设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1958|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' x  S+ h' o2 w( u8 e

    3 ^4 X! [# G% M: M8 w. x+ b; W解释的不错
    5 Y% L, W# F7 t5 \4 e
    6 Y. w* x( _* [7 R6 z递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    4 w" ~2 k  Y) C+ ?3 P/ a9 @# r- G
      L! H* |) M7 _1 r; ]5 B$ p 关键要素
    & R* M" {4 W8 ?: q4 v$ [' m1. **基线条件(Base Case)**
    " i$ j* C) j+ o* Q$ c   - 递归终止的条件,防止无限循环
      |0 n  y. o$ }) i1 }/ \5 Q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1( G) T- a- v- ]! ?3 k3 o
    5 \$ k! I- g' q
    2. **递归条件(Recursive Case)**
    5 s1 ?. ]: l- g: C0 `* `, T   - 将原问题分解为更小的子问题9 k) O4 ~3 K# Z& O
       - 例如:n! = n × (n-1)!
    5 m" }+ Z2 R7 R2 J, i4 G
    6 r* ]' c, b) i0 T' W, ^+ N8 s" r7 W 经典示例:计算阶乘
    1 }9 A/ l3 K; z, I* E! B7 Q+ w4 E  Rpython
    3 T6 P8 F* p( ]. l1 fdef factorial(n):: [8 V1 F8 g( I0 O$ t; k8 ~7 ^( o
        if n == 0:        # 基线条件
    1 h' U; j: w2 C) S# b        return 17 w9 t& h1 b+ S2 W" g
        else:             # 递归条件
    . l; t# E6 k1 J7 D5 h( A        return n * factorial(n-1)
    3 t1 N! E; W" Z执行过程(以计算 3! 为例):# K( L4 A! V3 m% k: p- r, k
    factorial(3)
    % c3 X' G$ h) z' C6 O& k+ e" V7 L3 * factorial(2)
    4 W, ?3 |6 Y; ?+ G( T3 * (2 * factorial(1))
    : u1 i" J; B7 _3 V( B% a3 * (2 * (1 * factorial(0)))
    , c, H+ f0 |9 v3 * (2 * (1 * 1)) = 65 V$ ^8 j: n( v) {3 O

    4 ^; S* s; F4 p& D9 W5 u 递归思维要点( y# O! x- p2 h- V1 C! b8 O3 u
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑# a# r8 P' v6 n8 r7 v
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % q6 [/ {  a8 P, \$ k8 Z3. **递推过程**:不断向下分解问题(递)4 y: R5 l# g$ a4 R* b$ i+ m( C
    4. **回溯过程**:组合子问题结果返回(归)
    ' M: y" \+ I9 K% f, Q9 e  }/ n6 X7 g' r  z1 y
    注意事项
    4 D5 V7 V2 R; ^( E3 Y7 t, W& l必须要有终止条件
    ; X* C5 s8 I4 J递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    7 Z2 _- L7 F$ }# b. X! k( O; Q: Z, M4 q, W某些问题用递归更直观(如树遍历),但效率可能不如迭代' @* u6 m5 T- s. h
    尾递归优化可以提升效率(但Python不支持)2 v, e3 r2 q5 _! V! l" D3 W* f

    # C& \' j, b1 F3 U5 h+ N 递归 vs 迭代
    - O! {+ Z/ H; ^; L" ?|          | 递归                          | 迭代               |
    2 ]6 I. |% P1 ~/ v5 S, _) t% g|----------|-----------------------------|------------------|
    ( z5 @/ z$ y& q8 F) x% b| 实现方式    | 函数自调用                        | 循环结构            |, d! E2 \. n1 B5 M" h0 r4 U# `
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |* P' @% s8 A: d# \& l! {
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    4 `  C- i) i: ]) L7 r| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! j* M) ?; @& C3 v

    ) E$ h5 |5 f1 N 经典递归应用场景4 R/ J7 V; ]$ `# p( e
    1. 文件系统遍历(目录树结构)" {- s6 G" v$ i$ @) _
    2. 快速排序/归并排序算法
    2 j4 z) W+ S% r6 R4 X3. 汉诺塔问题0 n$ I; a0 ?1 e0 A: l
    4. 二叉树遍历(前序/中序/后序)# A( Z7 d; ~/ E9 f$ q
    5. 生成所有可能的组合(回溯算法)
    " ?! F: e" u/ J2 m! r: k2 L+ t' f$ u# d. U) U/ ^
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    1 小时前
  • 签到天数: 3155 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    * E: H0 f& J  ?  D( F! g1 r* m我推理机的核心算法应该是二叉树遍历的变种。) V3 k# D# |8 Z( |4 s3 B3 ?5 ~
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    & V5 Y; h3 Z0 e* g5 PKey Idea of Recursion/ ^& _6 h- h( c, }! `3 F  x

    : V3 S8 e) H$ Z1 H+ k- o3 hA recursive function solves a problem by:* q0 R/ x5 J( B" A6 Q/ o

    + ]6 C7 C; ^! c' b    Breaking the problem into smaller instances of the same problem.
    * u1 Z( V4 V$ V* a
    , ]$ X9 f2 w' \- F5 S9 d4 b. M7 j% F    Solving the smallest instance directly (base case).9 T) b2 d7 B' o! }/ d/ V9 {

    ; t' N4 R# |4 ]6 U6 S" f+ ]% e    Combining the results of smaller instances to solve the larger problem." Q3 y' ~3 ]1 z

    4 H& t: z/ u' Q6 S6 q4 A8 A( OComponents of a Recursive Function9 x$ I. D. w! V1 O! U
    6 ]  k" p! E2 _0 s* B, ^" r
        Base Case:
    ' w2 ]; u; l" j' @0 |4 D- J* w" t. N# y5 ^" H
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    % b9 x7 X6 N  V
    # S9 f+ \7 T' M9 |        It acts as the stopping condition to prevent infinite recursion.# M6 c$ {& z. z
    ; k6 }' U6 @2 ]+ C1 \7 r" v% A
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1." V; A, P% c% d( w8 h. o, G9 B

    8 S: @7 p$ K5 x( l6 D    Recursive Case:
    * a9 N$ {6 r( j! P4 A" `- ?" i4 |* K$ M$ E! ?. t8 p9 r
            This is where the function calls itself with a smaller or simpler version of the problem.
    ' V' R6 _% d* c/ }6 i
    ) z' x1 k7 a4 \$ m6 A, e4 a        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% D: s, k/ Z. D- m
    9 n" Q9 H4 E; N' n
    Example: Factorial Calculation4 [) c$ E! M5 }4 ^

    , G* `, x* i0 X/ x4 {The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:5 _6 _0 _! o/ R0 `, {# [
    0 @: [' }% X2 f( `: E" M
        Base case: 0! = 1/ R4 }) J* K, p/ |

    2 s0 ?) F; G3 `    Recursive case: n! = n * (n-1)!
    , g4 b& S+ V& j5 n* `# q" c9 H1 a: D2 s8 m/ Y+ j  x
    Here’s how it looks in code (Python):3 ?6 X9 p  s9 K9 O
    python
    , j* H, v2 Z2 g8 A
      q7 U4 Y  v  X8 u& B) M* M: v. _9 `
    * [, J* w. p- d! ?& M% {0 gdef factorial(n):" N/ K2 S0 I# u$ A0 m8 `; O; \! |
        # Base case
    . W# {; H) Z( n( S* B( I    if n == 0:: r+ p) N2 f" K% l+ ~
            return 1
    8 w% i; m: X8 @# @* g  Y    # Recursive case% E& X& N3 P: O8 N, o4 D
        else:0 d( x3 d0 Z& P5 \: E' h
            return n * factorial(n - 1): M) s' I/ E3 l6 j

    " S" W7 {7 j: l# Example usage" A  g2 g( H" u  E* x2 E+ z
    print(factorial(5))  # Output: 120$ U5 B/ x  ^$ f) q7 F9 M) d; E

    ' i2 J3 `- e* h- \. |+ N+ Q2 }  SHow Recursion Works
    + H* W3 S& n8 e# ~; H9 u
    ; Q9 U: ~& k+ i3 ^    The function keeps calling itself with smaller inputs until it reaches the base case.
    4 p8 V/ Q3 f2 v% ?, y& Z
    . s" l$ U: y8 h# x    Once the base case is reached, the function starts returning values back up the call stack.+ m9 E" ?/ x) r- }7 L& e8 v# E5 D
    # j/ ~% u' ]+ z' ?. N9 N
        These returned values are combined to produce the final result.: B9 J6 k2 Q  ^3 T7 H3 ~" `
    ( v0 G* T  E' x. b$ u
    For factorial(5):
    ! {. m: ?& y- X" Q) A1 U1 M8 \  l6 n& V. j  ~1 B

    8 l) m# I! M8 |' ffactorial(5) = 5 * factorial(4)/ G5 b! k) ?1 D% n
    factorial(4) = 4 * factorial(3)) _# p1 y2 h& Y7 _* R7 K: Y2 z+ `
    factorial(3) = 3 * factorial(2)
    6 f& R2 a% z: b: A* z/ D; q  yfactorial(2) = 2 * factorial(1)/ S5 @  l" z9 V8 H  x
    factorial(1) = 1 * factorial(0): c, y' M8 ~5 E( x0 [( Q
    factorial(0) = 1  # Base case- s9 l" u# F/ e4 `: d+ J3 s/ `, \

    - v* q/ K1 @/ j1 H6 l1 a/ ^/ hThen, the results are combined:
    5 |2 j6 v% W: K# t4 w# G3 }1 I% `8 U' S* s- m9 X, Z% a' b+ x6 I

    1 G2 F- j* R' W3 e! x& U" q, _. a2 n' tfactorial(1) = 1 * 1 = 1
    # M( \; A* m* I, O! ]factorial(2) = 2 * 1 = 2
    " P( e& f( P% K* o0 _- Rfactorial(3) = 3 * 2 = 6. E7 m, Q2 i' j8 j+ ^5 Z9 t
    factorial(4) = 4 * 6 = 24
    9 P8 {5 y, Y* |2 `' q8 Ufactorial(5) = 5 * 24 = 120
    # Q  N6 ^% O% T6 f0 Y7 U
    + K. r: n! C7 |8 yAdvantages of Recursion
    1 N* m4 T+ Z# N$ g* `4 X
    7 e& J  L7 X" B& ]    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    & ~+ i0 B$ i: `1 u: }- J0 r3 Z9 v+ O$ }
        Readability: Recursive code can be more readable and concise compared to iterative solutions.- N' D, Q. U6 V" l5 m2 ~- K2 r

    5 ^4 D; j; Z% D* G: \5 A1 z5 H5 JDisadvantages of Recursion
    ' v$ @# T* G" r6 H! ^2 a1 B$ Z5 `! Y' f1 E2 v2 m* _) F* ~5 @$ N
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    6 S) }8 F% w; t1 g9 r, J* m
    9 D: _/ N% h# E& E+ |" H    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 X; N/ g0 V2 r- v2 ~/ Z% Y0 z' y( b4 L' v- y: |4 X
    When to Use Recursion- f2 k; d; [  S0 `4 {  P3 O" N0 v

    4 r1 T! x# q/ \& e2 R' n    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    6 }/ E3 y& q3 ~5 N. @4 y0 Y
      R9 E3 f' Z! D  ]    Problems with a clear base case and recursive case.
      P7 T* ?7 d7 N! c8 t" T' N1 B! F8 \2 ^
    Example: Fibonacci Sequence. A6 I( E2 b8 t+ \" H3 g5 f

    # _; H8 k# @5 l: S) K9 K% t' wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    0 k; ~5 {0 i# `: Q4 l7 P# D' X3 H2 {9 t8 V0 [, t! d
        Base case: fib(0) = 0, fib(1) = 15 L4 v+ v; B5 b! J. R: j) F% Q* z

    7 R+ b5 Z- I/ [2 s* }3 n/ P! T    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ; I& U2 ^2 w3 w: B) _( ^1 g$ @! S% @$ Y) n( J" ?3 ~1 e
    python  W" f7 k) I  ]
    9 ?3 V- R9 f, k- w# R5 J2 k
    ; K9 x$ k- E; O: g. _
    def fibonacci(n):; a" J9 v; l/ B- l& j+ K
        # Base cases8 S9 w6 R* n; n3 _2 [0 G
        if n == 0:6 q" t5 ^/ A* D$ v% `9 t4 @. S3 ^
            return 09 h# X6 z& \7 E/ J% T
        elif n == 1:% i5 L5 c% T! V) {# B) T
            return 1
    + W) [* Q5 C: z! ]3 S" X    # Recursive case4 Z0 B( Z3 S( c. c2 {/ p# V: {
        else:+ G' }# q, u3 a8 h( e  p. V/ d; s
            return fibonacci(n - 1) + fibonacci(n - 2)% a# B) ]0 I1 T6 `

    / ^5 B7 t  C" ^* l4 j* B5 a+ a; R# Example usage
    ' E( k1 S1 W9 r) G4 M, y/ cprint(fibonacci(6))  # Output: 87 U2 u" F0 z. H) }' x
    3 U! Y- d0 {' `* v, R# l
    Tail Recursion
    4 z& I9 J% X% t  A" C. P. [" X; l- h5 U& F1 [
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / a6 |7 _$ P; D$ m5 h$ ^$ r) K$ ~* v1 r& x* J5 U2 Y6 g1 v  V
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-27 06:31 , Processed in 0.067303 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表