设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2127|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    , ^7 o' L* k1 [7 F" j, j0 |% I* w$ P  |# ?4 p
    解释的不错( E* P9 [$ T' a: ^8 p, ]* @% b. ^

    - c* q6 t  ?) m( y; d! O递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 m$ j/ S: I. m6 t2 ~4 i/ j- @
    关键要素
    ) D0 O7 G+ j* I: G# f1. **基线条件(Base Case)**4 b4 j+ G+ h; O5 s3 u) F
       - 递归终止的条件,防止无限循环: [+ U+ {7 b; v3 G/ L& m3 Z) ~
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1! d4 v- F; x* f' k1 j3 w: R

    # X+ O& G' V* ?3 @* \. Q8 M6 N  d2. **递归条件(Recursive Case)**% g" m) D+ `+ J1 I- V* f
       - 将原问题分解为更小的子问题
      u" m+ m7 d% y& A1 ]& J   - 例如:n! = n × (n-1)!$ `! @- V% y: q3 w
    ( z7 s/ S) Z5 ~4 }0 Q
    经典示例:计算阶乘( ?: h4 l1 Q/ J% S
    python2 Y$ d" c. H+ y4 E* P) J8 b' ~/ T. {  g
    def factorial(n):" u' m! @( l+ _6 y7 s8 [
        if n == 0:        # 基线条件* @7 M& ]5 P) c8 c6 S% A
            return 1
    0 q' u- E% M5 v5 z" D" g    else:             # 递归条件
    , A+ u+ V! b, f. r        return n * factorial(n-1)# M. {- B$ w0 K1 l+ ~
    执行过程(以计算 3! 为例):
    6 R2 }3 r$ f/ C0 Ofactorial(3)
    7 @6 d$ _# f5 [4 d8 Z; x% y" f3 * factorial(2)3 n5 c8 e, e; k1 H+ P
    3 * (2 * factorial(1))
    7 [  y1 S0 c6 A5 b, N  _+ e3 * (2 * (1 * factorial(0)))
    % n# s( i% d& x6 N. ~+ H7 P3 * (2 * (1 * 1)) = 63 v' W5 a2 j" x
    0 s& v; C7 F1 {7 A
    递归思维要点- ?( }# z+ a; q/ q0 d
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 g+ X4 F, _. M5 J: t2. **栈结构**:每次调用都会创建新的栈帧(内存空间)7 z$ N8 Z  Q2 s0 H1 Y1 I- D/ R
    3. **递推过程**:不断向下分解问题(递)
    " J) r% g9 S: K5 G4. **回溯过程**:组合子问题结果返回(归)8 \6 H& A  E" a2 K! j. L1 {

    $ w- z0 s0 x  }5 Y$ o: i9 a 注意事项2 J/ \; c; X( f/ [. b0 x
    必须要有终止条件: `+ s; m( A" f& I1 z- Z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ M6 Q, x) f5 k& B& z, U" s
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 R$ B2 X$ V- B( x9 H尾递归优化可以提升效率(但Python不支持)
    9 o3 W2 K, U$ r$ P# P9 E
    % Z9 o# |9 a) [1 \( e 递归 vs 迭代/ C0 G- D& p8 D& v: H9 c# m
    |          | 递归                          | 迭代               |
    # Z4 V$ ]: o& n6 i* c0 J( L7 p8 {|----------|-----------------------------|------------------|7 Z* x9 r" e2 H6 b- o+ ^
    | 实现方式    | 函数自调用                        | 循环结构            |
    % b. ?& o0 y) b# ^5 R- e% U| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ; E- Q8 k, M! n; U0 n- P/ L+ a| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    $ |7 h; I+ q2 V3 y( e+ p| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    $ M4 a6 N( o  n$ P* X, {
    % i  |/ l" D) Z3 K- C" n 经典递归应用场景1 ?5 @; ~6 w# a5 N% r( ^" f
    1. 文件系统遍历(目录树结构)* B) q' [! ^1 s& o
    2. 快速排序/归并排序算法+ }& y# Z' U0 |: u, v, R+ a* x
    3. 汉诺塔问题
      v( E# I& z9 l7 g: e; }! V! n5 n2 ?  m4. 二叉树遍历(前序/中序/后序)
    5 g0 U% }7 K% k. _% {# Q4 q( ?1 M5. 生成所有可能的组合(回溯算法)% H! j, J+ l* }: v$ w3 p
    8 }7 ]; R* v8 R
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    2 小时前
  • 签到天数: 3181 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    " A4 o* y' y0 r" N6 K我推理机的核心算法应该是二叉树遍历的变种。* v0 V3 U6 s( u- ?! Q
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ( Z9 Q- M* ?- PKey Idea of Recursion
    # e; E) B" Z6 i5 k$ m0 O% D4 h. ?, Q# B! j. a7 m+ g+ o9 X
    A recursive function solves a problem by:
    & n2 D1 d: T2 ^9 \# Q0 y# \: }* Q; ]8 R, ]2 ^
        Breaking the problem into smaller instances of the same problem.
    6 _+ z# T9 ?& T7 Q  |+ k
    3 V( {7 W( T3 q2 c    Solving the smallest instance directly (base case).% Y- `9 c  O! b- o; s0 m- V

    $ p1 j: C0 B. b- l& F+ Y$ V6 t    Combining the results of smaller instances to solve the larger problem.
    ' M, ?5 `# p, [. c. @% M" |$ a
    4 m. S+ e+ \, A. DComponents of a Recursive Function5 t$ l% r2 c( Z' V) i$ ^
    $ L! O, d, X4 V" p' f5 R
        Base Case:; f5 t' _0 c  y; m& ]9 q/ r
    6 L0 M) A( P) A, q' g
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ! e! v$ B2 B- P; a' x& _
    9 B& e+ p8 }2 x1 E        It acts as the stopping condition to prevent infinite recursion.: |5 A! E( Y1 a! f  S& b
    & R8 `+ i; W6 g+ B
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* I0 s' N  o: |) S0 i* m. c

    ' r' m2 q( t+ Z' F; H    Recursive Case:9 D7 `) U+ w/ J, C  h  k4 ~

    - d, N9 x  D7 o) K  B        This is where the function calls itself with a smaller or simpler version of the problem.
    ' h6 |# Q  u$ h% s9 }0 M% D, ?3 X/ H" O9 G
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    + N8 O" R& v% ?2 x7 Z' z7 q& x. [) D$ D% C# W
    Example: Factorial Calculation
    ; F* x0 ?4 g0 B5 B# V$ v: z1 ]3 q/ V
    ( ], u( ]8 W/ J, G4 w* W0 s- UThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ( p; D& U$ \3 s2 _
    3 [- k3 N" c( u- w7 y9 k/ V    Base case: 0! = 1
    6 D+ ~' Z9 \# c5 ^: [
    ! m% I3 E$ F6 ]+ [2 |2 v- X    Recursive case: n! = n * (n-1)!
    2 Q0 n$ Y7 k4 ^! [5 R' a. L0 H5 a) e7 N/ [  G) V( q$ O- J7 f
    Here’s how it looks in code (Python):
    - k0 ?. M5 N2 ^. f& w- ~python
    1 u; O. ~- Q: T& K4 D% Y) M; n2 q: W9 v/ t
    5 S  J) U. |! Z9 u
    def factorial(n):( a1 n4 Y1 F* z% ?) J" h2 V
        # Base case5 a9 I0 A6 j* y- p5 z, J
        if n == 0:& s  z0 o+ t) I( U  j; O; N
            return 1- w( T6 \7 H& {. r. H$ C
        # Recursive case# C' f) E# c0 e/ \, e* r$ n
        else:
    9 J" J2 g  k+ e: r9 U- p, Z        return n * factorial(n - 1)& m$ Y1 @; W/ S9 }8 l% t

    : m  D4 B" r4 S# Example usage+ {' z4 q9 d1 i5 W: w! D8 l$ C9 y
    print(factorial(5))  # Output: 120& s4 {; s- {$ M) Z' b7 G

    ( g  l; v' D+ C) }' M5 E5 f- _  iHow Recursion Works
    # V, \6 K6 s% Y
    ! v& m! S  ]7 T3 R    The function keeps calling itself with smaller inputs until it reaches the base case.
    # R' B, }" [7 b4 @; {! K5 }5 ]: |$ H" S: _, f8 \
        Once the base case is reached, the function starts returning values back up the call stack.
    5 ?: ~; t1 [+ i5 M
    5 @5 w' U& g# Y+ u7 o+ y* T    These returned values are combined to produce the final result.
    8 @/ k7 h. |3 I, }1 U, U; ~1 ]  s' f$ s0 N+ @
    For factorial(5):6 @) P- _7 _; {, {

    / X; Q. i: L* b: D. @* A# H
    - a* A/ p- k5 r- O; N3 G/ }0 cfactorial(5) = 5 * factorial(4)
    , ?0 A5 Q' D; U+ n0 c' D! xfactorial(4) = 4 * factorial(3)
    $ Q# ?! o  m9 v) b9 r+ }factorial(3) = 3 * factorial(2)
    9 ]! r- m4 r# f5 Q1 q5 Ofactorial(2) = 2 * factorial(1)
      @7 d" W% b5 @: O# qfactorial(1) = 1 * factorial(0)
    3 ?# Y! U3 q, {# |4 p+ gfactorial(0) = 1  # Base case0 t1 j# y; g9 }' s9 B: z
    ( s: C: c' R- N+ C1 S9 H; [7 c
    Then, the results are combined:$ Q. t* m8 `, y4 C4 L
    9 i3 F" p$ g( D8 r0 t5 G
      P, ~  y3 F' |; o+ u  _9 S
    factorial(1) = 1 * 1 = 1
    + R% D6 H! V) S  G5 m: Yfactorial(2) = 2 * 1 = 2$ V* d) K1 B# B7 V/ d$ N
    factorial(3) = 3 * 2 = 68 E8 P1 v; V1 k$ }/ x. u
    factorial(4) = 4 * 6 = 241 d' S2 v$ t% r! q8 S
    factorial(5) = 5 * 24 = 120
    $ E4 C) W  u: V3 _) I6 e7 E' j! a) g
    Advantages of Recursion/ r8 X+ p; \& n2 H+ Y8 R
    & E! p; O9 a. q
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# z" k  I; m1 T" W  }! c. e- r

    2 J7 E2 O. x( k) s0 _2 I    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    / H7 [0 K* c" A5 r, Y0 m  q# t; w& N9 V) \8 g" e: b# y! r2 e
    Disadvantages of Recursion' J' L# q& }. O

    1 k/ G7 m, j! P9 D% [+ x    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion." T( [/ V# z1 F' c; y- a

    # @% k/ N9 q$ R& n) S% v9 b  m    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    $ a) A' f$ ?3 F8 l! G( R( ]8 X$ e! {/ K. J; c- M
    When to Use Recursion
    8 D9 x( A# M- B# y) c
      D+ P2 |+ h8 N% E    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).. j' W' X3 N9 I+ ^0 y

    ' j$ ^- g9 Y' A8 ]6 x7 k9 G7 i0 {    Problems with a clear base case and recursive case.
    - U7 }2 s+ i: ~5 E' T2 B6 |* K) o2 s2 f7 f/ D! h5 y$ Y% \4 T
    Example: Fibonacci Sequence
    : n0 \  H/ l- P' C" \) J8 \; F9 {! L' n
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, i( S' z0 B+ M  `% Z* K% {  P

    - E9 Q( J  R' i+ `    Base case: fib(0) = 0, fib(1) = 15 C) X1 B+ B% m7 ~! l: [

    ! x9 C( L* M6 N3 Q    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ( C1 P8 H$ X9 ?7 @2 J1 W8 X2 r% a, t5 g5 V
    python
    $ J3 c- h! @; X; j+ F9 G" @& b6 y+ N4 N& I$ m! {4 i& O
    0 x, E' {2 O+ q2 \. T
    def fibonacci(n):/ @# Z& [5 v6 Q' y! d4 S+ W
        # Base cases
    ) y& m5 a$ b! ~    if n == 0:- n" d( M, m/ |4 j4 Q( E
            return 04 L% P. P$ G  a/ e; [7 m( w
        elif n == 1:
    9 ?3 R* t, X5 U' w/ Q        return 1, B2 ?  f( \2 E( o- I7 i
        # Recursive case; C( s! |0 ]7 c
        else:) v* f$ d8 ]8 p
            return fibonacci(n - 1) + fibonacci(n - 2)
    4 {) r, n6 u9 Z
    1 `& o9 D$ J9 o1 _6 D- O/ d! @# x# Example usage
    . i( P$ a. V$ J3 hprint(fibonacci(6))  # Output: 8' F# g4 p0 j' t3 L0 U1 H

    & G( x2 }; W) \0 t, X, rTail Recursion5 W5 @1 F' H# ^4 Q" C$ O

    ' N$ e3 E6 ]: o% x5 zTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)./ Z5 L: g( t- @! ~. `' C
    # G; M: P! s8 V: @1 q; r
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-22 08:31 , Processed in 0.057851 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表