设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1230|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' W0 H/ k/ Y: t

    3 m7 `& L  w4 y解释的不错
    9 w8 T/ I3 v  Y) P! x' F. Q0 Q, a! Q. C- Z4 j6 c4 J0 o2 G& ^2 c
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; ~1 l* M1 B! ]

    # K* y4 y5 {6 `8 _  |3 I( \ 关键要素. m; U5 W% p  T, i1 R' g
    1. **基线条件(Base Case)**
    3 P6 \& I. X0 i* }  ^- v+ t) u   - 递归终止的条件,防止无限循环! p2 ~, N0 V' {
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 12 v" u  m  x' ?% c  q$ a
    & x! Y! l) x9 m2 C, C
    2. **递归条件(Recursive Case)**
    ' B0 d/ K" u# S5 _   - 将原问题分解为更小的子问题' H* b) d0 u5 V0 q% Q* @8 x' b5 L
       - 例如:n! = n × (n-1)!5 M4 ]6 L3 R1 m7 y% T/ s
    0 [6 `$ W( _9 M  R
    经典示例:计算阶乘
    * D# ?: M) \  j0 b8 I! Y1 {4 ^python4 `( K$ u# E8 q$ C- P
    def factorial(n):% W/ H4 @0 x; w- A9 e
        if n == 0:        # 基线条件
    & c$ \9 ]" l$ \# m3 ^- c        return 1
    % ]* Q" g, M* S" z6 d4 _; P  X* p    else:             # 递归条件
    1 {( Z$ S+ c  o1 Y. E        return n * factorial(n-1)
    " o. H3 U  J. t& z2 ]7 Z# T执行过程(以计算 3! 为例):
    , V* w. |& K& Sfactorial(3)( ^/ `) g4 Q$ N! P9 J" }5 p
    3 * factorial(2)- Y: c6 a) I2 s6 H& ]! O0 S
    3 * (2 * factorial(1))
    6 O: f0 T) l- m9 J) [9 ?/ t7 f+ e/ c3 * (2 * (1 * factorial(0)))
    $ E* [# |: `% D$ u: @, G' a: E) }& G2 J3 * (2 * (1 * 1)) = 6
    7 P" `2 D9 H* {$ q( [5 \8 O2 s& T/ b0 R# y: h+ D
    递归思维要点
    3 n7 Q3 V( S1 Z2 K/ U* O: ]+ h1. **信任递归**:假设子问题已经解决,专注当前层逻辑4 O7 C' A( F% U3 z' q" r
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& s8 `* a* p2 l
    3. **递推过程**:不断向下分解问题(递)
    7 d' }. C" I: g' T) c2 S; e4. **回溯过程**:组合子问题结果返回(归)
    3 c6 O8 N1 I% z0 n7 S" S  P% l5 Q& \& y( m, H( r
    注意事项! l% h" f# s+ u# }1 ~5 {) B! f
    必须要有终止条件
    1 X8 A5 ~$ ^" Z* t! O; ?  L递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    - K! f: U8 C9 ~; }某些问题用递归更直观(如树遍历),但效率可能不如迭代
    + P* n# X& g6 ~& b8 ?尾递归优化可以提升效率(但Python不支持)
    3 R! v- Q5 S* F) l3 w" l/ \+ P$ `% {* f, F( Z, ]5 p$ Y
    递归 vs 迭代
    4 R! K- ]7 ?$ q; K  @: x, O# a|          | 递归                          | 迭代               |
    / O5 U7 L# B/ M; x" W! {1 I|----------|-----------------------------|------------------|( g: P/ }' K6 b+ ?9 F1 O
    | 实现方式    | 函数自调用                        | 循环结构            |
    ' c( z( F; t* @/ D( j. t2 z2 M| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 Z0 x; S- _4 N, b2 x  ]' r| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |4 F" L. L: r6 X8 M1 g  V
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |& C( \" }  Z9 N1 J& b; v

    8 \+ Y: V9 s1 y5 g! a% l. i 经典递归应用场景
    ( Y  ^( U# v8 c/ _5 ]) d  u, P1. 文件系统遍历(目录树结构)9 u+ q) m& J, b7 e
    2. 快速排序/归并排序算法) G' y' ~; P* s3 E& s1 l9 |
    3. 汉诺塔问题( M. ?0 Y9 m4 H: u3 F
    4. 二叉树遍历(前序/中序/后序)
    " j3 K+ q8 e/ p$ s5. 生成所有可能的组合(回溯算法)
    3 p# t0 V" Y4 p# p' f; w# ?
    " C$ V( ~0 s5 x' [7 J! o8 w9 B试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    9 小时前
  • 签到天数: 3104 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ s+ o) o$ x3 R2 ?0 d1 M
    我推理机的核心算法应该是二叉树遍历的变种。
    9 {+ d" n# j( W0 z  r& ?# i9 D$ g另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    7 }" Z# i; D+ `% V" |Key Idea of Recursion) |3 z' I. o3 ~. x) `0 L9 C

    0 e2 K  i; A# [% [. {; A4 OA recursive function solves a problem by:
    + h# J8 O! K6 G' `$ S" u# }' v: {1 {6 ^! K# f8 e
        Breaking the problem into smaller instances of the same problem.7 ~- O! K6 T3 b- }

    - h! c: C5 `. b) ?* J9 s4 `2 I    Solving the smallest instance directly (base case).5 Q& i/ E  _  k& m# }
    / K4 K9 V' z; d3 L
        Combining the results of smaller instances to solve the larger problem.: ]9 L, p7 B0 m& Q2 a0 n3 L
    2 Z& p6 @' M, l, @3 l, v
    Components of a Recursive Function
    * o* L8 S1 s+ K# f# N& g, ?$ ~. ^+ r7 ]' W# j
        Base Case:
    5 z- I) d- a" x& {8 L
    - p" B! w& R6 I3 }7 H1 e6 I6 D        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.& q/ N1 J. e" r9 {9 C, `0 s
    ; m+ M$ J) I! p0 k5 r- X8 B/ _
            It acts as the stopping condition to prevent infinite recursion.
    ) P7 b/ B/ V& z# |7 i/ a0 ^( z  _$ g; a! i( G) K& P0 N8 `
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    6 U5 F7 O  `6 b/ j0 V+ Z
    : w9 O! `' h6 r  [/ r5 m9 {/ w3 p    Recursive Case:7 a. h0 v1 j- y; Y8 n# L% ?/ q' a4 a

    ' P0 j5 i' r- F# J7 W$ ?        This is where the function calls itself with a smaller or simpler version of the problem.! P  a. g1 ?" ~5 L; i& ?* o0 @
    7 J* v4 P1 y7 e5 Z1 H" J
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).3 V# ?4 L* f3 {' F
    + d- ]9 |  E1 ^! V5 _
    Example: Factorial Calculation+ m. F) T9 F% q9 p% Y2 F

    5 ~. A  G, f# o/ S; FThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:1 x$ n$ ]7 ^5 A

    3 k$ u6 \0 [3 _. Q6 P# O; Y    Base case: 0! = 19 K. C( p$ n: U

    2 @# Z1 _2 ]2 Z) S3 @6 s7 Y    Recursive case: n! = n * (n-1)!% c: K' f3 w: J' b
    * b1 R3 j4 v$ M0 l
    Here’s how it looks in code (Python):
    7 v3 P, B, S& X  B$ c( Ppython
    3 e3 ~" R2 Q8 ?, t: V# S& O7 A1 m) G# d
    . N# {  Y1 {  X+ f% E
    def factorial(n):
    3 j( @1 y# l0 u6 D8 G( V& z    # Base case
    : r& {0 T) [; }  z    if n == 0:
    3 q: i( K* i, f( O& A9 }% |        return 1' C# m# R" l% e. `
        # Recursive case  @' T; ^( V5 {, l# ~# B, C
        else:1 z! c8 f1 Y7 n( P; G& J" d, u
            return n * factorial(n - 1)
    ' z* I- S0 ?5 O0 O7 ^5 N4 T( t0 V; \" K- u) \
    # Example usage; ~, C7 p! v: p& i4 i4 b
    print(factorial(5))  # Output: 120
    8 ~: p8 V% O3 E- w- k9 K" t
    3 Z8 @% ^( X2 L9 V! gHow Recursion Works
    " B4 V2 _4 N  ]$ S) X9 K& B; u/ D) h+ w- o
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ) o) F3 J7 {: F8 n- h/ g4 |/ D4 i$ Z7 @$ G4 }4 y. d* V4 Q, o6 I
        Once the base case is reached, the function starts returning values back up the call stack.* k4 D6 Y% W1 g9 H
    * I/ I0 _4 {7 F2 e/ i% F. W
        These returned values are combined to produce the final result.  V( @% d& b& M. r3 Z9 X
    1 S6 L" x; W# c+ w+ H) P
    For factorial(5):4 U- L  w, X: r9 |* m- m% z- _

    . q- y9 j, D$ e* |* l  \% q7 \! a0 P% x- L
    factorial(5) = 5 * factorial(4)
    $ l* k% R5 u# q7 J& @) xfactorial(4) = 4 * factorial(3)
    3 H  n( V7 E: }5 ]  wfactorial(3) = 3 * factorial(2)
      H0 O8 [8 o/ u) i7 O+ h# g8 A! d/ ]factorial(2) = 2 * factorial(1)
    8 @$ ?% P" }! o- v7 ?factorial(1) = 1 * factorial(0)' P; \+ j, U- p7 K. B) f( R
    factorial(0) = 1  # Base case; o+ p- ^/ u  {

    # `; A5 e2 M. h6 zThen, the results are combined:9 A0 L( M. i/ {
    9 Z& ?) g1 A" h, I

    # Y6 Q9 I/ }0 ]  c/ ofactorial(1) = 1 * 1 = 1# L  d! x- g0 X" Y' ]4 L& J
    factorial(2) = 2 * 1 = 2
    9 i/ W: W. y7 f' W. z& ~. gfactorial(3) = 3 * 2 = 6
    ' Z% q0 @) \* h" n' V( w9 H9 ^factorial(4) = 4 * 6 = 244 M* Y8 `: z% k) H/ d+ V: P
    factorial(5) = 5 * 24 = 120
    9 j0 s# b+ K6 @# [! I! A# w- p- l, `0 x# D# t
    Advantages of Recursion5 M9 B# H( L. A& s- {* \9 F, ]

    2 ^' }9 }  S0 B$ _- o; R7 H6 ~! n    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).( }  ]& l. B" d" f
    ; _  u9 F4 ]% j
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) b" i0 Z+ ^" B5 P. x1 d/ l/ ]6 C" K# ^# I; ^9 C
    Disadvantages of Recursion' r$ Q& {% W$ E+ q! i0 `% d5 y

    ' {$ V* M- E/ m; _$ w$ x* G    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    # ]! N1 G" O& a, A) [$ p8 A$ l* |: A% ~
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).+ f1 k1 R3 y7 l7 [: c

    " s- ^1 f6 r1 f' G1 A# rWhen to Use Recursion
    3 N, ?5 B8 R+ E0 N
    5 j7 m7 F2 g9 @& R1 X& \/ F    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).- G# _3 H% m+ b, p
    4 \5 d4 N' Y  H  d% }* h7 _
        Problems with a clear base case and recursive case.
    - c+ _3 ^: O# W
    / u: m7 Y2 X" l4 [- WExample: Fibonacci Sequence
    ! r$ f+ e' P3 W% {5 l+ k* x5 |. _5 \, ]/ Y
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:0 \$ W  J( {) l6 g$ ?( m" J( P. _
    4 T# R" V+ B. C1 C7 U% }
        Base case: fib(0) = 0, fib(1) = 1+ c) a/ O  f: `6 a2 U- \7 m2 T: p. E
    % o  j+ W0 C: }7 D9 v7 \$ d  M
        Recursive case: fib(n) = fib(n-1) + fib(n-2)0 b1 i7 w: @/ f& [1 n

    4 u6 [0 H. l: D6 Spython2 h4 L# A1 m1 m, J3 w! b) @

    ; [1 a) C$ I1 E& O+ p( Z. R+ M. o2 J; Y1 g: L; v. |; _( e# j! A  x
    def fibonacci(n):4 ?5 U; X5 n8 o0 y! f0 ~- A4 v
        # Base cases5 Z: m% N( ?& b, o$ r( ]
        if n == 0:
    ( R7 F( _0 u/ N5 J        return 0$ F  \2 K* I" V1 U! K. y6 A4 T/ [
        elif n == 1:, @! _3 r. }" d2 p+ M: Q
            return 1
    ) e7 O4 y7 v. S* T* Q    # Recursive case/ m5 _% g4 n% \. z1 [
        else:
    9 O( z5 E/ O9 `- }, t8 C- c" [        return fibonacci(n - 1) + fibonacci(n - 2)
    # i) a- o& v# j* U* u. E, f$ X/ L9 S9 @) X" G3 s% ^
    # Example usage
    ) v5 K$ Q# [) ?" Sprint(fibonacci(6))  # Output: 8, e8 `$ K7 P& B4 o. U4 x+ }
    % B; f  v7 C5 y: p2 O: e2 [! o
    Tail Recursion
    1 K  H9 R: O: ^
    4 s$ M9 H2 G& D) o2 |Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # V% e" q2 x2 H4 [& F5 m- ~, {5 v$ @4 O2 S7 r  a4 }
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-29 16:16 , Processed in 0.030726 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表