设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1087|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : s5 s4 C; x$ b! ~

    " Z, {* x1 @" w) o; X解释的不错1 D- r. o5 A4 z: c9 d/ h) T

    9 X9 j& K/ e1 e/ M& S递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。8 e" T, F1 \4 @% o5 F; s
    0 B, R. P4 q9 q3 T( ~2 f8 J) q
    关键要素
    3 c- [; q  Y: K! S1. **基线条件(Base Case)**! U* ]" M, e% y
       - 递归终止的条件,防止无限循环
    2 T5 ?$ a; d) ]5 U% v   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    & I/ L& @! D4 ^  m9 P5 r
    ' \- e  i* Y/ S6 q$ I2. **递归条件(Recursive Case)**# n9 I% q- f! u
       - 将原问题分解为更小的子问题
    / K- ?1 b' j  m: L& t. ~" @   - 例如:n! = n × (n-1)!
    4 Y  A5 f, m! }0 H9 i
    ) g, L1 o# {# c/ E& |+ y 经典示例:计算阶乘+ I! y0 n0 @5 Z& y. d" u/ P
    python+ d. H! O! ~3 |3 C. m
    def factorial(n):7 j- N! p6 S/ W6 L( X0 N/ R% I
        if n == 0:        # 基线条件/ G/ e* |1 A' U- O# n
            return 1
    - A, m8 n( {1 E    else:             # 递归条件  s* ~& H! Z4 W7 x# O
            return n * factorial(n-1)5 X( f4 J' Z3 O* W; ^
    执行过程(以计算 3! 为例):
    9 l& m: N0 l+ |! a( X" Wfactorial(3)
    5 {' j0 H+ W* {$ P3 N6 J- M: ]3 * factorial(2), t; x, s- C' L) f
    3 * (2 * factorial(1))
    : Q$ O- z/ D- u5 w3 `3 * (2 * (1 * factorial(0))); ^  P& N0 U" {$ Z# c( d: l
    3 * (2 * (1 * 1)) = 6
    ' q; F# H7 S/ z* \; I( @9 b( Q$ j  y
    递归思维要点
    4 e* i" q" H  N: A# }1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ) u6 t& s/ D9 {- M9 k2. **栈结构**:每次调用都会创建新的栈帧(内存空间)' b/ l; U! h$ M, y: @& s9 j
    3. **递推过程**:不断向下分解问题(递)7 P3 ?  q4 _; w, H+ s' I
    4. **回溯过程**:组合子问题结果返回(归)
    6 W, H5 N! u# x( G, @. Y; o3 b8 b
    0 V; t* I, D3 u# Q 注意事项
    % v$ g/ X' A/ D: X7 D必须要有终止条件* h, S  T% S; Q. ?: B( J- O* B
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # z, J. O$ t% Q# ]; }4 p某些问题用递归更直观(如树遍历),但效率可能不如迭代$ y( c! y, L, {2 x
    尾递归优化可以提升效率(但Python不支持)6 r: c8 b: [; N! m

    - h5 L. z- t+ R4 ~* l! m' O6 J3 l 递归 vs 迭代
    / u0 ^, H; h+ F2 ~& Q0 D+ C3 d|          | 递归                          | 迭代               |
    $ U: y$ u7 s5 @. I1 A5 j|----------|-----------------------------|------------------|
    4 f+ l  X: j% T( @| 实现方式    | 函数自调用                        | 循环结构            |  M0 S( F3 o3 o# }' H, S
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |6 K1 {( e7 }  x9 Q' m- d
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |, x9 K# E' w" I2 M' ?
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    / C7 g# B5 {0 K
    , J/ m& X( V' }7 ^4 B9 z 经典递归应用场景
    4 R: M7 E/ L+ `3 a# T5 X1. 文件系统遍历(目录树结构)6 I. W" d5 x/ c9 T  v6 R
    2. 快速排序/归并排序算法/ [$ X+ S4 L  T0 d
    3. 汉诺塔问题; ?6 G+ x; L6 X
    4. 二叉树遍历(前序/中序/后序)
    + F" s0 p) [' J2 g/ g5. 生成所有可能的组合(回溯算法)3 B9 L2 u' Z* \4 j$ y5 c
    ! G$ N( h( c! E; |; z9 D: I" g
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    14 小时前
  • 签到天数: 3095 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    3 O8 D9 U  t6 J9 j+ t我推理机的核心算法应该是二叉树遍历的变种。0 i% [, s3 _/ M3 X5 m4 T5 x
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 i9 ~  ?$ ]: s: ^- `
    Key Idea of Recursion' y  i) p. P7 m: q
      H* |" F; W+ G* S( H7 {7 P/ m$ H
    A recursive function solves a problem by:# p+ r4 V; A, W: {' d

      E0 [7 P. O; _6 T    Breaking the problem into smaller instances of the same problem.% \, k& O0 P  H7 @; c' `
    - r3 H! `( N# t
        Solving the smallest instance directly (base case).3 b9 {4 [  I+ F

    1 p3 i( t" ?; M1 @' C    Combining the results of smaller instances to solve the larger problem.
    # M& V% D. k4 X" {2 \8 o; z+ b' |8 [. S, C( y0 R0 U! n, S
    Components of a Recursive Function2 G/ ?' Z  u. |, R# R' o5 n
    3 ?6 j- r4 T% S* ]8 i0 Q; t: X
        Base Case:
    . Y' h" `! q3 P: ]$ [/ `" [  q7 I" o* }2 D
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.+ t3 e: z* W, h- H6 d' Y* L( @
    - P: C3 T2 O( g" I1 G0 j
            It acts as the stopping condition to prevent infinite recursion.! B1 n' g! p0 c, M
    6 F& H2 o0 V1 t, K1 a6 F5 E" ]
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % _8 z% X+ v! o  i( a2 F5 X7 |9 c# @; t: V; ~
        Recursive Case:% G( z7 ]& P* L- A0 S

    2 w' @! `/ }! s        This is where the function calls itself with a smaller or simpler version of the problem.
    ; i7 `# c6 c: Z$ [" A2 ]7 P5 ?- D5 [5 {
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    3 B. o) u  u) X- t0 a! j3 N8 J2 s# j9 r2 j$ s9 O
    Example: Factorial Calculation: W% }2 y4 U9 ]& ?0 ^- l

    & e- `0 l4 d, F# D( \The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:1 P$ C/ @7 R+ h0 [) Q
    ( R7 W8 r7 N/ p9 ~2 R4 h& }
        Base case: 0! = 1
    . @# k6 T) C! G& }% ^7 w1 A( f3 f/ N! b) t) L  l  A6 [4 ]% q
        Recursive case: n! = n * (n-1)!; r+ F: }2 a9 Y! C1 m5 E; U

      a% y; ~, G& l  P% yHere’s how it looks in code (Python):  @. E3 m: z& s& O4 V
    python2 E$ O1 `1 ~8 [7 M
    ( H7 _8 e& n1 P4 S) x* w$ K6 w

    ( \1 I( ~" d- M* ~( r( Q, xdef factorial(n):9 L( {+ H) [2 \
        # Base case
    / Y$ Z: a4 s2 q+ {9 E5 a    if n == 0:3 O/ r: m! n/ C2 w; g
            return 1
    ; J! e% m* X( F+ a$ N    # Recursive case( |/ i) O2 {* [+ o6 B: Y/ w
        else:. |& E( c4 z0 t
            return n * factorial(n - 1)
    1 X) |: q, Q/ M8 x- r+ s; m3 j, G$ ?# N+ L
    # Example usage
    - w' [' [" ]% iprint(factorial(5))  # Output: 120- |( C3 a+ w7 K; e: a
    8 R4 q6 ?5 a% i% E
    How Recursion Works. E9 G; j$ L( E# i2 r, K

    3 R- X1 ?4 z* H$ I& `: g0 ?    The function keeps calling itself with smaller inputs until it reaches the base case.' X  T* g' ~; l4 O! p6 M1 v

    5 }$ w; F3 n6 z' }% C/ m3 i" _    Once the base case is reached, the function starts returning values back up the call stack.
    # Y% Z! |* l  w$ |- M7 y' }7 n
    6 D" {" D1 S2 o$ N( G" V2 l) Q    These returned values are combined to produce the final result.# R' E7 R- [! o' a
    : G4 W. y/ I/ N5 }8 [# I
    For factorial(5):% d1 c. R* X; H. V7 M$ N8 P
    2 b. p8 s. v& n+ K
    - a2 M- X) Q+ p" c, Q
    factorial(5) = 5 * factorial(4)
    ) T! k3 \! j$ S" L" Y6 K0 g" Y. afactorial(4) = 4 * factorial(3)
    3 k% Z2 p" b7 Z3 u  |% lfactorial(3) = 3 * factorial(2)
    6 I& _3 C; c0 }! {! H$ n' afactorial(2) = 2 * factorial(1)
    ! k, \! N6 Y1 _. t1 T& G, F% ]. nfactorial(1) = 1 * factorial(0)# K; ?, ?0 a/ K6 v- O  ]& c8 V
    factorial(0) = 1  # Base case) k. A+ n( I5 H

    " F. x9 q9 v% F, {8 ~# _6 S. uThen, the results are combined:, a( S% y& |+ r% T2 j- }
    6 G  u! Q' U; y- z  x1 A/ p
    / J  s0 }7 w' x
    factorial(1) = 1 * 1 = 1" A5 _5 a( B+ l$ ^. D2 {
    factorial(2) = 2 * 1 = 2. D. c% N! U/ j  U
    factorial(3) = 3 * 2 = 66 M. \: q" Q) ?8 v1 A& s' c
    factorial(4) = 4 * 6 = 24
    ! B/ g8 g- Y6 O: o( c4 p0 Cfactorial(5) = 5 * 24 = 120
    ( m+ \6 q/ w' [' h# x% W
    - h, e! A, t% k$ {6 {2 X& uAdvantages of Recursion
    % P1 d3 J2 q" f5 E- l0 Y, S. z8 Q( \
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ; o' {# g4 O2 s0 P9 W) L1 G( b$ W5 k3 U
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    + U) `8 k1 _  m% {0 Z9 E
    . l2 |$ s5 A8 ~5 s% `Disadvantages of Recursion
    + S/ U& c/ P. c0 g' e% o6 k' E/ r/ A( u4 o
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      r4 L6 O9 D0 k! S& F, i2 s' ^! s$ ^5 @
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 R. g. v6 ~4 O$ W& h) m
    . S$ ~( ^9 C) E0 N# X( ZWhen to Use Recursion2 Y. m" t" F" z: F

    & R. I) e! f# n/ A    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    " c3 V# }4 h* d* I- c' ~9 {4 V* {$ \% w( r3 s% S: b) ]- F# X2 w
        Problems with a clear base case and recursive case.
    % _6 D5 D5 S1 e+ a$ \4 s4 |: S
    5 |3 w9 l/ a6 @) IExample: Fibonacci Sequence
    . X, s" s  w0 a. i& ?- j' X$ w: o3 v" X* F
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ j. R, A! O, O. Z( F  w- E, `% }7 v$ y5 p! b; c( |5 K# X
        Base case: fib(0) = 0, fib(1) = 13 e% a: l8 ^2 M% {% }9 F

    + A  y/ f/ s3 t, `6 v: @9 D% p# x  o    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    6 ?! D& H  G; ]! J9 J+ |, z  E, _  I3 b7 O; C
    python
    ; B: s( s1 g% Y, i
    4 f; P( c* x' X, P1 I" I! _* y- M5 V1 p2 q
    def fibonacci(n):) m$ Y/ r( i0 x
        # Base cases1 [( r4 ^1 R5 Z: _
        if n == 0:- p  s# |4 K5 ]! G1 a; T, E+ ?! ^
            return 0% b& I3 Y, _) r  W% c, Y
        elif n == 1:
      r! {, x7 Q  V0 d        return 1
    + v0 X4 x" _; p7 I5 H$ Y    # Recursive case
    ) @+ N( f0 B6 e1 s  M    else:* Y5 W8 ?1 [6 y9 ]6 M5 ]
            return fibonacci(n - 1) + fibonacci(n - 2)0 j* r9 [3 ^  H
    * H* c8 a) a7 G. ]( X8 A  `0 @) \
    # Example usage2 D( t1 ?/ _# k! r
    print(fibonacci(6))  # Output: 8: q6 D6 `; b; Y

    $ [4 U/ Y, V/ O# g+ }Tail Recursion
    3 O7 c0 B  [/ M# O3 U8 }. W$ T; Y
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    8 P0 n4 Q: |$ d7 j
    7 O$ d( t3 N7 W; r* t- VIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-17 21:51 , Processed in 0.031554 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表