会创建新的栈帧(内存空间)) i* l/ [' C  H
    3. **递推过程**:不断向下分解问题(递)1 O; A4 e7 k+ g2 ?8 P0 w
    4. **回溯过程**:组合子问题结果返回(归)
    - e$ Q$ L/ Q# M2 c, x( S. _( Y5 a
    注意事项- ], T1 d+ i0 U2 I6 k1 Z
    必须要有终止条件4 i! v0 N: X" {' E$ m
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)$ ^2 k, C7 _; l: s
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    1 a. s3 U- T( ^3 G% L& Z尾递归优化可以提升效率(但Python不支持)3 w+ Q- m& X/ ]2 F4 _

    1 x7 o$ l5 u" a7 D 递归 vs 迭代
    $ g; W- x, g7 O# _; K|          | 递归                          | 迭代               |
    % y& x/ k! ?! t2 i7 e|----------|-----------------------------|------------------|' ~( m6 r% r  ]
    | 实现方式    | 函数自调用                        | 循环结构            |4 z( G* {- Z; Y1 t: a- S
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! ?! S& Q4 S9 \+ }/ @: M! H
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 g) f- ?1 e/ V9 y# U
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ) `' q0 Q2 T/ N4 Y) C5 g0 I: L, w
    8 f! J3 P' S1 g& Z% U" Z& y, d 经典递归应用场景
    & G$ {! o! U0 L% M* @1. 文件系统遍历(目录树结构)2 y- x0 s  ]/ l* `
    2. 快速排序/归并排序算法
    ) _* c5 A" s+ G) p: ^3. 汉诺塔问题* x+ g2 p3 P. `9 n  v; d
    4. 二叉树遍历(前序/中序/后序)6 j, M8 q6 W) A
    5. 生成所有可能的组合(回溯算法)
    + q, M) F$ f: @& F9 J4 h; N' o, j+ |$ Z& R& C% b* _# n
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    17 小时前
  • 签到天数: 3157 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," }; F4 h5 w- \
    我推理机的核心算法应该是二叉树遍历的变种。
    6 A! j3 l% _* \4 ]+ k另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:2 T& ^: h4 v. ]3 g
    Key Idea of Recursion+ i1 y; J9 M9 E7 F) _! ~- o
    7 G7 h8 [/ I* k: o  ~
    A recursive function solves a problem by:9 B6 ~! l; v: o/ `! ]( ~

    9 W$ \4 O  f) ^& M    Breaking the problem into smaller instances of the same problem.
    2 H8 S/ R" n$ |, ?3 Z0 N* t$ V8 V+ N/ \0 l8 [& G2 e
        Solving the smallest instance directly (base case).
      S1 [8 w: c; n0 F$ z) H
    : r  G. Y! j) ?) [* ^    Combining the results of smaller instances to solve the larger problem.
    " ]; `% Q. o: i+ U* V7 a+ U1 }  v2 E3 ]( d* j6 g' D: y6 c
    Components of a Recursive Function
    / w9 \! _( P) D& `. i0 J$ m& Q1 s# i- Y& m8 r4 z
        Base Case:, M7 n5 r( m. x' d$ \
    5 b6 Z+ g: C' E: w- m& D5 p
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    + \8 N5 E: d- ]4 _. }4 U: N7 X/ y
    8 _7 y8 \9 n' L7 r- C0 ~- T        It acts as the stopping condition to prevent infinite recursion.1 R% }5 i* ], D- M. z

    " a/ s0 ^  I$ L/ h: z        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.% |/ m5 _+ t% l. m7 `* Y

    . o0 Y- u3 b% d" ^7 n( z9 I    Recursive Case:4 c! n+ c# H1 s* N$ L, F" P) }# [" Z5 ]
    $ l7 |5 i3 @$ _+ D5 e- Y
            This is where the function calls itself with a smaller or simpler version of the problem.
    ) x* N8 J+ h$ r  E2 |5 k+ A6 M1 Y/ z4 V) q- }9 q+ |$ C  \" h
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    + Y4 U1 B9 i, u2 E4 ]& Y- p- k3 n4 p) h; ]
    Example: Factorial Calculation$ b4 S! B! i9 w* v! M; ~3 `
    7 M4 _* N! e& u5 q
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" l( Z/ Y8 n) @8 `" m* A6 @
    4 _) @9 Q5 V: M0 s1 r
        Base case: 0! = 10 D9 I% Q- ~7 S& h  F7 G7 U
    - F" H# s3 W! R: [/ {3 I% u! S
        Recursive case: n! = n * (n-1)!! Y$ g) d- j/ c. `  Z

    $ N8 }8 H4 k& E" MHere’s how it looks in code (Python):
    ! x) A7 h3 |, X2 v( ^1 J& m) t! Qpython* u; ^- m1 l! Y! q2 n
    * d- N' y5 m9 x! ^

    ; I3 l5 M& p) H7 o' J4 ]def factorial(n):
    5 z1 S6 J( L1 R0 E    # Base case0 z6 A" h  k2 A$ d8 J  K) b
        if n == 0:
    " D$ @( G; T  {7 R. D# j: {8 ^- R        return 1; c; x$ r& I" [" g! J. J5 o1 y5 x
        # Recursive case
    : g& E4 T7 ?% K% W+ ]8 a% Q    else:2 }( n% D$ ^& x  S& p/ l6 f
            return n * factorial(n - 1)/ h+ a! M; I; R! c' p. z9 v; w

    + s6 K3 ~. A1 w, {& y& n# Example usage
    5 G3 Q$ h8 L  ]% C9 aprint(factorial(5))  # Output: 120
    % `3 Z% O& ]4 g: Q
    ; Z1 Y0 [$ b+ U. D+ F! D, @How Recursion Works- p# M9 n6 I4 d; A6 [! b* ~
    , G3 h; ?2 ^& J
        The function keeps calling itself with smaller inputs until it reaches the base case.
    2 g$ w  \* j) k2 ]1 X& S( v0 N3 x  [. m$ @6 f
        Once the base case is reached, the function starts returning values back up the call stack.* D2 D& F  b/ F& `8 V

    & ?- `& G, N0 p. F( [' Z- D3 O- ~    These returned values are combined to produce the final result.
    4 m1 d1 d; s! b; I* s0 g& o( c; L1 E' o3 |
    For factorial(5):
    % P( |9 J: X1 X: M7 s
    8 D) l/ V3 u, B! `. `
    + q5 z7 l* k' p+ W, p9 F- Rfactorial(5) = 5 * factorial(4)
    / F! i' r# T  ^5 m+ xfactorial(4) = 4 * factorial(3)
    : \' ^+ o$ E/ s) C6 U/ rfactorial(3) = 3 * factorial(2). o" Q& A4 p: O5 V3 g$ M' Z
    factorial(2) = 2 * factorial(1)4 ^; h$ w9 H- C  o0 p
    factorial(1) = 1 * factorial(0)/ F3 Q4 D  U( ^
    factorial(0) = 1  # Base case4 S9 `( y# D$ t2 q5 n0 y

    " I% n/ y. C2 a, F& q# vThen, the results are combined:
    0 w( O8 `  v, _; @" t
    ; ]( J7 \' R! T7 e$ D( C5 p' M0 Y3 |4 E
    factorial(1) = 1 * 1 = 1
    7 G% L" y6 P6 V# ~+ _factorial(2) = 2 * 1 = 2
    $ e1 v9 ~* z1 x& \factorial(3) = 3 * 2 = 6" |% U* F# w% y* F2 T
    factorial(4) = 4 * 6 = 24$ w6 T7 W& P* I
    factorial(5) = 5 * 24 = 1204 ^# Q& g: d! B, T  O% B

    0 ]1 V4 c# M$ Q  [: H" b  j8 n7 N# _Advantages of Recursion
    3 J4 K. Q% _0 h- }- d5 n4 R  }' i1 a1 H8 K3 U
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ' B2 E1 z8 d8 ]* G( t) |8 D2 z+ n$ T" e" F$ \3 n
        Readability: Recursive code can be more readable and concise compared to iterative solutions.# V" [% C" j% o- ^
    " Y+ m  [& p# A/ u: `1 p
    Disadvantages of Recursion
    . X; z3 {8 i' h% J
    * g; d) J! i( q$ Z    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.8 {! W6 N! T, V

    . ]' q/ l& B3 p: G7 v    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)." m/ i, A- N/ O* q; l4 F4 B# |

    . X' ^& ?% I* h3 e+ q$ TWhen to Use Recursion) k7 t& k6 S: A- P+ J- F3 X2 N% l
    % N/ k) ]2 W+ p) z7 F/ z
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    + Q1 l" @2 F8 A3 y& L( p3 ]& |
    1 a5 V8 G1 n) ]- o! ^* [    Problems with a clear base case and recursive case.
    " S. q) p# f! A) P+ y7 f& X! r* @3 a( f
    " D9 x  ?' [, Z, y# }' d+ F1 \Example: Fibonacci Sequence$ W1 L3 X! u+ X- R$ I
    ! i- p" V) U8 U1 E  i
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    5 t( ~1 T9 y9 b+ n/ u7 F# Y2 s5 Q6 S4 o1 D( E! |
        Base case: fib(0) = 0, fib(1) = 1
    ! t) y4 @& {; y9 G2 R" M" {' X+ W. C+ F+ T' j, q; L/ ?
        Recursive case: fib(n) = fib(n-1) + fib(n-2)  F  Y$ L( W  u( U, Z: n* ]( G7 h, O

    $ ^3 ]8 b" s+ N$ R7 j9 r9 G, u* \python/ W- F; K% w  c" J& R4 Q) H
    7 F* K$ G0 f# Z6 S8 \/ h5 Z/ ^; G
    5 r" i% j. }; T: Q' ^4 s
    def fibonacci(n):, _8 s6 \, L: c2 O* `) K& {9 m
        # Base cases$ h2 |3 q# m- O. m& Z) a6 l
        if n == 0:
    ; \7 z- V8 E. Z$ e( L2 l; [        return 0; N% T/ l  |$ `! Y$ F3 C
        elif n == 1:; [/ Y' [7 T6 Y
            return 1. b: G  [- ^. y5 T
        # Recursive case
    3 N4 v% q6 H, G9 Y/ x' ]' G    else:. ~6 w! |: I6 r0 I% O9 t$ |/ H
            return fibonacci(n - 1) + fibonacci(n - 2)
    % K! _6 ^1 q- O* w
    ) S4 \% T. `; [4 I" u# Example usage; p/ Y# K) Y+ N7 J- }2 z
    print(fibonacci(6))  # Output: 89 Y) x; ?2 O( \6 C/ ]- \* {: |

    8 T* {6 |' V; L/ U4 e0 p7 e6 t2 QTail Recursion0 `9 Y2 |' ?+ V' P' f% d. ~, ]. F
    " j2 z  n$ b3 \% C" y6 q
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., J* L+ O! V, ~
    $ ?' k1 g7 h, c2 g- F; @3 z
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-29 22:51 , Processed in 0.058714 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表