设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2115|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    : t& g1 |! x! ]& a0 e6 N+ U+ l- S' s- E. @! D4 ^
    解释的不错
    % B! P4 j  y5 o( c& J$ O6 ^( q
    + ~" Q, f; f! W( k1 ~5 j: s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* g1 S0 Q3 ?  b. k# Z
    5 r% }: P* `* F6 L
    关键要素
    % A0 R. d: j$ V5 O) ]2 }% L1. **基线条件(Base Case)**
    $ d  H& c# J. c   - 递归终止的条件,防止无限循环
    3 k% p; Z( F/ f( j   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    8 h8 M! `0 a# S7 x' K5 e2 Q: l. C2 H7 f* C0 g6 _- H
    2. **递归条件(Recursive Case)**5 s4 j! |, |+ K3 L$ c! Y! ]) `
       - 将原问题分解为更小的子问题
    3 F% ~7 L2 B2 c/ F& Q/ U   - 例如:n! = n × (n-1)!3 ^  ]* \$ I5 m0 ?
    $ g0 i) V0 L' S2 V# Q/ `9 J$ M! L1 w
    经典示例:计算阶乘
    9 z8 ~! h: O) k: Y8 Wpython
    , R1 b0 z7 j& \' s# L: c9 Sdef factorial(n):7 X+ Z- x4 n; ]5 F
        if n == 0:        # 基线条件! W+ u& d5 k! \6 v; r5 B
            return 1. ]3 ^+ A9 X5 z8 a- C
        else:             # 递归条件
    9 q* h: `7 s( a" ~5 x8 r* I        return n * factorial(n-1)' \9 d% [0 h: A/ |- L, p4 w6 y
    执行过程(以计算 3! 为例):5 Q+ v% e$ `6 i1 k8 H! [
    factorial(3)
    1 ^5 g7 q& T" a; e- U. X9 B3 * factorial(2)
    # ^4 q1 h' m. c  Z3 * (2 * factorial(1))
    , [! A; @  g) D+ z3 * (2 * (1 * factorial(0)))2 q7 X9 n8 w" E$ o. D- T5 x
    3 * (2 * (1 * 1)) = 6
    # s0 B( F( l9 H5 u' ^& P4 U
    . _( H0 O1 f9 Q  E 递归思维要点
      j5 e8 @$ H, ~6 y  a4 K. s- w# f1. **信任递归**:假设子问题已经解决,专注当前层逻辑1 i9 R+ H+ d6 L3 E: y) g7 Z
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 g$ r! h# g+ A( Q- E
    3. **递推过程**:不断向下分解问题(递)! Q4 i6 A1 G7 J7 U# U
    4. **回溯过程**:组合子问题结果返回(归)* A- K4 x7 z$ e3 ?2 g: M
      _6 k* b8 z# C' V" A; {
    注意事项
    8 e3 ]6 F& Q9 f7 F6 N1 o$ W: O# o  i必须要有终止条件% q, b7 C, _' s
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)1 {* b) k3 Z* |- G. A
    某些问题用递归更直观(如树遍历),但效率可能不如迭代  I' }5 x  r4 ?$ ?; g0 i! @/ y0 u
    尾递归优化可以提升效率(但Python不支持)4 Q' L+ a7 e0 c$ A9 f
    , k9 d) E5 A& P6 i
    递归 vs 迭代& X' i) Q: D6 f- Q0 ^, Y
    |          | 递归                          | 迭代               |& ~, w' O7 |/ M  v8 y3 l' T
    |----------|-----------------------------|------------------|
    ' o2 |  G) j  b1 n0 E' Q| 实现方式    | 函数自调用                        | 循环结构            |% Q0 Y- h8 D0 `( o
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    * S1 D4 s- ?/ x. s( }| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; v( Q/ J4 i4 X& l" A* m( G8 t
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 O! B/ m8 A3 n; `/ R  n3 J- K* K+ {5 g; n0 b/ Q
    经典递归应用场景! c+ M7 i* N: K3 H1 C: R  i5 g
    1. 文件系统遍历(目录树结构)
    ; c8 w. X) L' o3 X& ^) @  }) A! n2. 快速排序/归并排序算法5 b; g: R5 O. Y
    3. 汉诺塔问题
    , N+ x5 B  v3 u& k$ [4. 二叉树遍历(前序/中序/后序)$ {/ X: _( e( _
    5. 生成所有可能的组合(回溯算法)
    ; Z" Z" p! r* I$ T3 m& J
    2 T3 v" S' ?2 e! n8 k试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:55
  • 签到天数: 3178 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,: t/ F1 @/ e, \. ?/ n
    我推理机的核心算法应该是二叉树遍历的变种。( A. D$ p( x( {( K9 c6 T% i
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    + J; W2 Q8 f' U- RKey Idea of Recursion& S; v9 t" R5 ?1 R% M. _
    , X4 w% G6 \- A( D7 a6 Z' X
    A recursive function solves a problem by:
    5 w0 Y, e; d+ x! e4 \* o
    8 p  R) Y& `% |    Breaking the problem into smaller instances of the same problem.6 L$ d4 P  |1 X5 S2 r: ^, F, V- ~
    $ {- n, Q& U, l
        Solving the smallest instance directly (base case).% l; F% ?# S* B- v* b+ \
    % w, Z6 q8 |/ T, I# ]* z* g$ D
        Combining the results of smaller instances to solve the larger problem.
    1 }* G" p* u+ c$ X2 B
    ) o6 ?) B& l# p$ F+ U1 ?3 KComponents of a Recursive Function
    $ W3 M- i9 q+ f, |& ?, ]& I* N6 @" k$ N' ?2 y7 P
        Base Case:- R% v& n; ?! h) [

    # v9 v0 \3 B( E, x" d' p  v. C4 P        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.& Q; a1 ]  @! V: b1 {
    / K! x( h- c4 \/ z$ U4 B# V  ~+ Q
            It acts as the stopping condition to prevent infinite recursion.
    # ~0 E( y# ~5 Q' n) H5 L/ @: V- A( B, S# L
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    6 C; u1 H; v( ~7 h* S& _* U6 H* c$ M+ H% i
        Recursive Case:
    0 T: c- A% E2 t+ G4 u3 O. u0 S8 j) l9 q" D! E* V  q' N+ w+ ]  {
            This is where the function calls itself with a smaller or simpler version of the problem.
    5 {, q1 @1 h1 P6 M3 y6 x) V. S( n6 l" S/ m. O+ [* H
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ d& l, P9 m; X( @4 i
    3 j6 {" }5 I' @! A
    Example: Factorial Calculation
    , V! |6 T6 e' a( u8 p
    ) Q0 _$ B' e5 K$ GThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:# n& {; U( A& I& Q- t

    3 Z% @1 W, X& U: K! R' V. f    Base case: 0! = 10 ?8 A, ?2 ?) x3 [

    ' G1 y6 B& [* G: H8 b4 }4 W    Recursive case: n! = n * (n-1)!
    $ l4 T3 e1 M* L
    4 A1 |1 s  H* k) [2 wHere’s how it looks in code (Python):' R1 m& w, f( e' A0 U
    python. p5 S2 _) v( S( ^$ g- T1 X- c" `
    7 Z. [- E8 O! r, C) s2 R' [

    : K' C! p9 A- D$ adef factorial(n):+ f( h% e( k  m- V
        # Base case
    ; r$ v' P+ j$ `  \, k    if n == 0:
    0 b9 D9 ~4 G# z        return 13 p/ l, y3 B7 ?! }% p: I, f
        # Recursive case
    2 Y* O$ C1 Y3 O8 N# ~; S    else:
    8 N2 o/ L# N, [. {  Y        return n * factorial(n - 1)
    7 x/ y- M$ R& k& G+ a( z( y; ~* X' y: M
    # Example usage1 V0 k- |9 `, A9 l, e6 o7 O
    print(factorial(5))  # Output: 120
    ) b9 l4 \) p1 l& Z4 b6 j- f& `2 K, l$ w, c* X* F! z5 j
    How Recursion Works
    4 U  Q, e5 b, s
    7 I! h( M0 t0 O' w! }$ l; \    The function keeps calling itself with smaller inputs until it reaches the base case.$ Z: i& c% R& h' S; t7 R' {

    0 H; d: q' d# k/ d- T1 r" Q( N9 B- v    Once the base case is reached, the function starts returning values back up the call stack.0 Z, X" V7 S# x
    # p( _& T, ~9 v
        These returned values are combined to produce the final result.0 L' |3 [( j% B0 s0 f/ u  V

    2 ?" Y/ F2 F# H& q  ~; DFor factorial(5):- l- B3 t+ Y7 s5 m6 [

    6 r! Z9 N& R. c# v0 b0 h
    9 b5 G) l4 a+ l# @+ `6 F8 yfactorial(5) = 5 * factorial(4)
    , w/ e% [  e7 g3 h* Z/ Qfactorial(4) = 4 * factorial(3)6 S2 k8 n: i/ u1 o* @& n& B3 `# Y4 d: L  T
    factorial(3) = 3 * factorial(2). }2 @( c. B3 }
    factorial(2) = 2 * factorial(1)
    3 q0 d. K/ Q0 f: ~- p( l! Afactorial(1) = 1 * factorial(0)
    : X1 `' @1 Z1 [7 o* N5 Hfactorial(0) = 1  # Base case" |1 ^: W5 J7 ]' D1 t9 ?6 E
    9 t$ c" r, D( I1 A: x  [
    Then, the results are combined:
      A9 [1 F. p$ ]6 p" V4 w8 A7 e, \9 q, l# }

    - z5 u' }( H7 Q* D$ pfactorial(1) = 1 * 1 = 1
    ' h8 o+ K, t# x& y$ s) Kfactorial(2) = 2 * 1 = 2* }6 J. [" J# E
    factorial(3) = 3 * 2 = 6
    # G$ ]% m* P/ R5 Y# Sfactorial(4) = 4 * 6 = 24
    9 k5 m4 y3 \) E! @& h2 Y" S4 rfactorial(5) = 5 * 24 = 120, ~, Y( V- _7 R8 [1 @1 q

    9 c. r8 _% x4 Q& j; bAdvantages of Recursion2 b4 X) j1 k/ Y
    7 h) [2 U( U- _
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    9 J; ~' t5 y+ E" @) ]7 ^% q: D& ?9 _$ k) G
        Readability: Recursive code can be more readable and concise compared to iterative solutions.% y! N8 Y8 ^6 ^& C' ]' w

    : _. Q% w# b7 l; N5 s( |1 _Disadvantages of Recursion
    ; V* P* X3 \# Q7 i. L7 u$ g
    0 `8 V/ c2 V6 q! n    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    " Y/ t1 c* ?3 t" j' [/ k- I# G( H* F8 e; l! j
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    + ^# d# r0 u+ Z, d. `8 L& L' _6 D8 }- U+ _& P2 Q& W
    When to Use Recursion
    - l6 p9 ~8 H5 l  R) q# c5 D- Y7 ^  M8 L9 s. B3 V  d6 b
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).. R5 h' j6 l, U% E( ^. |6 w2 f

    " ?2 f$ w( W2 Z7 X    Problems with a clear base case and recursive case.0 T( F& r) Q0 A2 U' c; R1 {
    ) X: }) S: n$ U( @  C+ m
    Example: Fibonacci Sequence8 ]& q" ]4 E8 r; N; Z4 ?1 h# [
    2 W* {7 _6 y" L# E4 t' g1 W" G
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" o5 R2 ]% ~! c& b4 M

    ) z2 r$ f- i2 F0 @  U& O    Base case: fib(0) = 0, fib(1) = 1
    : F1 y2 D' K; W3 M7 p  F4 d: B" ?2 n9 p# l
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * V1 }+ \. d, Z
    9 K9 ^  c; F( i4 p: q4 Tpython
    9 I# V2 ?8 p: x% K2 B1 I8 {
    8 l, H5 k# z6 Q6 q# R! ^0 K  h- H! ?3 j# V& o; W- w* L
    def fibonacci(n):, Y( @) t; n5 c, r4 v3 b* q  L
        # Base cases
    4 @( m% c8 y+ Y5 t( F    if n == 0:7 ~4 Q" G3 W) o/ I% r) b" {6 j% F
            return 0
    1 ^( R4 W/ `0 I; y4 F    elif n == 1:
    0 M: B; S1 L( z$ s        return 1
    4 S3 c6 O( f1 {7 n5 e    # Recursive case
    & c# j7 o( ^: ?' p    else:) ^5 R& S+ s. E1 B" j  N$ P
            return fibonacci(n - 1) + fibonacci(n - 2)
    : w2 o! p; f6 B( ?* ?# ?/ q& N8 p" L, U9 r
    # Example usage
      b! q8 K# i5 X' ~print(fibonacci(6))  # Output: 8
    - p1 F0 C  n$ G* g
    ; c( q- [& Y: q" D! l1 U* w7 a* y$ pTail Recursion
    5 S, K+ ]/ B; W' x( R9 z" I* p
    $ f4 k' Q8 b! _: A, N) B* w" STail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).! f5 I1 B# a1 L  p' @1 T+ ^
    ; _1 d; {, V1 n" e6 C) U! ^
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-20 03:08 , Processed in 0.056910 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表