设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1041|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 & Y& l* c  m5 ~9 y# l

    0 }: H3 J, Z5 u& g/ y, R解释的不错
    ) F* ^6 E+ ?. f  V* I/ A  X# H; O
    ! }9 d8 s2 Q6 `0 `- ~& H递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。, Q% q9 Y1 u9 D$ }: g* m1 y. b
    ( `* m; f8 \0 j) W
    关键要素
    2 C, O, l, o/ {" e8 \1. **基线条件(Base Case)**
    - z6 ~. Z  h) O, S/ [   - 递归终止的条件,防止无限循环- F0 D; X& ]+ V# d% l- F
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 11 r+ s! j1 {1 ]3 ?1 H
    ! p. w6 M& X1 q% d& N
    2. **递归条件(Recursive Case)**
    ) l5 i& _; ?" k* N  u1 w   - 将原问题分解为更小的子问题
    5 ]4 r/ M" G3 F9 J$ Q- H   - 例如:n! = n × (n-1)!4 `+ G5 D# Z, c+ e" a
    ! }9 [8 |$ w. k0 V. X
    经典示例:计算阶乘! O7 u4 o3 A! _8 ]$ F
    python1 `  R" ]  Z& }- Q* `
    def factorial(n):' P  h& r' \6 a5 w; _! r: H
        if n == 0:        # 基线条件
    & N+ r% k; x, D. i& m) X        return 1
    ( U7 _: M' S" i    else:             # 递归条件
    6 J& i$ c0 G% B; E  @. @- R' T/ g        return n * factorial(n-1)
    5 e+ W+ ]( J" ~& f6 I执行过程(以计算 3! 为例):( W: [# {: K& p  q2 }" K
    factorial(3)3 l9 v( V; |8 {' W3 O) X
    3 * factorial(2)
    + v5 R# O  A: g, U3 * (2 * factorial(1))
    . P/ C  T% z# M5 k3 * (2 * (1 * factorial(0)))
    % n+ J, R- \( v5 A3 * (2 * (1 * 1)) = 6
    # _2 l" R8 J0 [9 g8 b6 A# \. j( E# Z3 j% ~" |6 Z
    递归思维要点- K7 w" a0 g/ {
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + g7 c5 \; ^% L* K8 z' f' Y; {2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" k& e. p  w& U1 `7 v8 R
    3. **递推过程**:不断向下分解问题(递)
    7 P; [) a) Q& t  x% Q6 W% G' G5 ~4. **回溯过程**:组合子问题结果返回(归)! X! t0 q: n% v0 ]+ M; P

    # P: ^+ [  G+ x: t. W. W 注意事项
    3 u+ A" {) M  r7 U( R% S! f必须要有终止条件5 O3 S1 d! z* L, P: {; H' N
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)5 T0 k, U4 v* P3 B6 Y0 g
    某些问题用递归更直观(如树遍历),但效率可能不如迭代# k# ^/ n- C7 r, {2 Y9 N: X; m- e2 @  d$ L
    尾递归优化可以提升效率(但Python不支持), {. p4 p% e9 Y

    / B" p. T: i' R8 _. B$ J/ N+ t 递归 vs 迭代' p. B, x7 U* [0 i3 F4 @1 R
    |          | 递归                          | 迭代               |& r' W* W0 Q# Y- Z
    |----------|-----------------------------|------------------|
    ; {" o5 ^% ]+ V6 x| 实现方式    | 函数自调用                        | 循环结构            |& j7 M' C4 a- [8 p
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ; k  v" r) D3 u7 {| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |. F/ ?' u: g/ n* @
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    - C, H, Y% J! r( j# o6 M
    ! v+ D3 y8 A7 n, y* R+ x, F# t 经典递归应用场景9 G' s; ?: I" K" E( S
    1. 文件系统遍历(目录树结构)$ @5 h, s; U0 x- A5 `' D
    2. 快速排序/归并排序算法9 c6 X  n# C  c7 U
    3. 汉诺塔问题/ a4 j3 q/ b4 t' Y: J
    4. 二叉树遍历(前序/中序/后序), _7 p4 H& K$ `% W" M" E( m
    5. 生成所有可能的组合(回溯算法)8 L9 q' o$ p6 g( y% ~' w( D
      p0 O9 e  |' x
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    6 小时前
  • 签到天数: 3083 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    5 `9 x, f% o% b7 |# ?. B: _! ~我推理机的核心算法应该是二叉树遍历的变种。; k2 I9 S6 }1 J5 K" b: [
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 ~7 @! p  }+ b' O, ]( ?Key Idea of Recursion8 ]8 L1 K+ x& U3 W

    , N1 N! i1 X5 d4 t) dA recursive function solves a problem by:
      k$ f4 B* P/ x3 K2 T6 p9 m* l) z* }7 T' z. W
        Breaking the problem into smaller instances of the same problem.( f1 @6 D9 g& Q& o9 T

    . `) B  i' x3 `/ F6 M    Solving the smallest instance directly (base case).7 G2 t, t1 k8 z& G0 u! d

    7 f; K1 _1 v' z. Z    Combining the results of smaller instances to solve the larger problem.
    $ w" ?, V( f( Y/ \
    6 J$ T7 V+ U2 D2 G# x7 `% `" bComponents of a Recursive Function: c) L! f* `+ q5 m* t

    3 k6 p3 G& N$ Y$ d( ]    Base Case:( s2 g& j4 K% q& @
    , E( w  K) b3 A2 M( g% o' {- n, j3 @' P
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; h; q! h+ y7 f2 U$ V) q7 j' }3 I& p
    ' k2 T5 Z! b/ B7 C+ b- g        It acts as the stopping condition to prevent infinite recursion.- m$ [4 \5 k/ A3 I, o
    5 S5 W' e% y: k& }$ s1 v/ `6 J2 F
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.% |: L5 i* o+ q3 o5 k  x

    3 O7 Z) l) n1 [    Recursive Case:) w/ E0 Q' p& V6 R7 U' Y
    5 i" H/ d2 ?- B) w1 c$ ~
            This is where the function calls itself with a smaller or simpler version of the problem.) I% o- y: z: y& h6 c
    4 E# u" p" J$ d
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).7 Y! z" T3 p. [) G2 c" R
    % t! O' ~2 r. i' Z
    Example: Factorial Calculation9 ~' f; m7 O; t* _

    ' I: {0 n2 M7 A& u3 o  y' G- kThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    7 n9 N- p$ r6 h$ d) @3 _% W/ U9 O$ U2 ?" H9 R: q' Z  E
        Base case: 0! = 1
      V8 Q2 ?9 F8 p+ V1 W+ D$ g% w
    0 c" z! L" i4 a+ e' [    Recursive case: n! = n * (n-1)!
    3 O9 {" R' V) |- S" r8 w6 p5 l0 L& n( ^- K( S9 K
    Here’s how it looks in code (Python):
    : M) y4 l* a1 q# v# m/ ]python* [( B, S* ?) K: z+ |$ [

      N4 F( m6 G7 _. B3 c
    9 H2 t7 h( v5 S8 pdef factorial(n):$ a; b- y1 t( @- m/ ?( n
        # Base case
      p1 b' u0 A9 s& H, r/ `    if n == 0:8 N! G% a; @& j3 m# {
            return 1
    ) z  \# H5 E& D, E! F+ l    # Recursive case
    2 P7 q- B- Y  f0 R    else:3 m# f0 A9 a5 p1 X
            return n * factorial(n - 1)7 s( j7 \. {! x& \, f: p

    ) g/ @" E$ p: H  L4 G# Example usage$ i& v# Z6 p. ~, @2 g9 t. X0 K
    print(factorial(5))  # Output: 120  o8 F) a5 _) f; E3 ]

    & M( W% ~: o5 Z0 v; o+ |How Recursion Works
    9 g/ G0 T8 C8 y; Z4 V: A( ^1 i. M. [6 t
        The function keeps calling itself with smaller inputs until it reaches the base case.
    5 l/ K7 F# k# f) j' g: |& M
    : i/ b  q7 S+ K% F, k$ i$ K; B2 s6 Z    Once the base case is reached, the function starts returning values back up the call stack.
    7 k" Z) P$ N* }3 c
    9 C( {5 W# v5 Y0 Y0 l( U/ A    These returned values are combined to produce the final result.. u0 c* R7 q/ s& f& g! v

    6 G& u- F+ A. X! N$ U" TFor factorial(5):
    9 S  E, p2 `- `% R) [* {  l  K4 I% Y6 S; V$ T2 l' i  G

    ) T( C, s: M' G& i0 |$ A$ Afactorial(5) = 5 * factorial(4)" ?2 f7 n4 d. u  o
    factorial(4) = 4 * factorial(3)
    + b; C# J& p+ `/ ^9 ?; ~factorial(3) = 3 * factorial(2)) {8 A0 b8 {, j
    factorial(2) = 2 * factorial(1)  R0 Z0 I; T8 p& b
    factorial(1) = 1 * factorial(0)
    1 a2 Z6 E2 p! Wfactorial(0) = 1  # Base case
    8 a- U; s5 R  b) S& Q+ t$ M4 l4 p' @! v6 ~$ x7 j3 i
    Then, the results are combined:# i1 a# Q* t/ Q/ k
    - ?+ P# V! b6 U/ @1 v) E

    ! l! _4 x" H. d& t3 rfactorial(1) = 1 * 1 = 1* \) g! Y% b- |" N5 n* o
    factorial(2) = 2 * 1 = 2
    8 g( v( e6 ?" ^$ h! I1 Ffactorial(3) = 3 * 2 = 6. C3 B7 e% k# b% K% J+ X
    factorial(4) = 4 * 6 = 24
    . S$ z2 F! @# |- o# ?factorial(5) = 5 * 24 = 120
    3 \# c* S: `6 ^$ b4 z" v) [; D' W! I: T' X) [$ a. c( x" c  z
    Advantages of Recursion
    0 l7 M& z6 V; x0 C
    1 y! \# _9 I' ]/ B    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).& {+ p3 D- Z) V! q4 g0 o

    $ z* b# O0 w: U+ r* T4 h6 s! O9 \6 O+ E    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    # F+ O. A" u, D1 }6 o# ^# m5 t" _4 G) f( U
    Disadvantages of Recursion
    : b* s+ l' A/ M+ K: D: G9 {
    % ^% c" V' p; k7 _, D    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    # M( W% Q1 t! j' \7 @& G# N& ]1 ^* ^$ u1 s: ~
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).6 j% F5 s0 \, b3 k! ~8 Y

    ! L7 T% {6 y5 y- MWhen to Use Recursion
      ^* `- F" }1 }9 c6 ?! C. V( t. y% O4 ]
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).' r. E/ M2 H2 x9 L

    . v8 x4 t4 s+ Z; Z* K5 ^    Problems with a clear base case and recursive case.% ]; I8 }- C; d8 {# Q
    0 m" a3 t4 C1 W9 |
    Example: Fibonacci Sequence
    % ~2 ]- h* d5 f! c/ M+ ^1 k6 e/ o- D) }. t- p0 H
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& W8 x' v2 K1 ]% g1 z& S
    0 r' X; z6 L' v$ c4 C. o4 O; f2 ~
        Base case: fib(0) = 0, fib(1) = 1, P  F# V$ N8 F" g( x$ o3 v
    # ~1 e/ `1 u; e- X$ G
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    4 E9 q* i* y% e7 a6 J% v" Q
    ; T" J" t! Q3 l' ~5 r( V1 h7 n" Mpython  B6 p1 _) _( f' r6 L( c) k
    ; z) c3 p% r- ^. B0 V- R

    ) |; l3 Q1 ^% Z+ Kdef fibonacci(n):
    " L7 B, P3 `& q5 |  |    # Base cases3 B* j0 Q) i. s6 J( k% w
        if n == 0:3 Y& b7 Z1 ?* p" b; ?
            return 0
    / c9 r: i% c/ q% v    elif n == 1:, F6 o' {% R8 ]$ Q8 b$ _# F
            return 12 @7 @% \8 S& p( d% [# W7 O$ E
        # Recursive case5 ^8 u' C: V0 m1 r5 a
        else:
    / N, a0 X0 @- E7 A% |: _3 V        return fibonacci(n - 1) + fibonacci(n - 2)
    # p8 \, m/ p! Y6 V" R# t
    . p8 A3 J3 W# X5 W' ?& N$ p# Example usage
    , a' u6 P1 [% u3 @" d3 S9 l, J! p( Tprint(fibonacci(6))  # Output: 8: ^7 j8 K) O7 m0 v$ G# M6 x* `

    2 z+ l! N2 R7 I0 WTail Recursion5 `! ^1 z% c& t2 ^- w

    3 l- n' Y' Q8 H4 h) fTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    + q" N; X4 O+ e' k6 I* {* i
    ! m7 x4 |* B1 Y' Z3 W1 MIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-3 13:11 , Processed in 0.043045 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表