设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2108|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 T5 Q9 O1 q6 T2 s4 W
    ( J1 H' ?: Y& V+ P' |. a. X' C
    解释的不错* W9 s( J$ S# c& `4 D/ W

    ) X; k( _! P. Z递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。" `7 R7 a- o) Z7 i6 S- D6 f

    + w6 Q7 z7 a6 N 关键要素
    ) f" x* y! U2 [& ^& D1. **基线条件(Base Case)**
    0 t0 d0 _' v0 o) s2 S' J( ^9 z   - 递归终止的条件,防止无限循环
    : ~' `7 H) _7 M   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  L  A# k' |& W' g' ?" T6 C" u

    2 \# O. [  @; x1 E2 M0 ~2. **递归条件(Recursive Case)**
    # X) R% s/ V) e1 x   - 将原问题分解为更小的子问题% ~- l2 u$ }/ d- g( ]8 [
       - 例如:n! = n × (n-1)!8 P4 ~4 |& z3 {# M4 U, w8 q. G/ ?
    # d3 H& p& Z2 O' B! A8 B
    经典示例:计算阶乘9 b. |- m" @! h) k
    python
    # W) l, K" K$ C* B+ u, v; W* B8 Ldef factorial(n):
    ) c1 Y* V0 I, j; B    if n == 0:        # 基线条件; N' @$ E5 ]# k# d$ ?5 p7 X
            return 1$ d& `0 e& L0 V
        else:             # 递归条件6 Q4 t3 i. F! {
            return n * factorial(n-1)
    9 |2 f& p+ O. X9 d. }执行过程(以计算 3! 为例):
    + r2 ~- p% U7 K/ ifactorial(3). n1 f  w( f7 e( @% g! X! Q# T
    3 * factorial(2)4 D5 o: X  t7 k8 R$ |9 k) m
    3 * (2 * factorial(1)). C: s7 g) m9 R7 U
    3 * (2 * (1 * factorial(0)))6 D2 }$ [) I8 r# ?' T' @* b
    3 * (2 * (1 * 1)) = 61 X* r; w2 G4 D' w) Y
    ) L, L7 y! G' Z4 v: E; ]. }1 S- c
    递归思维要点3 Q* f! }; I# f1 d5 {, u% l6 K
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    % A* u4 X, {9 r2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    8 f9 }* g, l$ D( ~3. **递推过程**:不断向下分解问题(递)
    ' t- l5 \: b) b( i3 M1 A4. **回溯过程**:组合子问题结果返回(归)
    . D6 M+ S1 d8 ], B& o
    0 G+ K- Q, V- q. G 注意事项' g7 X3 V3 Y" ^7 y& U, l
    必须要有终止条件2 j1 F" j1 @% f$ e# M" j
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层); W  m) T* u( F( r0 t4 V
    某些问题用递归更直观(如树遍历),但效率可能不如迭代1 P/ F# l* R7 y8 v4 C' @
    尾递归优化可以提升效率(但Python不支持)! d4 t, a9 Z9 v) _4 }0 I: y9 @# Y

    - t" P  p+ T) d1 _ 递归 vs 迭代6 L6 F0 U: J+ K. m1 K" @
    |          | 递归                          | 迭代               |
    ( T2 L2 D% k8 R: Z/ \|----------|-----------------------------|------------------|1 M4 T2 {& V5 u" U# O
    | 实现方式    | 函数自调用                        | 循环结构            |+ M# B8 x* M$ F7 c: d
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# P6 [( {4 W; Z+ ^% o! G
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 p* b' k) r9 || 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  \) w9 I; O( W3 c' m  u1 _  D

      Y" C  Z: p  ^  E% N) f  b 经典递归应用场景6 ]; n$ |$ f! D
    1. 文件系统遍历(目录树结构)
    9 U! U9 [6 ?( y- r2. 快速排序/归并排序算法
    8 `3 m+ r! I! l/ F. K$ z3. 汉诺塔问题
    0 {7 ~1 b2 X' B4. 二叉树遍历(前序/中序/后序)3 a, O* }$ `: |4 U
    5. 生成所有可能的组合(回溯算法)/ u/ o& _( I2 P! g3 h# b
    & l# u2 [$ p0 p) u; _# U5 L
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    3 小时前
  • 签到天数: 3177 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) X4 Q5 c7 o5 k( q" X我推理机的核心算法应该是二叉树遍历的变种。
    & f1 G' \! V+ _. z3 @, j  L另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ; y0 a3 h& C' ?3 C7 b+ vKey Idea of Recursion6 Q* s: N. w$ i, {: @
    $ E6 Q6 o; ~; N- \
    A recursive function solves a problem by:
      Y) j( k% x5 ]4 A, B% o
    0 s: f0 a: w3 g( o    Breaking the problem into smaller instances of the same problem.1 `1 P+ |- ~8 T* s  {$ s9 y

    4 S, x1 Y# m; k- G6 i0 @* M! U! Y    Solving the smallest instance directly (base case).
      a% g+ E( r, d" `, U! @" `9 V) J' A/ V8 D* P/ r2 a1 Q' N- {
        Combining the results of smaller instances to solve the larger problem.7 D" J! `# B/ |: @3 X; m
    ( F+ N" D  H8 _
    Components of a Recursive Function
    ! f3 z+ A/ {' }* g( s, Z, R7 o$ q: |
        Base Case:
    " `& L) U% x# A$ i- B* h$ T6 m7 R' Y1 ~& c) [" X' G
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.& |* g2 Z# M! ^& P1 f

    * s( i" [+ E& H8 m- }+ @        It acts as the stopping condition to prevent infinite recursion.
    4 x' N6 t4 S7 Y+ n5 u) h) ^2 h/ z0 S5 d/ U& @
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    6 }+ z; g7 G+ L0 S6 r6 [" a% B! G2 E# e# @1 b
        Recursive Case:+ q! X5 I4 s7 @/ r% F
    , U& {' J4 Y0 H1 s' a
            This is where the function calls itself with a smaller or simpler version of the problem.
    0 W& L+ M$ ^" ^" ~9 Q! |7 j0 ~6 S% ~" q- x& W3 s$ d) A
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    0 o+ q9 \% i# H  q8 N
    + ~. l* L: Z1 s: {% @* G' HExample: Factorial Calculation
    & b# ^4 U' J9 h# e, }* y; _9 O. \6 ]  y; f
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:# E5 W$ m+ S1 r* k8 l" `

    6 U$ D8 `2 {' _, o    Base case: 0! = 1& k4 z" P7 N. e- b5 i9 n: ]. v7 u
      Z* p" G6 I0 s" u" i
        Recursive case: n! = n * (n-1)!7 V5 a( R, y& k7 C
    : j( S$ }* e0 H9 z8 ], U
    Here’s how it looks in code (Python):
    2 }( W& p2 f; j* I  r- |! ipython
    ! n$ P, W8 o. ^2 b' D) E
    ; N2 S6 q3 O: ], f# B6 _
    # F' A8 r4 f$ W5 a) W7 udef factorial(n):' E# ^9 J+ c  C% I
        # Base case5 [1 {8 Q* M2 k7 F0 t0 J
        if n == 0:
    9 K: U- |. ^5 {# u- e6 M- S        return 1- I+ b) Z5 M) x: F" Q, B3 O
        # Recursive case, c* R) v3 ^; w0 v' t* n
        else:4 A; f/ v" U: s( V
            return n * factorial(n - 1)
    ) F9 g7 u. G+ O# i2 A8 f$ C7 X! X7 B/ \. U! ]% V: X9 v* c
    # Example usage
    4 O% U1 C$ F" a" o. \( d/ O$ ~; rprint(factorial(5))  # Output: 120! m' v  A& Y8 t% [9 Z

    + O! {4 s8 n) k4 {2 G+ ^$ VHow Recursion Works
    # P) g7 s9 {% D: m4 R; y. B4 p0 E- K3 c
        The function keeps calling itself with smaller inputs until it reaches the base case.
    5 X0 U3 R7 C. x3 p! b9 o
    ) m" n. l  _* {$ |0 [* y    Once the base case is reached, the function starts returning values back up the call stack.
    / D& t, q( M- S- }4 v
    8 O$ [- v5 P0 d/ X    These returned values are combined to produce the final result.0 u* q0 M4 I' z& W- r' w. C

    3 j+ }1 X' I+ _7 uFor factorial(5):/ q$ Z% Y) {2 s% j# Z& w
    0 Y+ Q6 Y0 c* \& {' P! b/ r! Y7 A
    : h+ e0 l) B) w. ^# q9 h4 Y
    factorial(5) = 5 * factorial(4)
    5 ^% X9 ^0 @0 g8 Cfactorial(4) = 4 * factorial(3)
    * R7 h9 i6 G: @: D# c9 S) afactorial(3) = 3 * factorial(2)
    . P: f! Q3 S( p/ e4 M. A; Hfactorial(2) = 2 * factorial(1)
    9 e0 M# ?9 N- T5 W& t2 q* K' b; G' P9 afactorial(1) = 1 * factorial(0)
    $ e/ Y( x' R! j& F5 Yfactorial(0) = 1  # Base case  _4 ^" M: M4 Z) s

    4 I! Z, K& w, wThen, the results are combined:& }: T% C. v2 _# B

    5 ?2 a8 U' W; k2 S
    + `% C) N9 T1 o7 s9 w! M2 dfactorial(1) = 1 * 1 = 1
    0 B- j2 H# U+ E; J& h3 K  cfactorial(2) = 2 * 1 = 2
    9 \6 f# H0 h7 l5 Ofactorial(3) = 3 * 2 = 61 t0 _3 S) Y0 m- s% V
    factorial(4) = 4 * 6 = 24
    * y0 e( `- ]# P0 _factorial(5) = 5 * 24 = 1207 |$ B+ p: f; f2 o8 t  z) @( m& m6 T# u

    ) l1 O4 {2 D3 `4 bAdvantages of Recursion
    # `4 k" ]+ `# L! T5 X
    & I: b( [6 X8 I2 v9 ^  d    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).- d* v5 S# a0 y# b: y0 Y
    7 }% [" K  d& U2 z( d. I
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ; f% U- H8 J7 M: \* v/ l, |
    + u1 v8 I) f! W( o) }Disadvantages of Recursion
    9 P) ?$ U  Y) L0 L% n2 L# K/ K
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion., @+ ]& M! J6 f
    5 \5 Q6 ?# W* V" @
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).' w) w5 i+ O+ X+ |- A/ @

      c/ N1 q5 C* P. J  G! _When to Use Recursion
    & M- [  l3 ~) Q3 }; t; i5 r/ d/ v5 t& ~# g8 R" F, A) u5 `2 f
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).& m0 l1 x" u6 d6 E

    2 p& x, ~2 z0 w6 H* b, F. P/ e    Problems with a clear base case and recursive case.
    + N. S8 V7 y3 ]1 S5 e. @" N2 L) X/ E( m7 `( f9 u* J1 h6 L7 b% U! w
    Example: Fibonacci Sequence
    9 b: w: u& d4 C  C% `6 f6 U
    # K9 c* A8 `7 cThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:* I6 f9 o1 g6 Y5 [' w( k4 m1 A% K
    5 A4 [& W# a, q5 W6 G
        Base case: fib(0) = 0, fib(1) = 1
    * X, z- ~! }  m8 h% I6 ^" Q4 s# n2 S, M6 U+ J5 Z+ T# R
        Recursive case: fib(n) = fib(n-1) + fib(n-2)* \, q; B/ W' \+ T' N1 }
    3 m3 o2 {# m* [0 I7 S; K/ Z% n
    python$ O  L$ I9 l( e  @- r1 _8 a0 }9 x( f

    ) v9 d# L  k3 a3 j7 W/ d$ T9 Z. D. {: ?. n" M
    def fibonacci(n):9 @, K4 k$ Y0 i5 t; o
        # Base cases
    / }6 f; D, d8 I0 D+ z% m6 s    if n == 0:9 w+ L2 Q: N- M6 v: U* R
            return 05 E! L4 O9 ?8 U
        elif n == 1:
    ; w  w8 |  O9 G: F& f8 d* b        return 1
    9 k! ~% @7 t( i, w8 V# r1 T    # Recursive case
    9 x2 C9 ?5 [* y- ?9 C. n1 I    else:
    % V  }, N$ J/ f" w        return fibonacci(n - 1) + fibonacci(n - 2); k0 B, }9 ^$ g# c

    % v, m$ G% q5 I: P0 e1 S$ d- J. ~& ~# Example usage
    . z  X$ M) r5 \$ Y7 C  Y& U: `print(fibonacci(6))  # Output: 8
    ' i) D4 V4 i2 p  r/ B) `# a! i. z6 {
    ( Q6 x& |% _- Y% x& l+ T8 DTail Recursion! I! Q: g) o# R5 L

    # F& Z* \5 t) v( }# J; w4 x! CTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 v3 z5 `% C/ Z: {/ `" x2 `

    8 n: M) a* G/ Q; LIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-18 16:32 , Processed in 0.062007 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表