设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1966|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ! d% U) v4 A; k6 f9 Q9 g
    3 n. U% \% q1 A8 z6 T解释的不错/ o3 v  f% @! R4 j. \/ P5 n

    + S' x# L$ }: J, A5 D递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ( B$ G8 m$ X6 n: Y" Z& h  {  F; z* K. g6 J
    关键要素' v% ~5 O& S2 g% ]1 z" g# e3 [! l% @
    1. **基线条件(Base Case)**4 }# D+ s9 b' X: p8 ~# `2 r3 G1 }5 l
       - 递归终止的条件,防止无限循环% W' H& \# E8 T9 h7 p
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& d* Q2 f. s; `- o0 O9 E& C& g

    $ ^5 B/ z$ I3 p: h& V0 J! t2. **递归条件(Recursive Case)**& Y5 o+ O! X2 \! |8 f. f3 P
       - 将原问题分解为更小的子问题
    0 p+ v3 G+ o. \0 z  O0 d  z) m   - 例如:n! = n × (n-1)!% w% B7 P2 ~. b/ U) V/ I
    & A( P; W; c& i8 H
    经典示例:计算阶乘$ P, g% F8 a, h; K- a8 e  l
    python
    1 ?5 b+ z) }3 m3 d0 odef factorial(n):/ B! k8 i7 H) {7 z' n" Z& G& V
        if n == 0:        # 基线条件# i# e" w' X- k) S/ z  u
            return 1$ V+ I. _: r8 E7 R) o8 {
        else:             # 递归条件
    3 P) y) B3 k  j" c        return n * factorial(n-1)* M+ k0 i7 v1 n! W
    执行过程(以计算 3! 为例):, B6 m. {  }5 Y/ H2 g. D( m
    factorial(3)
    1 t/ o# r( ^( |9 t9 t, V3 * factorial(2)
    2 N2 S9 K7 ^9 C0 z3 * (2 * factorial(1))
    % c# `0 e! z* Q) d8 K' ?3 * (2 * (1 * factorial(0)))
      T% U% X1 p2 N  v8 Y. f/ d3 * (2 * (1 * 1)) = 6
    ( J& }7 f! @  I- I
    . k9 j1 n; C2 J$ v" A 递归思维要点( ~/ D  q; i+ h2 b
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
      w  I; O6 _! p" R2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : e. _" D( R6 ^" r+ V3. **递推过程**:不断向下分解问题(递)
    0 R7 Q$ _: B8 W- I1 B4. **回溯过程**:组合子问题结果返回(归)
    ! s( D/ c9 s" k' P( s) N
    0 @- x4 }: v' _& S 注意事项& _& ~# s3 C* L' F- {! ~
    必须要有终止条件
    ' I4 \6 p+ X, n5 P7 z2 C' m递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ) K& N7 g5 R2 S8 D" L" Q某些问题用递归更直观(如树遍历),但效率可能不如迭代+ h! u; [/ \& O9 {
    尾递归优化可以提升效率(但Python不支持)+ n' o5 M6 R; F9 ]2 ^, b+ g
    6 [% a( z! q# s% Y
    递归 vs 迭代5 t% r& b& _2 S2 l& n' O* a& D8 J
    |          | 递归                          | 迭代               |& Y' k* u9 w$ U. f
    |----------|-----------------------------|------------------|
    ) W1 }6 R) j. \! Z' O| 实现方式    | 函数自调用                        | 循环结构            |
    ! d2 v1 r7 }' [3 b2 N# G' I| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |5 ~8 E( m8 o% c% s4 g3 U. M
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& d4 m' c0 D0 P# `8 z) D% e' S
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : B( r6 C3 c$ {: C/ I+ C3 ?* W. s; @9 F! ]3 H9 q
    经典递归应用场景, k6 [! p. c/ E$ z) S
    1. 文件系统遍历(目录树结构)" h7 X5 c" M4 [0 W% j5 ]! e
    2. 快速排序/归并排序算法
    # S4 H3 i7 n9 [$ h9 o) A) N! W3. 汉诺塔问题3 `$ }2 q4 ~1 W1 R
    4. 二叉树遍历(前序/中序/后序)$ O9 C  s6 n/ l4 }! Y1 U
    5. 生成所有可能的组合(回溯算法)' \" Z: f* `- ?) y
    ; U6 u  `/ v$ U
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    11 小时前
  • 签到天数: 3156 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    6 g6 b% K8 f9 c1 y1 O$ b& b2 n我推理机的核心算法应该是二叉树遍历的变种。
    5 b1 Q: c' c  z1 q* k. i) J- B另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    # x" _. H% u! L- d3 eKey Idea of Recursion3 a$ ?- g! |) C  R3 U6 }% _* \
    ; q3 P- y; O0 D& E4 ]) B2 f* E
    A recursive function solves a problem by:
    , u- c1 n) y; [2 \& R4 |& U) d9 W
    . x% w3 d1 l, @3 i( F3 K. e* w    Breaking the problem into smaller instances of the same problem.
    7 ]" A4 h0 o, r
    2 V; c0 Q- w/ N% w    Solving the smallest instance directly (base case).& Y/ F9 I+ p" G" ]8 S3 L( D0 u
    # G+ u2 g9 ]: N: c: V! f8 L8 \- @
        Combining the results of smaller instances to solve the larger problem.7 t' _1 L# R+ X: K/ v
    / I! h. K1 R  f! D" N
    Components of a Recursive Function7 `4 F  ^# c1 v6 j
    " l4 q5 ^% ^" M; H
        Base Case:
    - N* ~3 `( `! V& _2 I6 t# |6 s
    # u" z  Y* l9 D; l- c" r4 c        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.& ^' Y  y8 K* |

    5 z- K" f2 p( n        It acts as the stopping condition to prevent infinite recursion.
    ( G( W* o: E$ P* q  Q* @0 [
    $ S* O; c/ n  X* r1 A/ B' ?' Z+ G6 k6 A        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.' P( P' n( v4 {
    0 b, r/ }1 t: `1 O! c- h# o( ]; g2 k
        Recursive Case:
    4 L! f2 s" o. Y4 r  ?# [" J0 C
    / \% F/ C+ C6 F: O' i% q3 q4 n        This is where the function calls itself with a smaller or simpler version of the problem.' h; [3 i, c3 o; v2 J0 J
    $ d* F$ U1 B/ `  T" j: @* q
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    . `2 L+ ^. K! }/ ?% `- h, ?0 K, [- R. G9 p
    Example: Factorial Calculation
    ! a1 {2 v3 K1 Q: X3 a8 k  H, r& f0 E% y/ F* K. D9 u) h" m' F
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:. c5 E! m6 D3 K0 O" g# N

    5 d2 }3 m" j! \9 \" I    Base case: 0! = 1) T9 s# y' g9 K$ @; X9 t( ^' F% M

    , H9 q; B2 l* g6 D4 B    Recursive case: n! = n * (n-1)!
    / [5 U4 ~* U1 o- ]3 x3 E2 L2 ?3 F+ |' w
    Here’s how it looks in code (Python):1 U7 e# o* d! D; w$ e5 w
    python
    2 i* h5 D2 m- m; D% U0 R/ w" T0 ^* x
    ! @5 |; J5 o: I9 [
    def factorial(n):( u9 o9 g7 L4 Q4 a$ \; W6 o
        # Base case
    6 c. [9 z2 |, ^8 h) ^1 u5 o$ R. j    if n == 0:
    ! U! F* {9 t# y; e3 n! g        return 1
    % N) ]+ P' q3 e- N4 f1 {    # Recursive case9 }2 i3 R" I- ]% @
        else:
    : I9 A' H9 ?5 n: C% @! ?0 S        return n * factorial(n - 1)
    , ^5 _" V+ `) u4 r- J& O* o
    ' M/ w) g3 E% J1 k! P  t: h# Example usage
    # q2 C8 w+ n5 Y2 Pprint(factorial(5))  # Output: 1206 f% l) u' r2 ]! e. P
    + X9 r! l& N) \1 a
    How Recursion Works) ^# f5 M; k: N' @3 ~8 e+ T( W# i0 B/ J

    / ?2 {9 O9 R$ T* I  L/ V3 t- r$ X    The function keeps calling itself with smaller inputs until it reaches the base case.5 C( h, ~4 F. r
    7 I( A% N! P2 _- _! i
        Once the base case is reached, the function starts returning values back up the call stack.# t4 h4 _% ]6 C4 N5 x
    % M+ i0 `5 h; f0 k0 }8 v' N" W
        These returned values are combined to produce the final result.
      g: m8 B* D: L
    ' B$ ]. G' b# T; ?# |6 z# jFor factorial(5):
    ) L$ O: |5 a1 ^% J! z+ q' }1 _9 e9 q9 K$ W$ S
    7 A) ^% S; M+ i' e( |2 G
    factorial(5) = 5 * factorial(4)
    / @) _8 [" `$ Yfactorial(4) = 4 * factorial(3); H. u* F8 _2 @& o
    factorial(3) = 3 * factorial(2)9 h- }1 z' v8 Y+ P8 [+ z5 y
    factorial(2) = 2 * factorial(1)( Q5 K. k2 m8 B
    factorial(1) = 1 * factorial(0)0 i4 ^: v1 M8 j/ Z" k
    factorial(0) = 1  # Base case2 w; x3 H" o. A9 `- L* E5 J0 N" E
    8 s* E3 v  P4 W- p  j
    Then, the results are combined:- P' R" {! j1 O

    8 Z  b. B, F( |  u: d
    + v" B& e& Q$ c+ q( d3 X; Yfactorial(1) = 1 * 1 = 15 L0 p# W0 x& e" s' C& _0 |$ x
    factorial(2) = 2 * 1 = 2
    2 V! U$ T  ?% c  efactorial(3) = 3 * 2 = 6
    2 s4 e2 V% u/ r4 t, Ofactorial(4) = 4 * 6 = 24# M/ H. ]" S; ^. F0 l$ f6 b7 Y
    factorial(5) = 5 * 24 = 1202 d; g1 s9 H  Z1 u

    - k  f4 I3 [- N5 o9 OAdvantages of Recursion
    # ]+ ?: }4 M3 ~( r: b6 U) M3 K
    " B4 y0 L0 }& X5 n+ T    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    " W' e$ a+ H7 r& E2 o8 o: _9 E) ~) {) A0 J( T# v# R* r$ e" ~3 {1 V8 {/ i
        Readability: Recursive code can be more readable and concise compared to iterative solutions.3 i. P% e  E8 f/ Y
    & F8 j8 |3 u2 N) c' e5 o: |( j8 ?9 s/ z
    Disadvantages of Recursion' k) n; A( D3 B/ s1 ]
    3 W7 U/ I1 W, t: X
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    1 _! H1 y2 o$ x8 c3 u6 n2 L/ x2 @& b  ^% F" F3 N; e9 T1 B4 h! w5 g- W
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).) [9 ^* b8 e) Y/ ?9 F3 |$ }9 U1 W

    , V/ A6 n: x6 e" b, pWhen to Use Recursion
    6 Q( F; b& W6 B2 N( c' T& S, T- G: w
    * s" w/ O) r3 z: k& {    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    # q: _7 p4 F' B  P; c5 Y) E8 b: T" f, Z  b9 g
        Problems with a clear base case and recursive case.% k1 |2 _5 y3 L+ ^

      o; L3 b& I! S- C: }Example: Fibonacci Sequence5 Q4 p5 H8 F+ m; V2 @
    - h6 c( C% H4 F: j& ]* K
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) D8 K9 o. Z/ q3 ~/ R' @8 k: p* Q: [
        Base case: fib(0) = 0, fib(1) = 1# p" z: G$ w7 s6 w; z

    + Y& W  m8 J! W: r4 G    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    6 |# F/ N/ c( \; n- ^. u5 U- `
    & s+ L& d7 P- l; E8 npython) p* l$ o' p  @: T7 w$ Y- o

    # m( s* ^& |4 x9 {( o% }/ }3 C
    ! v7 T) P& Y) b* B# z% `, B+ z* Xdef fibonacci(n):! E, w& R8 O) y9 E
        # Base cases
    3 Z! J4 r- a3 Q7 W+ U6 v    if n == 0:
    5 G8 S% W4 Y# t        return 0
    - S- c7 z- q$ B% f    elif n == 1:" {0 d( w9 Z: K+ ?: f" @7 @: Y5 n6 @3 V
            return 1# M  g8 K1 A6 M. M- E) G! G' w
        # Recursive case
    0 ^, d' X4 X$ l    else:: ~& q0 e) @* u! F
            return fibonacci(n - 1) + fibonacci(n - 2)! j9 F$ H) X: P" ~: O3 s. u

    / ~) H! ~% @( F' O) T5 S# Example usage
    - _1 L2 \' z( |' u7 }print(fibonacci(6))  # Output: 8
    ' q  ?9 L2 u/ l/ F2 O
    ' E6 @# q: A6 Y6 f3 p2 B+ UTail Recursion& R; O$ b8 u  D6 X; Y6 v4 f$ r
    1 z/ x; [, w5 i; E0 g+ M
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).7 T. x  O( o; h& b
    : f: U4 n! }/ ]0 x
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-28 18:40 , Processed in 0.058331 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表