设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1847|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # }" U/ w3 i( o8 b
    ( ~' C2 y6 D7 F# n+ a解释的不错
    ; t% G  ]' m& E! A; O
    * B7 b; d$ P5 K  a3 c递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。0 `9 d  {# N  p5 w
    ' O1 c! g- t1 d) [7 r, T
    关键要素8 E$ y+ F# d5 v/ h
    1. **基线条件(Base Case)**
    : s. M4 x, d/ D  U  p2 p) y   - 递归终止的条件,防止无限循环
    . C9 e+ S3 q0 w, {   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, T) D9 K8 \# [/ h+ X6 b. ^+ X" Z
    2 A8 T3 C6 w# U2 _3 m3 D
    2. **递归条件(Recursive Case)**
    , v& i/ L& y  n9 G* t! b% F- o* q   - 将原问题分解为更小的子问题7 O) ?8 G" z2 Q
       - 例如:n! = n × (n-1)!
    8 S/ ^3 D, \0 F& S
    3 q1 G7 X/ e" V* U# |7 F 经典示例:计算阶乘, `; p+ m/ J# \" K: V  I$ t
    python
    2 h  n+ d' b- x0 G( m. qdef factorial(n):
    , x3 N0 Q6 A0 p; w    if n == 0:        # 基线条件
    + }+ B% s5 o. E0 b4 Q; s$ f9 [        return 1
    * [/ D6 X5 |% I8 p5 l6 t  a# q3 w    else:             # 递归条件) k( n  w1 b7 L) j% m* ^: ~/ r. Q
            return n * factorial(n-1)! K! C: R6 r+ W) {9 a5 z
    执行过程(以计算 3! 为例):* {3 V# b9 x9 E9 X; S. _+ j
    factorial(3)% ^+ X# F! r9 g, e' b3 h( |
    3 * factorial(2)9 l, D- t8 m1 [7 Q+ t% b
    3 * (2 * factorial(1))
    1 G' u" Q: k- O9 g4 U3 * (2 * (1 * factorial(0)))1 h- T: K) [0 c7 G  H+ u, J
    3 * (2 * (1 * 1)) = 6
    " ]% S) z% a$ F7 o- T! F, t* p- Z9 n/ d
    递归思维要点
    3 l: Q) F3 m$ p5 L/ A; r" v1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ( ~6 i4 H, L- ?3 t2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : e% @, H) D/ u! F3 ?3. **递推过程**:不断向下分解问题(递)
    ) H& N5 d& H4 u4 |. o) ^4. **回溯过程**:组合子问题结果返回(归)8 c. R0 p* |6 {0 d, I4 J9 a+ t: d

    . c$ Q1 q0 S8 J/ l 注意事项  `2 E. U- I4 B' U
    必须要有终止条件2 M! O4 L' j9 t/ c3 Q, ^
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- h9 h- f0 h: x. S4 j0 D8 S* {
    某些问题用递归更直观(如树遍历),但效率可能不如迭代. z% x! q" v- \
    尾递归优化可以提升效率(但Python不支持)
    / _/ Q9 Q: Q; m+ h+ `4 \% a! H0 b% c
    7 e  K9 G6 [* e5 [6 ` 递归 vs 迭代3 h- h+ x+ T, L$ [  U+ k5 z
    |          | 递归                          | 迭代               |% V4 e; }! W, \! e4 s
    |----------|-----------------------------|------------------|
    ; W: C) B3 C3 A7 v7 ?| 实现方式    | 函数自调用                        | 循环结构            |
    7 Z: q( Q7 ^4 ^| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |" f" ^% f, T0 `
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |4 u' F; t+ t8 d1 `. J
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    6 L; e5 Q, W' i. ^$ V% u3 i9 r3 L# d! H& j: K3 B, m. v
    经典递归应用场景
    - |3 L$ u+ K9 Y/ B- \1 o5 x1. 文件系统遍历(目录树结构)2 z( R( |! u& P3 ^
    2. 快速排序/归并排序算法$ u$ T5 m& K8 A
    3. 汉诺塔问题
    * ~; l+ Z8 _/ H3 E4. 二叉树遍历(前序/中序/后序)* H% G* l# ~7 ^  X: F/ l$ [5 w" l
    5. 生成所有可能的组合(回溯算法)0 d% W, _5 U; {% O4 ^  g  Q
    ! ~1 {. O8 D6 L* X9 p$ P1 H
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    前天 06:31
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,  T+ |5 \- i6 R2 y7 `2 v) h
    我推理机的核心算法应该是二叉树遍历的变种。' |" E0 s0 m$ d; s8 R3 k* R* q
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:/ s9 h* j% D3 A& y. D" u
    Key Idea of Recursion4 O6 O! i7 t0 @6 a

    5 i7 _+ C" ?# R5 \A recursive function solves a problem by:
    " [3 k& Q; t1 X$ p0 l
    5 U% n4 |7 s% z$ I: t    Breaking the problem into smaller instances of the same problem.$ ^* j; n5 ~2 I5 R1 ]

    " Q4 w' e  `+ F1 V* T    Solving the smallest instance directly (base case).4 J% ?2 d4 @' T" G: Q
    6 h7 x* ^/ a' U: \: Y3 N1 ]
        Combining the results of smaller instances to solve the larger problem.
    8 E9 R) O& N9 C3 F5 A3 h0 a8 ~. K/ a$ O( n7 {- P1 C4 L
    Components of a Recursive Function9 @  Q! U# v$ l7 `

    / t  W' ~- T3 z0 i    Base Case:( E! r$ g/ c) o0 H# a7 c- H

    / R4 _, [9 o4 m9 ^5 }: u        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    , k; Y  _6 N" t  O3 T* k
    * [+ c5 o3 u& o        It acts as the stopping condition to prevent infinite recursion.
    ; ^! k; b* m  ?8 c7 V
    5 Z1 Y8 r+ U; T! b; c- x1 s' x, G        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.2 @7 A- t' H5 B( v3 U
    5 @1 q3 ^/ C) w# Q9 T. A
        Recursive Case:8 _9 y" ~4 D/ Q7 f! ?: i% e4 k

    8 x+ ^/ J  e9 S/ K        This is where the function calls itself with a smaller or simpler version of the problem.0 t2 m" b, k" L6 N
    . h! J. S5 w$ b& _: a/ X
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ z$ }% t# R+ j8 q, b3 }, _
    + i" ^( K0 D; W
    Example: Factorial Calculation
    ) b  M2 T- ]+ Y/ m2 C- o4 f- J9 D* M8 o
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    : B$ S+ k9 `; f: f
      C: i8 o& P! C# S7 u    Base case: 0! = 1
    " z& I3 a8 N# B6 Q$ u
    / p$ q! G( X% S    Recursive case: n! = n * (n-1)!+ i  A7 Z6 \3 R  w& t

    & e8 e9 H: `5 f( ^4 {  MHere’s how it looks in code (Python):! r5 M% C/ v4 O7 I. t4 Z
    python
    # @3 f" a- l. V0 d$ H8 U0 v1 S! y, X7 W; S

    / g0 h" o% K5 S) n3 ?def factorial(n):
    . ?: s) A' W& [* k, n    # Base case
    ) D+ F. N8 h; R& ]    if n == 0:- G7 M8 n5 M# f* P4 z
            return 19 D0 v$ I. g% D" ~" G3 c
        # Recursive case
    - d0 P5 j( }5 U5 K9 {! S5 h    else:
    $ Y0 H2 V! O0 _! G$ A! L  D  h        return n * factorial(n - 1)9 S5 \' }* I" a3 o

    - Q, x' k7 q# V/ k# Example usage
    ' P7 \- w7 Z0 Y/ G' s& Wprint(factorial(5))  # Output: 120
    8 o8 k, l! ^7 ]1 d- C. |# p6 e4 f: d' ~: E3 q% n6 Q7 X9 y( U$ h
    How Recursion Works
    9 [7 U" y: z/ Y" R" v- M" d1 n5 y: C& h, @3 C
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ( B! }6 e. H! K. u, d; O. [8 @6 \$ v1 g
        Once the base case is reached, the function starts returning values back up the call stack.2 n  }% |: L) y" M' O1 v1 b

    ! w0 E& {- ]9 F" C! `* l: b    These returned values are combined to produce the final result.
    ) n/ D# n. I" n$ N( ~2 D9 H5 a* A% Q; t  p9 z" t4 i4 a
    For factorial(5):7 E6 h1 }* p8 F8 n& S7 O+ ~" ^
    . d( Y1 T5 @, p
    7 G! A' m' y! [/ R
    factorial(5) = 5 * factorial(4)
    7 O# C  U4 ?7 `+ Z" Zfactorial(4) = 4 * factorial(3)% I: w  E4 m; W- E* g: v9 M
    factorial(3) = 3 * factorial(2)
    3 [% {0 M$ P. c& Z. k% o2 }8 D5 Ffactorial(2) = 2 * factorial(1), e0 J* i, L2 @8 K, v1 m% N8 P' c
    factorial(1) = 1 * factorial(0)
    3 {7 M5 \8 e9 x2 W( y) \factorial(0) = 1  # Base case( L( A+ ?) H. B' j, y# l

    3 Z& ~/ _; j6 X% V( v# EThen, the results are combined:+ }; y1 [2 B2 U

    + L, D$ q, t  ]/ _! l5 l" ?" O3 G7 i$ I4 r. V2 M! P
    factorial(1) = 1 * 1 = 13 c3 C4 _8 Z* J' z
    factorial(2) = 2 * 1 = 25 j) c% d1 Y% y! L. \
    factorial(3) = 3 * 2 = 6) H: j* R+ x+ H% R; K. K% S
    factorial(4) = 4 * 6 = 24
    : I1 F2 c% _. _# a/ h9 u( K: Ffactorial(5) = 5 * 24 = 120- b/ O8 u' _  |$ g) d4 C5 v6 N

    5 b2 c: |$ u" wAdvantages of Recursion
    4 X% `: P! x2 X8 H5 F. v: e+ i) ?
    - @2 z/ }' s+ v    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ [$ @) B2 N  P3 t. A7 z

    - x7 ^$ M0 U. q% Z    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ' `' [. e' g; O5 p' w. s' v. l" q0 K. S5 J
    Disadvantages of Recursion
    & \* P0 i$ C1 @1 S( o
    ; A! V, G# W& I, ~; Y8 a    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.5 y- g  C: J2 _8 s" [; A
    7 Y2 J; M6 _* `: p% ]
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    , {: y2 _9 ~8 @$ g1 T
    3 A% F7 Q5 @) e# E  _When to Use Recursion+ c  e4 k* ]6 V0 N6 `' d: s
      q. F/ R. H$ F2 Q+ z# [
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).! n9 s. }! g9 ]8 I4 n) L

    9 \( |: p5 y: a6 T    Problems with a clear base case and recursive case.
    + d6 h( E$ E# z2 Z  u3 M
    ; \3 n. L5 K, h1 XExample: Fibonacci Sequence" h7 G( N1 k* L/ D$ Z$ `/ X: o

    ! ~0 V5 Y& e! f% R1 L3 s! M4 a; wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    & y- l# ^% `8 \! G' f/ F- s/ U" G' n6 F3 O& Z# R' W( U
        Base case: fib(0) = 0, fib(1) = 1; [# L) [" b! J0 o! Q1 e( D
      W0 {9 p7 j+ S9 _3 K+ k$ W; A8 ^
        Recursive case: fib(n) = fib(n-1) + fib(n-2)' s1 h! {2 U! C
    6 I" v5 i( G( u! _, L
    python. A" X: W6 j  B0 V
    : k/ W1 L. Z9 y$ a5 _
    " B% v9 [: j/ }" z' G+ P; v- p9 E; P
    def fibonacci(n):& W, h/ h! H& w' J0 Y% l  W; k
        # Base cases
    ( Y. Y, h+ k, k) ~; L    if n == 0:
      q( |7 N# o! M6 w        return 0
    8 e2 k( k. B5 j5 E& K( {. ]    elif n == 1:' }2 V8 x2 \) k
            return 1
    ( y0 y$ x! S! g    # Recursive case
    6 k# e8 T1 R, W$ R    else:
    + N/ y/ n' b3 n& r6 m" C" ~        return fibonacci(n - 1) + fibonacci(n - 2)
    % a) ~# [, A9 v& M% m  d8 @" t% Y: B5 ~1 h3 v1 c& Z
    # Example usage
    ' O5 E  q* q) V. G; s* z  k5 Yprint(fibonacci(6))  # Output: 8, q4 t& D% b  c. K9 _9 X, r

    , ~# i# t( a0 f6 T' ATail Recursion
    9 Z  F( b/ R6 b4 q* T6 f
    ) O/ M8 m* E$ t$ ~Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ) n# Z' v" @$ Y9 R: w& \9 S6 m5 E/ i) p
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-16 08:21 , Processed in 0.044992 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表