设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1386|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    9 Z8 {+ n7 T# j4 H$ W! R) _
    + _- t9 d6 X4 a3 S, L; M7 ]解释的不错7 ?7 F, U" s! \  F, g) ~! A- R7 R7 f
    $ _- B8 e( E+ r# ]/ i" x' m1 R/ _8 ]
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。. y3 f  k* g0 K6 z) E% o
    4 r5 Y8 @' n3 t2 C5 {' j5 `
    关键要素
      @- s( G/ I/ ^( k4 m3 {- ]1. **基线条件(Base Case)**
    + m. h6 v2 a' ], ]4 @% R* g   - 递归终止的条件,防止无限循环8 D; K+ o; _+ ^% a
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1' V+ \3 I7 g6 {5 f  i8 a; ~7 J

    $ ~( p' H* \+ o$ Y$ v* P2. **递归条件(Recursive Case)**
    + N, G' g' E; K5 E$ R   - 将原问题分解为更小的子问题' v- h1 L8 G! w, R) J
       - 例如:n! = n × (n-1)!
    : S9 \. k7 K) p9 ]: U6 m* C7 }
    6 z4 E' ]! e  x7 [ 经典示例:计算阶乘
    ! p% Q4 w7 v0 M+ T. q$ r% Apython
    6 g4 i; C& ^% I' X6 Rdef factorial(n):0 A0 E  O9 K3 o% y
        if n == 0:        # 基线条件% [9 F, t$ I: X& c9 ]0 M8 \
            return 1
    ) [% q1 R; ^) p1 T( b    else:             # 递归条件
    & K3 g- I3 C: c7 j        return n * factorial(n-1)- D& L8 i+ T; z* I5 R& \
    执行过程(以计算 3! 为例):
    9 e+ s( k  @& {: i0 z* H4 hfactorial(3)5 w  B$ `# N! r1 \! r
    3 * factorial(2)
    2 q% ^* r# _' c. s3 * (2 * factorial(1))
      s7 a0 e, ~7 F6 F# X+ ~- A# F9 Z* y3 * (2 * (1 * factorial(0)))
    " W$ ]& A0 c6 U- @+ x; E3 * (2 * (1 * 1)) = 6; o+ V! X0 g8 Q6 ]- j, z
    8 [2 e2 O2 d) I0 b/ \5 |1 c
    递归思维要点7 R: [9 E3 Y! |$ d; Q7 a
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑, R! N- }% |* g5 v4 S
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ) U! w; ^+ K2 e/ |4 m; \! w3. **递推过程**:不断向下分解问题(递)! E  g; i0 C: B: ?9 t
    4. **回溯过程**:组合子问题结果返回(归), J. |, R; e- N  \

    5 b0 B+ w( l2 ^7 \8 W$ ?/ [ 注意事项2 {; q( _; ?" I# Y( c' P
    必须要有终止条件. Q" J2 r( E+ m0 z& y7 Z% V
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    9 A$ F0 a4 Y  y; \某些问题用递归更直观(如树遍历),但效率可能不如迭代5 B1 ?, U- _3 v7 c: j, l
    尾递归优化可以提升效率(但Python不支持)1 q. `; w5 j5 V+ C6 ~: ^/ _

    # c4 l4 x$ r4 a2 U/ p 递归 vs 迭代* W' [0 g- u' Y$ K7 P+ O- m
    |          | 递归                          | 迭代               |
    1 k8 S  B9 D) ?|----------|-----------------------------|------------------|
    8 \0 J0 R" M5 ~7 {7 N| 实现方式    | 函数自调用                        | 循环结构            |* l1 z+ }9 p& _/ E# f
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    $ s  z' H3 ~. a4 [| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    * T5 `( y+ R# X  r/ C| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 [6 G9 w/ c) K& k6 [6 H* z& C+ g, o3 D$ r9 @- t1 w: X3 u9 ?
    经典递归应用场景1 {/ Y1 R; \: w, h3 }& a
    1. 文件系统遍历(目录树结构)
    2 L! P7 X( |6 F5 d3 W- Z* _2. 快速排序/归并排序算法" q3 n9 T- Z& l7 P; l- K" Q
    3. 汉诺塔问题
    1 E" h3 v# t+ `9 U$ |6 n7 x4. 二叉树遍历(前序/中序/后序)' |. c; G" J  W( u7 H
    5. 生成所有可能的组合(回溯算法)
    ' T+ u- k. I" Z1 {$ i* ^
    + s% Y9 |4 b/ L# C试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    7 小时前
  • 签到天数: 3111 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    : B: H' Q+ Q- Q5 z4 p% U我推理机的核心算法应该是二叉树遍历的变种。. \/ P* l9 d% I$ u; T
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:5 D$ N8 p  Y: c, {; O
    Key Idea of Recursion. o, f% h4 t) Z/ I8 M; N
    6 W- r3 _3 C8 ~* C
    A recursive function solves a problem by:& L4 |  q& ?/ \! x7 c. ]- A
    1 x% \" i" m8 ~6 ?1 Q
        Breaking the problem into smaller instances of the same problem.9 V# x2 c% f( h; ]1 K9 I; W0 x, U
    / _. `- S1 u' J  Q
        Solving the smallest instance directly (base case).+ r) q! P; S" @% m1 m

    % x; D( X! N0 v: d    Combining the results of smaller instances to solve the larger problem.* M& }3 J6 @8 \

    # w2 k4 a+ c) m" |" L* L% b" |( D$ }Components of a Recursive Function
      ~- M0 ^) ?; y, V& j' k! [  v% I1 y8 g; u4 w/ T
        Base Case:
    & U& l! i1 d7 P% o: Y7 C) r- p. |! q; u8 W9 v9 S
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ) W" d2 `0 V. `& N( X! H4 R6 ?
    ! |6 s2 G0 q+ q# j2 z7 C5 K        It acts as the stopping condition to prevent infinite recursion., n( y+ f  j7 C' F

    - h8 x/ S1 o9 i: Z7 j        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.  Y# S, q! K! P4 t) e
    0 E9 }6 _( Q; z- e, _7 @
        Recursive Case:  e/ O0 B4 P& m1 v0 y
    6 k" C. O! J/ i6 e. `
            This is where the function calls itself with a smaller or simpler version of the problem.( r3 T' |2 z% O2 q' ~
    * W& ~: K& p* r* u3 n* I: {
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).5 N# ~1 v: b) ?# h
    ( R9 e1 g! [7 q- h3 N$ H2 x
    Example: Factorial Calculation% [# K" L9 e$ ?5 K
    0 [, P: ~8 ^; ^- y6 H: m5 Q0 M
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:7 Q! y! {. l  p: M8 _5 s
    * E+ h  ]2 [$ u5 L
        Base case: 0! = 1' s% N# f$ G( D( b; b$ C- p

    4 n* J$ |# @" q. y9 a" g    Recursive case: n! = n * (n-1)!) ^* K3 P$ f) v" G. S, k  }8 U
    4 U, C$ j& {3 t# ~5 X
    Here’s how it looks in code (Python):
    ! G% k7 o, k9 K8 N# xpython
    + \1 w7 I" v  K3 o$ F  n6 D) u  h  q6 G

    ! Z5 Z' s5 f) udef factorial(n):
      s; ?; E' ^: O. `6 e0 Q; \    # Base case
    2 q4 J- e* `5 V4 ~    if n == 0:
    # Q/ t! K& S: N        return 11 y6 ]& v) C2 @7 H/ t$ d. m
        # Recursive case0 b2 x4 T" B% }* @! f
        else:; t+ i) m5 v9 k# e" Z
            return n * factorial(n - 1). n& @- n( @6 g4 k
    ! w5 i" {+ U  e7 A" S
    # Example usage
    ; ?. j( L4 u5 }3 R9 Bprint(factorial(5))  # Output: 1204 X( ?  m9 a9 z! v: E' m' |6 R
    ( W+ ]5 G8 k* l( H" [, r3 ]! o, u
    How Recursion Works
    8 Y& H% r  v  L2 o' ]5 r' ]: X8 B* U& O; r
        The function keeps calling itself with smaller inputs until it reaches the base case.6 W" Q( s" v# G) n3 u3 b' }, X- `5 T
    5 W6 a6 z" G9 d9 \2 |1 |  ]) n
        Once the base case is reached, the function starts returning values back up the call stack.3 f% H9 k  }; h, L, b

    0 S2 [8 G8 I7 O1 n# @2 d2 u* q" F    These returned values are combined to produce the final result.: P) ]+ Y" [  f. h$ B' k6 o) K

    ) ~6 z* q8 ?. b# B4 c# xFor factorial(5):
    4 i* D' [  b, k4 B6 u9 H: z& X* y& ]3 }% t9 T+ c/ {
    ( S% d$ G/ R$ }$ L/ i
    factorial(5) = 5 * factorial(4)
      Z" v" [8 i" nfactorial(4) = 4 * factorial(3)) g# }! F: X7 U! P' i
    factorial(3) = 3 * factorial(2)
    / K% \3 h& {9 nfactorial(2) = 2 * factorial(1)
    5 {5 \* F$ N0 W+ Z) P) Xfactorial(1) = 1 * factorial(0)
    / g; y! K2 P% C9 p: x/ Xfactorial(0) = 1  # Base case
    - I& V- {8 i" ^5 n
    # N  B) k9 J1 W! p+ O6 n% k6 c  DThen, the results are combined:( M: V& P. W8 J) p5 G3 F% c* M

    1 F: K6 L. E5 W( H, v) J& G, q! J5 H" i$ X9 [- p
    factorial(1) = 1 * 1 = 1
    0 ]% h& o% T* U1 [* q6 Ofactorial(2) = 2 * 1 = 2- o+ M$ M9 p- \9 w1 C6 F
    factorial(3) = 3 * 2 = 6/ X1 U* c* D. r/ w" j% _, I
    factorial(4) = 4 * 6 = 24
    . V5 n8 H9 O5 u3 ?8 l& O$ j3 efactorial(5) = 5 * 24 = 120
    : U4 J# V8 n/ {; \8 `) i; O# ]7 J: y" f$ T5 t5 K
    Advantages of Recursion+ i; W4 e1 j, ?5 E) r# V7 j: w4 H
    . T4 [5 Z7 z1 F* Q
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    . E0 p+ `$ `# _! P0 o
    % L. }* [) l% a  N" ]# O9 w5 b    Readability: Recursive code can be more readable and concise compared to iterative solutions.4 ]) W, z& z. ~# ~5 _
    ( H& K/ H; z1 I- {
    Disadvantages of Recursion
    , I* t) ?' x; l
    4 Y& u% ]% i/ _    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    8 }! F# a- K" J2 ~
    : ]7 v" s* f4 o  a2 s+ ?    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).3 p) G4 d/ i* \" L7 [7 {& _

    " C. M) A! ]5 r+ E! N9 w) LWhen to Use Recursion
    , ^, }5 D$ x+ P7 j% N$ w7 ?) F" d# F3 ?2 x+ M& G
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    8 q% y6 q) l' N. N/ o& }0 m4 f9 x: ]6 b! M' e
        Problems with a clear base case and recursive case.7 ]5 P0 y( v/ x6 E; n

    % T0 d4 k0 _" t. BExample: Fibonacci Sequence' q; i' k' W: o( H

    & |# d3 m( T% `- @- s! yThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:( R7 Q8 S9 _6 O) f

    ( D3 u7 v- h" ^, u    Base case: fib(0) = 0, fib(1) = 1! s: L# ]& t) V! f7 b5 {* c& P
    9 {8 N8 u& |+ v
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 v8 n( u  n5 b. C7 Q! E
    . A' S! Q* I; }( s  O8 qpython
    8 J  J. ^- O6 Y! w- S! k
    3 K& Z% I& f# g0 ?, p8 k( O8 p/ v1 T5 t& s8 v' R* Y; a
    def fibonacci(n):" s2 h: v3 Z3 p. F2 x4 K5 d
        # Base cases
    ; s" d, u7 n% h+ v! q    if n == 0:
    7 x% z4 _) Q- w* l        return 0
    9 C$ [2 d8 F0 k* D) s    elif n == 1:8 Q, [, x' b3 M( R& G4 z$ l1 [
            return 16 B8 D, F/ z3 ~7 \9 Z" X
        # Recursive case( @# H; j: F# L* D: \
        else:
    " P4 X+ ]9 W, i$ A& }! S9 \) i        return fibonacci(n - 1) + fibonacci(n - 2)4 X' l9 B/ k" m# L6 s3 v. v; }/ U
    $ T6 e& _  X/ c# d" w- P- ?# }
    # Example usage+ C, a1 a1 [# m* Z/ Y# y$ Q0 D! b7 P
    print(fibonacci(6))  # Output: 86 R: P4 k3 N1 ~: i* k, p6 M$ f
    $ q& z8 U! \# O) n, K
    Tail Recursion# F6 m9 I8 I( P8 F2 u$ b5 G
    * T+ n$ n/ v$ v. i* Z. a7 o+ l
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ' q& _0 s' P1 l- v7 M  y4 j5 l( I% u( a7 ]
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-7 14:29 , Processed in 0.030201 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表