设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1421|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    : A% t# f1 u* n2 `8 F+ i$ }. r. }4 }& H  R+ P/ Z
    解释的不错
    / d* h# h( b: U4 x) ^, p
    " H, {, g# W, o递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% C5 S  i3 k+ c) S' }5 a1 A% n3 y
    * X4 j/ |/ k( ?* f/ p
    关键要素9 K! ^( {2 a8 ]+ h) [( L
    1. **基线条件(Base Case)**/ V# H# A8 C" n" |, w
       - 递归终止的条件,防止无限循环
    " N' M# l4 C1 O/ M6 l' e   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 ?9 h6 M0 d! a  \2 z
    $ x/ ?3 i+ N& P% r; y9 }( y
    2. **递归条件(Recursive Case)**, R8 J6 \5 N. h& Z# \
       - 将原问题分解为更小的子问题: g" Q% n8 Q' z6 V# n
       - 例如:n! = n × (n-1)!7 r6 o2 b" {* z7 L9 W
    7 g+ Z  a! {1 m( X: P' F: }
    经典示例:计算阶乘5 e5 f* P# x4 @0 x  W2 b; A
    python
    1 {- A! f8 W0 \7 `. Z& A% f" gdef factorial(n):
    " D* I7 U# {9 R2 X. d* \& u# m& t    if n == 0:        # 基线条件
    # H" v$ b% k0 Q  o. I0 G        return 1
    $ ~& C0 G5 p0 W: K4 v    else:             # 递归条件
    : u, X$ B  R1 M+ _9 v3 J( u4 m        return n * factorial(n-1)* ^0 O# g1 C, P0 e
    执行过程(以计算 3! 为例):8 y1 J+ W/ b' H
    factorial(3)6 P0 i1 y% J; X" t$ W7 e- F1 P
    3 * factorial(2)
    * {; G/ V1 W3 H4 O* X! ?3 * (2 * factorial(1))- m% d* |9 i" b5 }5 c4 P' B
    3 * (2 * (1 * factorial(0)))
    + l  p+ _7 D  e' F/ Q3 * (2 * (1 * 1)) = 6
    3 G+ B+ M! L2 r# I0 z1 O) G7 u3 J5 t3 `0 ~5 z0 I" _6 n
    递归思维要点9 ]0 D6 G) W. y3 V: `$ t
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ a$ B; D( D/ V8 @# a9 {  H7 w7 N2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  W5 a* n. L0 v* U3 {' @7 E
    3. **递推过程**:不断向下分解问题(递)3 Y& X3 K8 n6 i; ~. t( ^
    4. **回溯过程**:组合子问题结果返回(归)
    / f, U2 b3 K9 i% n" K5 p- i# }
    # B; ^  K7 D5 J6 W 注意事项0 f9 c; g+ ?' U: Z9 @
    必须要有终止条件0 I* o) j0 w# K; q7 p9 x/ F
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层). j9 K) T, i) y9 ~6 S
    某些问题用递归更直观(如树遍历),但效率可能不如迭代' ~9 {/ Y& d+ q: ?' Z" @1 p
    尾递归优化可以提升效率(但Python不支持)
    6 p) \' o, L+ s" F; J& x- q0 W; ~1 t! _7 x
    递归 vs 迭代( a* l% b  c$ h# D
    |          | 递归                          | 迭代               |
    $ x4 ^. }: y! `" B8 S, v  H* V|----------|-----------------------------|------------------|
    ( V& c; {, {% B- Y, R/ _| 实现方式    | 函数自调用                        | 循环结构            |: s5 v4 ?5 k& P2 `: y/ r$ b
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |( a! K- n1 o8 e! `# v! Y& m- k
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' P, ]* P- I6 [% ]4 `5 @
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ! C* q) A' p2 B& d; x% H7 Z) F5 L, G; D5 w! O4 ?# N6 S( |6 B' ^+ E& p
    经典递归应用场景
    ! H* B# z- w" y. N" ]1. 文件系统遍历(目录树结构)4 ?) r; d5 {1 U" a) G6 h2 k9 R3 ?
    2. 快速排序/归并排序算法
    : m8 c! l: n* W3 O4 P, S' M2 B3. 汉诺塔问题/ o& F8 E. i- M/ R. n$ n' G
    4. 二叉树遍历(前序/中序/后序)2 Q% C8 O( c; ^7 x+ H; g! ^
    5. 生成所有可能的组合(回溯算法)
    & H& T1 R5 \& ?' A6 r- V
    2 g7 x9 c* v" _试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 07:13
  • 签到天数: 3112 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    - a+ n' ]& X7 r) ?我推理机的核心算法应该是二叉树遍历的变种。4 C8 B/ S4 v3 i% Z* r
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 l! }+ {; T; \2 ?' c
    Key Idea of Recursion
    # P+ _* L7 ^# j# ], I3 S" Q3 f' P1 V& t# W6 f1 X, u
    A recursive function solves a problem by:
    4 T4 z; e! i1 x) Z# i& K/ F2 A2 I2 R  y( J3 t4 e
        Breaking the problem into smaller instances of the same problem.
    : b# o( {; v  g9 q
    # W1 Z& x% \1 |: n+ |    Solving the smallest instance directly (base case).
      h( R+ f% t& y5 R# I4 o7 K4 k+ ~0 ?
        Combining the results of smaller instances to solve the larger problem.8 j& x" I& V4 T$ m- E; t. ^9 s; M+ ~

    - e" c$ P- T5 O3 [+ \5 _; B% JComponents of a Recursive Function
    % a1 a1 d% K$ ^! a
    8 p- U* W$ Q; Z    Base Case:& }  e3 @6 ^/ {5 P1 I
    + v% `3 ?% Z1 s& {' g
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    $ t- {- z- O. a
    # p* ?) |$ i/ J* L6 @5 ?        It acts as the stopping condition to prevent infinite recursion.4 q5 n/ c5 q6 ~, v6 _5 L
    + e& a: L7 _/ ?
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    5 Q5 K! v9 U% L+ i# T/ }, D$ u* A9 e, x$ t( `3 E) `8 d
        Recursive Case:' R: @& d7 p# [% a- f! l( m

    0 C6 q1 u( P0 X, t9 C) e* |# n7 e        This is where the function calls itself with a smaller or simpler version of the problem.
    1 J4 E/ A) O! T+ w
    % Q! W& ?  B- K7 K2 ]        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).8 L7 {7 Q- U  x& X, V

    ( e% i8 W7 m4 V. _( o5 d# m4 fExample: Factorial Calculation
    ) Q; L. u  K( |2 O0 ?
    + y* c4 }( @8 x# N( [' n  lThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ( m- z0 e/ I; o+ ^7 m( C$ c3 w7 {# k; u9 j1 X: R
        Base case: 0! = 1' e3 Y, @7 z- g) m( T& x' T& `

    # q/ n" O( j0 \2 d0 O6 V" q    Recursive case: n! = n * (n-1)!
      O2 b/ r, N1 r8 S3 Z
    : ~0 q4 @" T$ W9 T0 sHere’s how it looks in code (Python):
    ' T5 r+ p: V' Y; ^1 |4 gpython. K2 P& l* O$ v, _( {8 y3 J

    5 e# Q( P  s3 Q0 W+ Z2 O/ `, U- n. X' J
    def factorial(n):. o! w0 b5 _! \$ h+ ]- O- b. f
        # Base case; x1 x" q! s% K' N; t+ W) m  V
        if n == 0:
    4 s' a' \) c/ n, K# M        return 13 ?7 m9 O1 s0 ^( b) e
        # Recursive case
    + E/ v# L+ e: k# T    else:; y3 P1 P- Y, W- t* Z5 K
            return n * factorial(n - 1)
    0 W9 H% ]" r; R+ l$ L
    7 x8 s1 ?8 E: }, Q# Example usage
    ) L( w1 o. u+ W! I" ^7 L  ]# v' zprint(factorial(5))  # Output: 120
    ( [, W; o5 i6 e2 j# N0 o; ~% I; P' t% X' R
    How Recursion Works
    ' g  w7 l/ e* [9 b& ?6 ~; \. t+ P6 h% M
        The function keeps calling itself with smaller inputs until it reaches the base case.+ V9 S" l% R1 t+ m) @4 C- E
    3 L. }5 R$ y+ r- H+ p
        Once the base case is reached, the function starts returning values back up the call stack.
    6 \! Q( }8 L. N# M) v& t3 D% k  |7 ~3 |6 J+ t/ @  \
        These returned values are combined to produce the final result.
    1 Z5 M/ [2 R% E4 `) K+ R# w' U
    " O/ i; z) k- RFor factorial(5):
    8 Z/ N2 P' `5 f9 Y/ r' w; f
    - ]+ l" K: T" l- f! ?5 l% \* `; n3 f
    factorial(5) = 5 * factorial(4)% j/ v0 P, J' F" A" l
    factorial(4) = 4 * factorial(3)
    # j' v* V+ ?' U& n0 n% Dfactorial(3) = 3 * factorial(2)5 q9 p9 k% I  ], x$ \7 |1 C5 w3 D
    factorial(2) = 2 * factorial(1)! H: n4 O) b( q2 C0 i
    factorial(1) = 1 * factorial(0)4 Q" o$ @4 ?6 p5 `2 {8 l" Z' z/ [
    factorial(0) = 1  # Base case
    ) i2 v  f/ N) G' g% a9 e: R* X6 |' E. r6 \7 M, ^9 C5 a$ s
    Then, the results are combined:& y) E$ |& E- M( c: x4 A+ {) @
    * @0 O! E0 \, F  g+ w8 W4 r

    . t9 n  F; `" `$ w0 [" m9 i  `factorial(1) = 1 * 1 = 1
    ' W4 P( w0 y, u+ Wfactorial(2) = 2 * 1 = 2
    " y. N+ |1 ]% A' i! R  Y  Qfactorial(3) = 3 * 2 = 6; b8 Q5 E& E. d! n- X
    factorial(4) = 4 * 6 = 24
    $ {5 r. J% ~( ^( X8 h: Lfactorial(5) = 5 * 24 = 120
    , D: z. o8 B% N+ J
    % F7 h* R) P, V( x# ~Advantages of Recursion' b- _/ m! _5 u3 ]2 r5 Z
    ) K& Y  L2 \7 X6 Z+ y. \' x
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 x& Q5 N; \+ H. ]; ~3 @9 y+ c: ?3 m: d& w
    . k3 d( f6 L, Q7 l) W
        Readability: Recursive code can be more readable and concise compared to iterative solutions.. B2 u  c- i% p# y. u9 t: U+ ^

    . j* q: ~; p8 B+ ^9 WDisadvantages of Recursion4 ~- E* {/ n2 q) g) G  P/ B- i1 \
    ( S+ }4 f+ K3 o# {
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 g4 \+ j" I7 J0 k. ?
    4 M+ [/ ~, c4 |1 k    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! u, c& m6 _# _1 X9 D
    0 X+ T' m2 Z# g2 DWhen to Use Recursion5 t) \( z: y. z- S
    1 o' f; H0 r2 G
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    5 ?. a2 @' }; l( n# g
    5 T9 ?0 l7 G3 O    Problems with a clear base case and recursive case.
    " p6 s& P3 C1 N, z: D) M8 T4 X! a7 d5 ~
    Example: Fibonacci Sequence
    $ \; f$ S6 L9 \! ^+ b1 z1 N& I( l+ n9 K) M7 O/ Q3 v
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    % {! G  o/ Q( p
    ( j2 w" h8 Y" A* L2 A8 }    Base case: fib(0) = 0, fib(1) = 1; }6 m9 U3 \# Y8 d

    ; m1 @/ i% I' x    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 s& \& S% l' J: n& N, K
    9 B, u  |  N0 v" q* u* ppython& ]) n6 D8 L3 k; g& v$ X' N
    9 Z9 |! a$ D2 @+ s: J  C

    . S# ?* y/ |% \2 X. A8 x' hdef fibonacci(n):
    & c! `5 o; {" J7 @  Q9 y    # Base cases
    9 _3 J& x, Z& _; A: k: `! ~    if n == 0:7 ?2 h' f- _+ v& P
            return 0/ c" O: E# D+ Z
        elif n == 1:, W; j" Y' R  Q0 ~! p
            return 1
    1 S6 \  n4 d8 Y, A7 B  z    # Recursive case
    6 v+ X. x1 B0 f* k    else:
    6 {( C7 z2 y7 a/ M9 T) t7 _/ @        return fibonacci(n - 1) + fibonacci(n - 2)
      ?3 b7 u& x+ M% u2 |+ m! j! W1 ~7 V3 K7 z+ d* K/ m
    # Example usage3 K9 C. }7 ~& V7 u
    print(fibonacci(6))  # Output: 8/ j5 O( x( d3 z2 E

    * _% l, n8 ^) {# }8 X& ^8 B, f3 ?& @Tail Recursion
    ' e( D* R5 U6 r' N6 N
    - F' u0 S  V+ g% G7 ITail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).3 W8 V  T1 z$ l0 p
    * Y7 S8 r" N; J' m% A8 i) W( ]1 R8 y2 v
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-9 05:41 , Processed in 0.031949 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表