设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1667|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    3 s2 N0 c* h) X! O4 @. q! e1 R2 P5 Q# F+ U
    解释的不错1 @( r3 V0 }; n7 w
      ?3 J4 i1 Q, R( M
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。+ z" ?, ~, z% J+ C) j

    & h0 O# y2 `  R, n/ a  f 关键要素: F: ?2 f4 [' R1 Y- g+ ~: N/ {* Z
    1. **基线条件(Base Case)**
    + Y* \* k8 K. V9 j4 g9 Q   - 递归终止的条件,防止无限循环/ p/ c' ^9 d  G0 b' {
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ! _7 h% x* w4 i
    ' W0 J# ^" a4 ^2 ^! w1 f! ^2. **递归条件(Recursive Case)**
    5 W/ N0 x( w3 U, S   - 将原问题分解为更小的子问题8 \7 D: Z! r9 {7 b! U/ P1 Q- u
       - 例如:n! = n × (n-1)!3 m5 s7 F! b: J' A+ ]+ F; S
    ; V# a: Z3 {; Q! k
    经典示例:计算阶乘* `. p' l/ M8 q: A6 Y$ f3 m0 @
    python
    4 P5 m' C" w% k; _( Y! wdef factorial(n):/ `& G$ c9 t' s( l6 v
        if n == 0:        # 基线条件: Y$ k( T, A) K, @2 `7 ~& l; m. }
            return 1
    7 I+ @: ^4 G$ T  g& k1 `9 Z6 Z    else:             # 递归条件
    7 F5 E: ]8 C: W; T3 S        return n * factorial(n-1); |) E* Z# g/ ^  f% Z
    执行过程(以计算 3! 为例):, d( z' n; P& O& L0 d% A  J0 f
    factorial(3)* c* u/ z3 c1 A5 q1 L4 R) s# T( |2 U
    3 * factorial(2), n$ U5 C9 R# T/ J
    3 * (2 * factorial(1))
    6 R5 g, U' S0 z; w; X; T" r' l- f+ v3 * (2 * (1 * factorial(0)))
    3 A  k' r& H" x- e1 x3 * (2 * (1 * 1)) = 6! R- @# m; k! T7 k8 v8 D9 \

    ; Y- ^+ C4 O* Y7 P% k 递归思维要点
    % R& Z, W* _: o# ?9 e4 @1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ ]- g7 O7 ?1 Z4 V6 q$ Q2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    6 ?, |+ ^" i; _# p9 B: E* ]3. **递推过程**:不断向下分解问题(递)7 J4 m2 T& Y) b  p) M
    4. **回溯过程**:组合子问题结果返回(归)
    ' h2 {( }. n( p; ]  |) _( j
    - }  H4 D# d/ |7 X; k& X 注意事项
    $ h* ~" t; E. v7 \: I必须要有终止条件
    / O5 X. ~$ N, J! C( E, b3 B) j+ @6 |递归深度过大可能导致栈溢出(Python默认递归深度约1000层)$ d9 U8 {( T( B/ [
    某些问题用递归更直观(如树遍历),但效率可能不如迭代: j! E& c, b5 f! A/ c5 _4 n
    尾递归优化可以提升效率(但Python不支持)
    $ z9 n  b0 b! f$ m, Q7 C! {6 N
    - V; g4 P" ~: N 递归 vs 迭代
    7 ~1 M( n& U% y. \8 M8 I: B2 \|          | 递归                          | 迭代               |
    / A" @$ }! p6 {|----------|-----------------------------|------------------|
    ( G( ?: L! q" N& K( g| 实现方式    | 函数自调用                        | 循环结构            |
    $ A- \& \. x0 C$ f0 D| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |, x' d  P$ O) e
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    $ f9 O/ s3 t3 G| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |4 a( z. ^1 l# C" w- ^: T" s9 B$ _8 n

    ( z  R% {: s9 i1 c# Q 经典递归应用场景
    5 F# d" S* |' c' v$ t1 k9 \9 v4 X1. 文件系统遍历(目录树结构)
    + Q0 |; V6 _) e4 z0 l2. 快速排序/归并排序算法3 |8 m2 A! a  f- ?1 g, }2 d# g. P* O0 ]
    3. 汉诺塔问题' F% u7 W. Y5 @+ S5 N5 j
    4. 二叉树遍历(前序/中序/后序)0 }+ v* ?1 _, R8 u* i
    5. 生成所有可能的组合(回溯算法)
    ! t3 c6 _" o. y4 V* K, P) t1 D
    $ M, ?  P$ ?4 ^6 t, x7 g- Z% X试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    7 小时前
  • 签到天数: 3130 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    * M  B& [: _( u; B我推理机的核心算法应该是二叉树遍历的变种。  F. j2 L* m0 d% I' v! X8 J0 T
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    * X. K. Y) ^/ `3 v$ H1 ?: q0 }Key Idea of Recursion
    7 F) j$ F9 M- l3 t5 n8 y# d. O# D( x8 g6 ~& d
    A recursive function solves a problem by:4 e: Q' y$ i% z( u1 t+ |
    ) y9 X5 ~( Y9 ], e, @' n9 L6 |
        Breaking the problem into smaller instances of the same problem.
    . `( l0 l9 F/ v
    . v( ]2 Q0 x! E& d7 B    Solving the smallest instance directly (base case).& U; y' A+ b; C& j) ^
    ! f1 E( _7 u7 }
        Combining the results of smaller instances to solve the larger problem.
    3 S6 k# J3 R7 D7 T
    6 M- V0 R: v4 U0 pComponents of a Recursive Function
    / j& k6 t/ \3 C3 h: }1 r( m& q) \2 R+ q' E5 V& L/ _' u* M8 s; `
        Base Case:* u# ?* o0 Q* [7 c" h1 n

    ! q9 [/ @8 s3 [9 X( _+ r        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.* P; L! V& w8 B; F) ]9 V4 [1 m
    1 B7 K3 _; r/ }) [
            It acts as the stopping condition to prevent infinite recursion.
    ; P+ b* X; \5 B' ?7 _4 y$ \7 @- z
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % \& h& u8 v. M& `1 h
    1 B! Q. x( Z- Q! g( V    Recursive Case:
    : \4 D- _" w, V$ D8 y$ S% K1 v6 H! O6 s) x4 U: g! [# D# f
            This is where the function calls itself with a smaller or simpler version of the problem.' k6 |% A3 B0 G0 y* n

    1 _0 b  v- q2 f6 V5 l2 b  X1 l7 c        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).( q- @4 {' t. k5 `
    % k, p* m) d* ~2 f* r3 Z* U8 N
    Example: Factorial Calculation; K8 e' o3 A" F" r- f0 q) v/ i% T
    0 L# |$ d( H8 i- ?
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  {& l2 U! U8 q* L4 U* T( j. @
    3 t% d6 _8 t6 ]0 ]
        Base case: 0! = 17 _# y; v6 L# e% ]4 N
    0 F7 a7 Y) {' D% O. A$ e
        Recursive case: n! = n * (n-1)!
    . H+ Z8 _. {" n, r, K6 I0 f
    # i8 C: l& e7 n# Z' K$ f+ C! [6 rHere’s how it looks in code (Python):
    " h* i  Q0 M7 H6 g* K9 gpython
    ) a. u+ A$ ~9 M! X# u" o, ?# ]) a% N/ f, x6 ~

    2 _& x; m' _* Rdef factorial(n):% E9 j& Z/ o3 F/ C; _8 h4 t" m
        # Base case, O! P* M8 X  q% D% B
        if n == 0:0 H9 ?& h. i$ l9 y* Q( t) D+ U" }
            return 1  e4 n/ d; Q9 }4 V9 ^- a, M; U
        # Recursive case/ y8 ~) w4 Z! q- U, `- m2 \, ]7 u
        else:: w) ~  S, x( C
            return n * factorial(n - 1)
    : J% n2 s& ^2 h- W+ z8 O: G3 a
    / \* C. N1 u0 ]! @# Example usage9 d5 R! L1 k0 G
    print(factorial(5))  # Output: 120
    8 @, |, J0 G/ Q" L7 ?2 c- L" S3 b. N* b
    How Recursion Works  t8 }& [  q7 u, v0 Q1 ^8 f6 n
    ( K; u4 t; T* X) a
        The function keeps calling itself with smaller inputs until it reaches the base case.
    9 [8 q0 x8 P  V
    3 r" c& @! r/ d    Once the base case is reached, the function starts returning values back up the call stack.! Z# i' s. e* i" ~% k

    / L" k# v! c, p; b2 D+ t$ N5 Q    These returned values are combined to produce the final result.
    0 C* T( V( Y/ k, I) x! t( D( e8 j
    9 Z6 B" W6 g8 k4 gFor factorial(5):
      X8 n6 `4 R) t2 c) q2 j( }5 P2 A  L0 W( h
    6 U/ I& D% _! f# L5 k
    factorial(5) = 5 * factorial(4)
    8 P; c( }; S- ~9 h% f4 w8 |factorial(4) = 4 * factorial(3)
    & d, k1 D6 }9 z% q# Ffactorial(3) = 3 * factorial(2)
    - ^: \% R- M" g- w/ Nfactorial(2) = 2 * factorial(1)0 V3 `; U, P2 q' m+ P2 g
    factorial(1) = 1 * factorial(0)
    + S7 l# {3 m, K6 v6 ]. jfactorial(0) = 1  # Base case$ H/ ]& k* I  b( R
    9 s+ u! t  B) m
    Then, the results are combined:
    5 o0 L+ a. ~$ K: a! s# v8 i8 }7 l4 ^! F

    & F4 z* Z3 K  Y/ X; hfactorial(1) = 1 * 1 = 1- k9 U2 R  t: u, n. u' I
    factorial(2) = 2 * 1 = 2
    + R5 P! G) o$ Zfactorial(3) = 3 * 2 = 6: x, r1 \2 G1 X9 v" D5 L/ S$ J- C  `
    factorial(4) = 4 * 6 = 24! N! e) _' j' A6 _; a
    factorial(5) = 5 * 24 = 120' |0 T. B7 T6 ]( Q8 b+ X

    7 m( u4 r$ F/ M0 q9 X& i1 O7 |4 _Advantages of Recursion
    - E8 \# h/ J2 N+ b, n
    6 ]( \: |: U8 O; [' H% }1 i. k    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).3 v! w# U0 m. _# S
    ) q, ?- M/ Z6 V$ V' \& f
        Readability: Recursive code can be more readable and concise compared to iterative solutions.4 Q% H( e6 y0 M0 O  J
    . s6 G$ k4 E" k9 G: b, h
    Disadvantages of Recursion0 f7 F1 e% ^" O  u
    / ]) Z) h7 n- e0 L6 C6 R
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.3 n* |' J/ u2 B$ |1 g
    8 L$ v  Q9 M, {! r
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).$ c3 F) y- d% D1 c- i. Z. b
    : u; @7 X) r" ]" j; g# ^
    When to Use Recursion% K3 V" S% V1 B6 b( x' z
    # `' u7 }, r: C" l% W& U# K$ K
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)." |- q4 S  E" b5 D+ R
    5 a: ]& h# @" U/ ^% ~3 k/ H, d- y3 |
        Problems with a clear base case and recursive case.6 ^5 \, ^+ e0 [  y1 u
    & ~; A% l: x  @+ y! C) ^8 r
    Example: Fibonacci Sequence
    # K" u( N7 \, N5 E" j: K' [1 ~
    ! x+ p0 c0 t& r- dThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    - C& k0 ?& W4 j0 @
    ! H6 ^, ]' `0 A. `' b    Base case: fib(0) = 0, fib(1) = 1
    , p5 |' U! \% D0 P5 F: S4 T& R- q0 f3 f! }# z9 C
        Recursive case: fib(n) = fib(n-1) + fib(n-2): O$ q3 I& k- U! g& Q  K8 Z9 W

    : j; j3 C2 e# O+ ?4 [% ppython) r* O4 {6 x  Q7 p, j

    ' `; G. S' U3 F# M# y, |  p& \" }- B9 M0 _5 X# f
    def fibonacci(n):
    " f- T: t  X% S4 }    # Base cases& X3 r# F2 E0 ?; P1 ~3 k% r9 b! X+ I. Q
        if n == 0:
    2 l/ I5 \3 a, y3 W4 a1 ^        return 00 ~; P1 s6 r0 r
        elif n == 1:. s, e$ [. L* y; @. s
            return 1! u4 @' K& y2 l" U: g6 s1 g
        # Recursive case
    0 g3 U1 D0 w- k9 |, V) N    else:7 H. a! ^/ t& e# a, X
            return fibonacci(n - 1) + fibonacci(n - 2)7 m5 F, }) W' ?* J1 }1 C5 {

    % f6 W2 G6 F* O# O2 R8 X5 w" j# Example usage8 Z% n! W+ E& x6 S# I2 I
    print(fibonacci(6))  # Output: 8  G5 C3 Y2 T1 `& q" t8 g$ |

    9 j7 T3 ?' p" RTail Recursion1 l$ b6 u& S) t! }) K
    7 x* j& K7 j3 |. _  e, ~4 ~% ]
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    6 E6 o$ b" t2 ?% P. r
    " m% n3 Q" c$ t" GIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-28 17:24 , Processed in 0.036741 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表