设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2066|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' H5 _; ^: ^3 \1 H2 R6 j$ T5 \) `# y0 H2 Y
    解释的不错- P) l4 ]3 N( |# i5 h; S0 L

    . A9 |& l+ A4 l0 J6 G2 h" H9 q递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
      @( \  t, v- J, H2 [& l1 T- h6 M+ _# P! Q& K& Y6 p* a
    关键要素" Z. ?1 e( z3 m. h) T
    1. **基线条件(Base Case)**
    6 F3 l9 c! V( o4 u* b   - 递归终止的条件,防止无限循环
    9 p  `' O# m  w  L+ e; l   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    * r& t$ F- ?* w' A3 q, y1 z
    - P* @6 C" [/ a6 C0 @# R. N+ F2. **递归条件(Recursive Case)**- Z7 ^  j' {5 y2 ~1 f
       - 将原问题分解为更小的子问题1 X' s2 R! v# H- g. C' X7 A3 |
       - 例如:n! = n × (n-1)!
    ! W: |- p! f# r
    + s/ h: _% o$ X6 d 经典示例:计算阶乘- V$ `6 M  W9 P: \
    python
    ) |' s* }5 i, J% c4 x+ Ldef factorial(n):' x7 {  n/ h4 I* o% g
        if n == 0:        # 基线条件6 B* Q/ W2 L1 g% g+ U4 G
            return 1, y- A+ v- T# I' J
        else:             # 递归条件6 Y- c" p+ c  V0 _5 ]) J
            return n * factorial(n-1)- L; S% ~: k8 ^* W& {# q* l
    执行过程(以计算 3! 为例):
    3 [! p2 R- b! Z/ E. e5 efactorial(3); u9 q" {; v4 u( L8 s
    3 * factorial(2)6 ~' J2 H$ i/ h% y- U# ]
    3 * (2 * factorial(1))
    ' ~9 F4 f  w7 J& B0 c0 ]/ b3 * (2 * (1 * factorial(0)))
    8 q. P! [$ \! t; k3 Z* q9 a6 O9 h3 * (2 * (1 * 1)) = 6" I. z# H4 N' t8 w* |

    ) v$ n* d# _9 A5 _ 递归思维要点
    3 Q% C+ x" ~; E9 w- A1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ v8 H$ u2 A, j' w: C. c* J! g0 L6 \
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    6 `" @7 L8 P4 B# ~7 e/ Y3. **递推过程**:不断向下分解问题(递)' l' X0 D+ k: l6 T+ T8 h
    4. **回溯过程**:组合子问题结果返回(归)& x. O8 v2 A- T1 L& h

    $ C2 p* h9 J; U; g6 Z: A& r 注意事项
    9 t9 U: b0 C8 @3 S* h# Z必须要有终止条件/ K. P/ V$ c( @, O
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    / ]1 x' k& U6 j某些问题用递归更直观(如树遍历),但效率可能不如迭代- C% M/ X- Y0 W& H0 T
    尾递归优化可以提升效率(但Python不支持)
    * d7 \. g- A, v: p$ C
      D. J/ Q; F+ h8 j/ s: } 递归 vs 迭代
    ! ]- L, J% M" x|          | 递归                          | 迭代               |+ u5 ]" {5 g" B. u3 l
    |----------|-----------------------------|------------------|
    # U$ r" X- s  j$ N4 E1 r| 实现方式    | 函数自调用                        | 循环结构            |7 `& h, Q5 c3 ^% u/ Q
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    8 Y" ~8 a' Y+ F# F8 W| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |6 X8 J5 i/ s$ u, V/ W
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : t( G1 P8 @4 d
    % z3 g, G; v; K& B 经典递归应用场景
      M$ t) B. H! n& `2 X3 v# ~  q1. 文件系统遍历(目录树结构)7 L' g0 Q' m9 O0 g4 P- a5 n- Z
    2. 快速排序/归并排序算法
    9 i8 B- r" H. [8 l3. 汉诺塔问题+ e& o; O- V" q% P/ z
    4. 二叉树遍历(前序/中序/后序)
    ) _8 t) B0 l4 I  k4 \8 L, Q5. 生成所有可能的组合(回溯算法)0 P0 O0 X4 u& Q

    6 Q- _: q9 y/ a% R, n试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    3 小时前
  • 签到天数: 3170 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ( R! L! e, k: V: _我推理机的核心算法应该是二叉树遍历的变种。
    : y5 h1 e+ S3 a$ q& Z2 u7 g+ J另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    * U# E7 p0 G) o* |; lKey Idea of Recursion
    # J: p0 E! H6 n5 w: [- Z
    1 X. ^+ U% t& |2 [, ?- v/ lA recursive function solves a problem by:
    ! Q+ D; n; M3 R" D8 d9 L# t5 Q: J
    9 p# c8 f2 X+ O    Breaking the problem into smaller instances of the same problem.0 C! S7 t6 S: e7 L  K% A: v" B
    # Y: c# m2 Q) w: O
        Solving the smallest instance directly (base case).
    , u. `1 ?4 W7 ?  |  u7 g# ]% `- |! z
        Combining the results of smaller instances to solve the larger problem.
    ' |  r1 n5 m4 ^9 p$ E- d( i1 X+ }7 g$ u0 h8 _
    Components of a Recursive Function
    . \. q  ?4 i/ P0 W! @8 q8 W  p# K" F# @8 I1 V
        Base Case:
    8 `4 [3 S8 z+ g5 k) T. f
    & f$ v+ b# u( T        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ Y( h; B$ j- H+ e

    3 L% U+ X+ @! Y" f        It acts as the stopping condition to prevent infinite recursion.% h0 v1 {8 J8 a& z  y

    8 v" G1 Z. x/ q! p3 h        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    0 D0 J! H! T& Y3 r
      J& c* [8 n8 Y) G! \    Recursive Case:3 C5 [2 W2 ?- u' a4 h. q4 ]! z

    + f1 _: N. F' e. f% ]4 X# Q  J$ X/ z        This is where the function calls itself with a smaller or simpler version of the problem.9 K$ Z! I+ ~& [3 B7 V+ o9 s8 h( G! W
    ) C9 ^9 v( e- m: }
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    2 @! _% T* P8 o( g) l  n
    9 |, }8 e* m: O. V. cExample: Factorial Calculation, S7 h; A: A! R- x: i$ l

      V" c2 o" @1 gThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" o3 N* b0 T- _
    / `0 S" f( j' J) M3 e
        Base case: 0! = 1
    9 e/ z3 A, t& |( }: p* p8 z. `) e5 ]# c; K3 c
        Recursive case: n! = n * (n-1)!- _) N% F. G( @( v

    % u/ R- l. L1 G( L; Z4 Y0 d" wHere’s how it looks in code (Python):, h* h1 A9 E; J1 c( Q2 T
    python
    # B2 q* `' y* {0 V/ P% g3 p1 r4 X, Y. R' W

    # P* a  V  d0 j* e. U( _def factorial(n):4 H3 X# g3 W- v5 z6 W
        # Base case( N9 H- P$ U8 e$ D! U& V0 Q
        if n == 0:
    7 A7 F6 S; ]9 k) [# r        return 16 \9 C/ u; I" [+ n9 D. ?  ?' f
        # Recursive case
    % {7 n. U8 R6 X1 |" e    else:
    8 _* x9 q# @0 w! H' p( G$ x        return n * factorial(n - 1)" u% T  r) ^% o8 p# d* k

    6 a& J5 n. b; M5 }) I2 k% {( b# Example usage) A4 M; D) o9 b# y' Q" L
    print(factorial(5))  # Output: 120: q  S& _- U6 p" _4 l

    9 H4 S. T: O- Z* z" C$ S8 H' uHow Recursion Works7 y! W8 g- {  X7 p. r

    0 _) q; |! A5 ?+ R  k( Z7 W9 Z    The function keeps calling itself with smaller inputs until it reaches the base case.
    ( \: B" Q, h4 E' X+ }3 D) ?0 l
    6 C! G* Z% i- H$ L. E0 @( D    Once the base case is reached, the function starts returning values back up the call stack.
      z& d( G: F$ m8 I1 y9 |5 B
    " ~7 v0 E  o! {5 O    These returned values are combined to produce the final result.
    5 a) y/ M. h: L! `' P1 p; }5 {
    0 o2 |# a# B* P2 H4 v$ Y2 w  _For factorial(5):6 Q+ R, l) c9 y( y9 b, P" l
    - a; `( z+ X) W

    $ p& K# r7 d" Pfactorial(5) = 5 * factorial(4)
    1 f) @/ _7 J. Y) l$ _3 q( o0 vfactorial(4) = 4 * factorial(3)
    5 A; i6 W3 h; D6 l2 hfactorial(3) = 3 * factorial(2)0 r8 g+ b, Z6 s* a
    factorial(2) = 2 * factorial(1)5 b" D- o1 D- J
    factorial(1) = 1 * factorial(0)
    0 t5 \  e* X+ M; z( |factorial(0) = 1  # Base case& v" U- f5 g7 T$ x- q5 R( A. [

    8 ?+ x& P! x1 w3 F# ]& jThen, the results are combined:
    $ M; p5 K/ s. J7 L; A' d
    5 N6 d: n0 x/ D2 M  u4 d
    2 Q6 h7 Y7 _' C, r2 g* ?factorial(1) = 1 * 1 = 17 ^- o" Q- _% M6 S" j; k
    factorial(2) = 2 * 1 = 2- n+ _2 S8 j0 s# y! G, g
    factorial(3) = 3 * 2 = 66 e, u2 @& G$ j: z) k
    factorial(4) = 4 * 6 = 24
    # a. A: E, _/ m: H7 kfactorial(5) = 5 * 24 = 120! z* V& D2 j5 D

    + @  s3 Q4 `* t5 A/ IAdvantages of Recursion
    0 X5 @  |! Z% h8 D% E" h* p6 X3 V- ^" a, |, ^8 _( k7 t& ~
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    & k0 x+ |3 y, v! S1 w$ V& K7 X9 @* |  h6 `, W; {/ W+ Y; I; i
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    4 y7 M" z: Y& H3 M; ^5 J( i
    ) }1 ?% M4 b8 }Disadvantages of Recursion4 K) ]- Q3 n0 \/ Z" G
    * C0 k" m- h: D; D6 a8 d
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.: @, _2 J1 X2 x7 V! `
    . k4 W2 U$ [4 ?0 B& |  d0 p
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! U. O3 C/ D0 R" @
    $ d3 K; Y$ a- }7 s! aWhen to Use Recursion/ P" d: M8 _, t0 b

    . ?8 K- I9 f( y4 P    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).2 |1 g7 M# K+ ~# _
    ; I, v: H; q& b7 x& y7 Z$ M) ]  k
        Problems with a clear base case and recursive case.
    3 F* y; J) m# \+ A
    , @3 l0 l: I" `3 v  @" \4 I) \' MExample: Fibonacci Sequence
    0 f' [3 p) ?* l1 a! l. {
    " E$ _( x- E+ |* FThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:4 n- O( P" K/ Z& S4 @  p! u0 t- w9 k

    " x. V; h5 ?  C0 d  w3 j    Base case: fib(0) = 0, fib(1) = 18 m. t, X% V. Z% |
    ) P, v/ |  u/ u
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    1 K' y: l) a( \* m! Y  e
    + |4 ^5 I/ v- L1 S( J4 Apython
    4 M! Q9 K' ]. I0 z0 R; ^# V$ Q3 m% n2 K6 A, D/ i

    % @$ _, {3 u( b2 H4 N" k1 {* V1 L) w0 Wdef fibonacci(n):0 e6 ?- r5 `# r4 A9 L5 E5 w& y
        # Base cases
    1 E% L. A! C, w4 r: z    if n == 0:
    , b$ ]* H$ J4 C: S( ?* u4 u        return 0
    7 p6 [) Z5 D1 d8 `    elif n == 1:
    & e5 ?, Q. f5 h! M; ]5 w9 f( c( ?        return 1
      n( X6 W4 R9 _. ^: r    # Recursive case; P8 t$ M  G) d
        else:
    : d. T: a/ ?! G! M8 r) c0 d, D        return fibonacci(n - 1) + fibonacci(n - 2)
    . c1 M+ v/ Y$ j/ g# R
      ]/ P1 o& W: @& P. S2 w: F( u2 A# Example usage
    # M. a* M4 K& ~. r0 |5 V2 Hprint(fibonacci(6))  # Output: 8
    0 D" e- t% N" i7 f9 O9 d# V  S9 ]9 n# U
    Tail Recursion' }: \  r) [# D9 v4 j2 v7 s# A6 i
    ( l, U0 h4 {% R; w
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).1 U" F1 B! j  _0 @3 J) S  r

    # F( g; m" N/ }/ ?In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-11 11:45 , Processed in 0.063526 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表