设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1827|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 Y& O7 L  [; r" g
    - _* u, }3 ^( D. P/ y+ o( @/ n% [* ]
    解释的不错
    ' L% L$ d! U8 D+ o  m- r
    , t, |8 C" x6 u2 E% I" p递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    * E6 M) c: E- I' E( T# P7 G/ T) A6 H. `( E3 Y$ \% J
    关键要素
    - F3 ~% p5 I- Q1 T1 J. J$ Z* B/ q+ Y1. **基线条件(Base Case)**% H  F' P" c/ M, [( X4 g# t
       - 递归终止的条件,防止无限循环
    * z: a7 ~5 @/ {# ^8 p0 o! Q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    4 i3 |/ f5 I- s! J: S5 f
    2 G" i. m" M6 v# ?: [- |. x1 y2. **递归条件(Recursive Case)**/ r3 l& Y; q& J1 J6 s* Y
       - 将原问题分解为更小的子问题. U; V; g# I- S6 s( E3 l
       - 例如:n! = n × (n-1)!+ ?2 C! k- L6 S
    8 t- U, y# w3 l" a+ P
    经典示例:计算阶乘
    + v8 Z# b& B. ?/ I  ]% n. ppython7 C0 K6 u. ~: z; \, h
    def factorial(n):
    6 H9 A+ l. x& y) y    if n == 0:        # 基线条件
    2 @" j3 t4 ~4 d1 H7 U. Q        return 1
    - f% k  Y2 N4 A. U7 C/ v    else:             # 递归条件; I  ~. O% M  ?/ k  Q
            return n * factorial(n-1)
    " ?+ d$ P, B) F! M" W9 t执行过程(以计算 3! 为例):
    8 k9 V: P4 p2 g/ i" a2 k7 xfactorial(3)! C6 C5 m' _( o) ^. `8 C+ E4 W
    3 * factorial(2)" }1 Y) q+ Q, o0 V( q
    3 * (2 * factorial(1))
    / ]. F  _$ Y; _3 }( u3 * (2 * (1 * factorial(0)))* ]* b. P' n5 U) ?# \$ K! p5 \
    3 * (2 * (1 * 1)) = 6
    ! T0 B2 O' k$ s5 V7 P
    + \( K9 W# n- R! u5 W 递归思维要点" e" y1 B9 Z& @4 _* |9 H( m
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑7 {. {6 M: ]* r% P( J) u$ _' Z
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % E8 v4 k' b; H2 v3. **递推过程**:不断向下分解问题(递)! _9 E. M/ n5 }/ d9 Q, b
    4. **回溯过程**:组合子问题结果返回(归)& G0 W% P& n% b/ |2 [4 _6 Z
    ! `" N4 A6 K/ ^* c9 V2 F
    注意事项0 ?$ N, F: L, S& a4 a
    必须要有终止条件7 Y7 p- B7 Z! {
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)7 O  T9 g& Q" ?! z
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    4 }( U, K: k# j9 Y$ l; H6 s尾递归优化可以提升效率(但Python不支持)* O" d! h1 V* w5 N& Z* d2 a$ S

    * I: O7 L2 l3 R# J% b2 ~ 递归 vs 迭代# v4 _4 C9 W4 J+ I6 B( K
    |          | 递归                          | 迭代               |& Z: p6 |+ ?3 u) S7 P
    |----------|-----------------------------|------------------|& T8 w3 z1 g! c; B
    | 实现方式    | 函数自调用                        | 循环结构            |# X4 N/ m+ x" K7 Z4 L! o
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 y1 x* M; g/ u- t# O- j, ~
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: r) W4 u  }/ w: m
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ) f6 p) R" t6 n/ G1 w/ N, x& {! r1 a$ p$ e9 r
    经典递归应用场景3 p' J- ~/ f/ t1 Z
    1. 文件系统遍历(目录树结构)9 k$ F; \3 \$ @: w% F3 G% b' h
    2. 快速排序/归并排序算法
    / u( q6 q3 q& A# j8 H1 S3. 汉诺塔问题
    2 l  `, B+ @) k2 v7 |- h: O: Y4. 二叉树遍历(前序/中序/后序)
    ( p6 _  t  S( C* T. V- ]) V5. 生成所有可能的组合(回溯算法)
    # K4 @$ h) B. P( T9 n6 B: T+ F' c3 k/ `& D0 {
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    3 小时前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,' V' A5 h3 O9 Z/ L
    我推理机的核心算法应该是二叉树遍历的变种。
    ' l* e( W$ U3 @' Y: m) Z) a另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:: E9 F4 E& f$ l, k! q5 E( Z
    Key Idea of Recursion
    3 K' q* Y$ Y+ e) E# L  h* M8 C' V& C
    A recursive function solves a problem by:6 Z& S# U+ W9 j  e0 i# z

    5 I( |6 r5 k9 l/ ~7 o# q& h    Breaking the problem into smaller instances of the same problem.0 ]% W. l- e1 `3 n5 m* {

    0 K& @& b3 D3 m$ z" g% ]( U# E    Solving the smallest instance directly (base case).
    * i$ B/ q9 L& Q2 v% |
    9 E$ v6 Z/ Y& _# y# I    Combining the results of smaller instances to solve the larger problem.* G1 g( \$ D9 _$ Y/ q1 G, L
    0 V8 i  R. y7 t* m  s
    Components of a Recursive Function" a8 f/ }$ c$ h4 f2 [% {; ?
    3 r: H1 R& _# P) C7 ^& X
        Base Case:3 p: h4 u, z2 k& o

    * {; G- d; Q% D9 n) A: o7 I% k, X        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ Q7 [- F+ t7 r" K2 E8 X
    # ]8 V% }( o, I& x2 P
            It acts as the stopping condition to prevent infinite recursion.3 i$ l  K' b# x  j' G: N  a. g
    9 g) Z3 ~  B( O2 `4 x
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.- J3 @4 ^! f% K+ W/ T- h2 ]& C

    ; ?% c9 `0 m& g8 Q4 I- B: Y' Z    Recursive Case:
    % X: v, f* q. S/ v. ], b( _/ m! M' v+ J" p
            This is where the function calls itself with a smaller or simpler version of the problem.0 }' j6 g% E0 ~+ H

    5 x* p9 U. A7 d- ^2 u        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    $ }6 ^+ f2 N; M# C+ r; `% n
    " R9 T/ _1 g1 r4 kExample: Factorial Calculation" e. m1 u; M8 }) f0 h% ]7 k
    4 F2 s' y. \4 p. d4 R, i
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:) K- b9 T2 X0 t6 X5 A

    4 `' @. Y# K. [' \    Base case: 0! = 1. \; W$ l: @/ d& Y

    ; K* I& H' X9 x/ p) h! I8 |    Recursive case: n! = n * (n-1)!/ @0 x6 h% d  W' T
    3 ]. v) z2 ~' m7 Y7 p
    Here’s how it looks in code (Python):! Z/ g7 S! ?  B; e4 o2 `" A9 `
    python+ K1 a) H7 c3 Q* X6 h( T6 j

    3 ^( r& ?7 n+ U# H9 I4 Z- X. U: m+ n
    def factorial(n):
    + _" }, W' p# s) ^* H' f+ K    # Base case3 ]; R2 C( s, r( r
        if n == 0:
    " b8 _2 q, t. b5 v/ t& o* p% Z. p        return 1! |. V6 F, t, E6 r1 q
        # Recursive case1 a, a6 P& M, K$ L
        else:
    7 s7 z% `3 g3 `; f        return n * factorial(n - 1)
    6 U6 r1 n8 K. U5 G/ c' }
    & o) X# H* ?! ]# Q1 L! g' \( m# Example usage
    0 o% f. @) I7 C  l) R' r/ C& mprint(factorial(5))  # Output: 120. X- \) `$ ]- T  p3 c) P; ?0 s
    4 [0 [, V, j+ s4 r& d
    How Recursion Works
    ! M' s! b1 k! b1 p
    * o' |% X$ \0 e# h+ c    The function keeps calling itself with smaller inputs until it reaches the base case.
    5 v. L; A# r- k
    / ~/ E: e; C* Y  i! v    Once the base case is reached, the function starts returning values back up the call stack.
    $ W/ n" @* i/ c8 f1 O9 q7 W! `# c) j* C1 Y; j! Q2 d
        These returned values are combined to produce the final result.+ w$ s+ i# c" t' K, R
      u  F0 |/ _8 C% J# w% {0 N+ I4 ?
    For factorial(5):
    1 K1 d9 Q+ W6 F, Y+ c5 F
    2 w/ U: |  u% U5 S& C$ e; O1 y( q
      H# r5 i8 ?% i. n* |; i8 @factorial(5) = 5 * factorial(4)  x+ g6 T: s4 |- G2 v" w, u
    factorial(4) = 4 * factorial(3)
    / n; q& h% k" X  A# o+ N% T( gfactorial(3) = 3 * factorial(2)
    , d/ p' v  k7 n- o7 y* Ofactorial(2) = 2 * factorial(1)0 r! S  z# F- K! x1 i- `1 W
    factorial(1) = 1 * factorial(0)
    * W) B2 P7 A5 B8 E0 ]1 ufactorial(0) = 1  # Base case8 J: ]2 m1 o1 ~8 G; R8 d  `( P+ K

    3 s$ I, i" ?/ E5 _Then, the results are combined:: L& u3 S; z) g# T
    6 Z. t2 g4 P% B9 k$ }% c. f

    ' b7 d7 Q. k9 }: l6 Y- q5 W9 E; ifactorial(1) = 1 * 1 = 1) m3 Y& v' m) H3 e
    factorial(2) = 2 * 1 = 2
    : n3 h  W& O( E6 f8 b2 @) Y( |8 pfactorial(3) = 3 * 2 = 6
    0 m: g" J4 Q3 l5 ^- Pfactorial(4) = 4 * 6 = 24! d2 L) g  a- h8 I
    factorial(5) = 5 * 24 = 120
    % V  e) O  y8 K& b% U1 U% w: a
    & }/ ]+ z) B4 ^$ K+ T6 s" @Advantages of Recursion, A/ c5 N9 Z; }) U5 d
    $ D6 }8 f5 i6 m* t) N* y
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    , r' o% Z& Z( T  p: O- ?" J) P$ i6 _
        Readability: Recursive code can be more readable and concise compared to iterative solutions.; Q/ u  _& U7 D( ^

    & ?& @; k6 O* R3 x) F7 j7 jDisadvantages of Recursion
    1 W5 U. K2 a- Q6 E0 F1 K% s
    , J  U- q7 O6 H6 e    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* g  V; k4 `' y! X8 j5 E& T

    # _! l  N1 P& f; H* w    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ( M, U3 V, B% `8 Z
    & J& ?* [2 T7 X' vWhen to Use Recursion; k2 q( \( U7 W: n  G! h! _( t

    9 }& D5 c+ T$ J& g# z- L: x- a+ A; r    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! u0 Y+ |4 Z- Z$ C/ `  s
    + R8 E7 A* x0 s! q    Problems with a clear base case and recursive case.
    9 ?' g9 [% o- E" F# `' x* e5 _: F( M& }# m9 u
    Example: Fibonacci Sequence
    9 b" K. _- @7 O; k/ s' b# e0 I& [6 Z  _7 V* i
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:9 [7 O% _1 @6 @2 A* R7 K
    $ v% c1 {7 t  T$ v# ]
        Base case: fib(0) = 0, fib(1) = 1" Z5 A6 m2 X9 f" G9 }4 x. g

    9 T+ a- L& x" r8 S    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    $ N1 g5 v1 A+ J* U7 }# E4 D* ^/ O0 o& v* C
    python
    ; e* ]0 |) m9 |
    ! O$ r% ~6 i* O; t
    3 ]) I& L, c) ?- hdef fibonacci(n):
    6 z9 F$ H* @" P7 p1 {: K    # Base cases
    / A2 l, @1 F, f: y- g/ v    if n == 0:
    / @- e1 h/ W$ D        return 0, m  b8 U9 z* W# \; Z* H( v$ r( q' G. G& _
        elif n == 1:" h1 _' `- O; A& m9 e* o
            return 1
    7 A0 _" _; g  J9 v+ j# `4 Y    # Recursive case# i3 q0 w  Z2 v. V4 M
        else:- J5 h0 z+ p6 H* B) ?, `6 r
            return fibonacci(n - 1) + fibonacci(n - 2)3 z7 W' v; f4 g1 S, L% Y$ ?6 q

    ( b9 J( L. Y' M5 @+ t0 ~# Example usage$ K$ u9 o2 }4 U/ k
    print(fibonacci(6))  # Output: 8; Y5 O. [8 y9 r3 a

    $ W) S0 u4 k5 Z! z7 q1 G# V! aTail Recursion
    $ s9 @9 ]0 z) j- b* }2 m" k
    , j: Y+ X: t! c8 J2 hTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).) W& G' G8 v7 F
    4 H: V0 x3 s) e* ~1 m+ r4 G* J+ ]2 B
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-14 09:55 , Processed in 0.029356 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表