设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1360|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 . b1 H; {$ f- }! E5 g
    # W, K- h0 m: m1 {& |: r0 h5 D
    解释的不错
    1 |8 u9 ~% E2 t5 S/ c
    # ]  U' `1 O5 U5 u; ]# _8 G" |递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ' d( \2 ?% _5 J  Z  h" b; Q. Q# I6 P; L3 c9 _
    关键要素* n! C( D4 [5 w8 U* S
    1. **基线条件(Base Case)**
    + I% E" I& r% z9 r& T   - 递归终止的条件,防止无限循环
    4 H' J: O% a/ k) F- \! ]   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; E" z0 G# [: t  A0 t6 j  A
    4 ~0 R: {* _" Q8 K3 A2. **递归条件(Recursive Case)**
    9 ]3 H$ r! h3 X4 g  }# `* i. K1 k' j   - 将原问题分解为更小的子问题' p. A3 F/ y2 c: |
       - 例如:n! = n × (n-1)!
    ! t6 G3 V+ \3 a2 ~' I; W' E* S! F$ R6 B) M- V4 m* X& W8 A. O3 ]
    经典示例:计算阶乘% _3 E0 a4 p4 q1 X3 K; k
    python5 C5 j/ \# [; K2 s4 n4 Z9 ^
    def factorial(n):
    ( x+ m* w# v5 |9 x/ V$ S# `    if n == 0:        # 基线条件) H4 g4 ~+ H8 N8 m
            return 18 t+ V6 Z* _. o# t8 ~$ k
        else:             # 递归条件
    " ^" r* ?  E, o, Y$ {( [5 ~        return n * factorial(n-1)5 v' b: S+ a) m! E7 b7 b
    执行过程(以计算 3! 为例):! r+ p$ [6 A, w8 Y$ m2 g% k
    factorial(3)
    7 b+ `  B4 N4 _4 P: ~! [3 * factorial(2)) w7 C2 F  e9 ~1 {
    3 * (2 * factorial(1))
    % w* P# X' }! ~# v7 [3 K# o3 * (2 * (1 * factorial(0)))9 w! i- B/ q* Y6 s/ T. D
    3 * (2 * (1 * 1)) = 6
    ' Z$ J* e$ O" m4 m+ a7 T. Y; d6 W6 A3 X% V" k% t5 Z3 S* j
    递归思维要点
    0 T! k$ B: u2 {# z8 i2 U2 {6 X; s1. **信任递归**:假设子问题已经解决,专注当前层逻辑* f: F- W5 X: t
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . X& w+ P& Y2 P' {' |3. **递推过程**:不断向下分解问题(递)4 A5 R6 W, ~. E- S
    4. **回溯过程**:组合子问题结果返回(归)8 ]8 A2 e% U" |) V  y

    * c6 s0 r0 n0 R/ a6 m! A2 o2 F0 T) [ 注意事项
    : b& u' Y6 h9 W, b) c必须要有终止条件
    0 `$ I3 g/ V* j- y0 c( z/ U  K! @递归深度过大可能导致栈溢出(Python默认递归深度约1000层)( y1 `0 @$ [5 U: T; O' N9 E) t
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    % ?5 P/ b' Y( E4 p- X# J* W' m尾递归优化可以提升效率(但Python不支持)
      R! I0 l* W# q
    9 m3 e2 b9 `- s+ u( W4 T! Y+ s4 ] 递归 vs 迭代
    2 q; b+ z' P% m; [1 s7 A|          | 递归                          | 迭代               |
    $ W0 Z# [; Y, K, y|----------|-----------------------------|------------------|
    ) `# L& j( l# M| 实现方式    | 函数自调用                        | 循环结构            |  r( l, h1 I% q: X5 h+ Y
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    / u8 M! J( F# O| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |  v& z3 p. T3 H) _8 t5 X. ^
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * Y. [4 m' z( b
    9 x6 p5 D% V" n- I5 a3 ` 经典递归应用场景& T! z9 {  F' y2 h+ @
    1. 文件系统遍历(目录树结构)* N8 x8 ^, L7 W7 s; }
    2. 快速排序/归并排序算法3 e7 _4 w0 |9 o, u/ E% V  W- z& x
    3. 汉诺塔问题
    ! {8 g* X/ J! ^4. 二叉树遍历(前序/中序/后序)
    8 }; C2 K, U9 [+ u" V) {6 v& V" F6 I, k5. 生成所有可能的组合(回溯算法)# }$ Z' D, {/ O- X. a. C

    * S  W, i# [5 j9 `5 p9 v0 u# ^/ `. S7 L试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    2 小时前
  • 签到天数: 3110 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) z6 `8 t2 i( Y& g( _# A; K0 l我推理机的核心算法应该是二叉树遍历的变种。
    $ {& \) K) v2 L$ I8 p0 S  ?8 n另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 Z/ C" y# ?$ _- g, X( e2 cKey Idea of Recursion* L) C$ e/ l$ u* V) Q2 t. x# H- A8 |

      b# a8 k5 M$ K& AA recursive function solves a problem by:
    * C5 r& D5 ?6 k9 a  h5 z% P4 d  {, F. Y
        Breaking the problem into smaller instances of the same problem.
    , ~2 \) B- \' G4 Z  ]! e
    + T7 Z: V) @1 B& G' N% ?    Solving the smallest instance directly (base case).! ]/ D: K; z& u$ d
    & J) I3 ]7 n- `' _6 h( l
        Combining the results of smaller instances to solve the larger problem.
    $ z2 ]) [( ]$ |0 ]" P# ?+ a* t1 Q) t: W* m9 ^
    Components of a Recursive Function+ ?0 i3 @% d$ ^8 D, {) F1 f
    1 h9 ]3 i4 F9 f; S$ w( G# F
        Base Case:
    ' S. V" n  |1 B8 v: m" l
    $ l4 m2 k7 R0 I" E" X2 V        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; E7 T2 A. D- c( z) ~# y" c9 e8 w+ h: M$ b/ o! g9 e) y
            It acts as the stopping condition to prevent infinite recursion.
    ; Y1 k; G6 x7 `/ a1 \' ~+ A. l* g: t/ U1 p! Q# Q& q1 R' E) G! s
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : G( A% e3 `& C" E7 a( [
    % t4 V" }. b  f% j6 q8 W# g    Recursive Case:- v3 I' w5 D: s7 T0 }
    ) a4 y% J# d* _# }
            This is where the function calls itself with a smaller or simpler version of the problem.
    6 o8 D7 G1 Y* A% ~- l0 H) l% F
    - s/ `# E: Z' ^) v) z        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ' I/ o' L; E4 }, k  B
    1 |( I& ]6 c8 ~0 u& h% z5 D, A5 LExample: Factorial Calculation0 Y- B8 n/ z) X& V: l" ^
    7 n+ S: X2 G3 @3 _
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:# N% M+ G' O5 d- R7 \# f

    % p7 p3 [/ v0 H; C    Base case: 0! = 1- Q- F5 z3 W* r  {" W0 m

    5 h& q, P- H* a! P    Recursive case: n! = n * (n-1)!
    , s7 D# z" a& E! Z$ @/ h( U) b# H/ F
    + z5 i9 |2 H' s  q5 |3 o/ jHere’s how it looks in code (Python):
    / b4 e5 C+ E* C( C( U3 A3 M1 wpython  p1 `7 n; h7 s& S

    # f3 u+ x5 \" j- D. v7 b- p4 }% E4 r0 g* A8 V  I
    def factorial(n):
    5 f6 K( I$ p' u8 i( y6 f. G    # Base case
    - p9 Z. k; I* g  K6 Q0 g6 D  h    if n == 0:4 _* K# r4 [: K0 z# n
            return 1/ l/ u. f5 w7 k3 r; i
        # Recursive case
    % C; D6 ?1 M: k) L, r; ^. L    else:
    5 ]1 [1 w* D: _        return n * factorial(n - 1)  p( n* j2 Y' U1 C& u/ H4 B4 \

    8 n7 K1 K4 P/ P% U1 y# Example usage
    ; L/ C3 C9 j: o2 Aprint(factorial(5))  # Output: 120
    - T4 g6 R6 c; R
    / K. \* ^' s8 N9 pHow Recursion Works; E" q& k$ h7 j0 m) `& _
    ' T! D3 H- q0 s" {: |5 P7 e
        The function keeps calling itself with smaller inputs until it reaches the base case.
    2 b6 M1 |  y" f8 u+ Z9 e' X# P
    # L- X) z  o  H    Once the base case is reached, the function starts returning values back up the call stack./ F( C+ [- i7 R2 g; y5 m
      M8 u; |  K7 q+ N; I( b
        These returned values are combined to produce the final result.) d6 ?- E8 u) m/ a/ f

    7 E% E: P; i5 }$ }3 u: O3 R8 VFor factorial(5):
    1 N  ^& U8 V5 v: _3 h
    2 K  V! i; w2 r% g( ]7 \6 O4 n$ d9 z' P  M- s9 u# g
    factorial(5) = 5 * factorial(4)
    3 g, |9 x2 v7 P  ^: Xfactorial(4) = 4 * factorial(3)3 m2 m, Z! X: I! M
    factorial(3) = 3 * factorial(2)
    : K) n2 n# O8 D, Hfactorial(2) = 2 * factorial(1)
    2 m. J) h9 r/ ^, Z% tfactorial(1) = 1 * factorial(0)
    $ t. Z: Q: [& t6 x9 dfactorial(0) = 1  # Base case, C& U% S' M. V: F' b* e- B

    , t9 X3 w. G- [% eThen, the results are combined:& a, D3 F6 _" b; k
      X2 G% m/ v" n, N! M1 u
    : C% P9 W# `. {6 z& `: F3 A0 s$ w
    factorial(1) = 1 * 1 = 1  i% T. H8 b6 _2 S; U3 [; w, z* `
    factorial(2) = 2 * 1 = 2
    / l% N0 i% i, c# l- ~# hfactorial(3) = 3 * 2 = 6
    2 b+ K3 H8 B  s+ q# }5 _% sfactorial(4) = 4 * 6 = 24
    # j! q) Y& w2 E( a$ q+ ]factorial(5) = 5 * 24 = 120
    + a: t" J* o& p% B0 S1 G. o
    - }+ x0 m. N& s$ S8 a8 \$ dAdvantages of Recursion
    " g8 t# l: w$ I; S3 Y
    - a( i2 m- `: i: R! l# B( K% \* t    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).% E# e0 A+ J* I

    " w8 c) q4 e5 R1 o' s5 [    Readability: Recursive code can be more readable and concise compared to iterative solutions.# V" r8 F/ f( D& y
    4 H. W0 B( o3 P, g5 A
    Disadvantages of Recursion8 b: L* g, R& f8 Z# y

    3 Z+ ^' d9 M4 h4 g$ c    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 T+ W" v& ]- O( I4 w) v
    2 ~5 Y* ]: T5 d: x5 O0 Y, _0 l/ D
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).9 _! H, H5 E3 _! C* C% k
    + a7 D* E! j9 Y3 [5 ?$ \
    When to Use Recursion- a5 r& T$ e$ y4 I9 P; s6 c7 e2 F
    ) S" L6 \& ~- F
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* N  x6 f& H/ [' H; W7 a" W
    7 E' J5 B4 U# Y  ?4 A9 X
        Problems with a clear base case and recursive case.
    $ [. L3 g" ~8 u3 I  c2 C
    / [7 \1 L5 v: F9 x* d8 |! [Example: Fibonacci Sequence/ }0 l2 @: A% k1 T% ~: e6 g4 D3 {
    * x" B0 q$ x- {) F6 J
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    0 A& B8 k3 A: a2 \) h( {+ f
    ' K7 _2 B& D5 n, b  |; N6 a    Base case: fib(0) = 0, fib(1) = 1
    . g; S2 R5 C- s/ p% e8 S4 l' E9 r9 r7 Z" ^1 {3 g
        Recursive case: fib(n) = fib(n-1) + fib(n-2)3 a$ W* `" [, {# C
    - d3 j- S( r5 m0 P
    python
    3 ~0 E; f+ ], z9 c" t% L/ ]
    ( Z6 R8 R/ Z# X0 I/ U* ^! a0 C, |/ z4 m$ k5 n8 h  p# [
    def fibonacci(n):" \  x0 i+ H- I+ t
        # Base cases( `6 q4 ^! o0 b- {& P( R9 _
        if n == 0:/ r7 o0 e6 j1 P
            return 0
    & X9 ]5 J3 ~! b5 k, ^$ M    elif n == 1:
    / X( ~1 D8 Q  e, I        return 1
    - ~# [2 u9 r1 `$ O    # Recursive case  z# p+ v9 K: j4 d7 c3 t1 S5 g$ R6 }
        else:9 _& i* X3 Y) n6 `4 a9 }
            return fibonacci(n - 1) + fibonacci(n - 2)
    0 I6 |9 `' K. |. N4 l# ~1 l- g/ D. k4 m0 [( a
    # Example usage( q7 Y/ ~6 k' N3 j) @! c7 Y
    print(fibonacci(6))  # Output: 8
    : F$ O) g2 S8 l! t/ \
    3 F$ C/ Y: @' \( b5 ITail Recursion
    ) [, Y& _' w2 V9 c" Y2 F2 c* m1 U( V: _8 Y
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).5 P6 C# H( R5 a9 U) ]
    - l; i: a; M" t- k: r# r2 u
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-6 08:20 , Processed in 0.034559 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表