设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2015|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 4 k: F8 I& C: B( g! q1 I
      ?) W' z% M1 J$ j9 ^* O! U
    解释的不错$ K% F3 S# r$ H9 A+ c( j

    6 y. b/ G; A( I/ d0 w  R* i: t递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    $ f7 b8 W) t5 L9 h2 S* S9 R2 e) S/ }7 [7 w! V8 P
    关键要素
    , q9 j4 {8 u/ ?+ C! K0 T3 @% F" O1. **基线条件(Base Case)**
    2 g4 a& _" @5 u2 i' Z   - 递归终止的条件,防止无限循环/ p. L& t% W) S% A' z/ O
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    3 o! m$ n- F) V$ F+ G  U2 K0 |
    1 |/ E5 T8 Y% ?, z' S- ?0 O2. **递归条件(Recursive Case)**9 |" ^' P9 z4 U5 r' w
       - 将原问题分解为更小的子问题4 p; V: @3 N  B  V3 ~# i3 C
       - 例如:n! = n × (n-1)!
    . k, L4 W' s, Q! k- D( l  \: }$ A% `! S2 l. ^" {' o' k0 T
    经典示例:计算阶乘$ [8 }& p+ V7 a% b* w- O- d9 B
    python
    $ u+ ?  s  Y3 W+ t+ K9 Udef factorial(n):* l2 m: Y* q8 \! V+ o- q8 L* v
        if n == 0:        # 基线条件
    * a& N+ h8 S3 ]) z$ Q3 U        return 1
    , i$ Q7 ]6 l7 L: @7 N    else:             # 递归条件8 R  g  x2 c6 Z1 F. ~
            return n * factorial(n-1)
    ! {. V9 [& k8 g+ d执行过程(以计算 3! 为例):
    ( c0 ~( W$ o9 l: B8 Cfactorial(3); c# o3 m9 y0 l0 g
    3 * factorial(2)
    % Z2 n* D5 f, F' V& y3 * (2 * factorial(1))
    " I% I! t* f4 j' K5 f- m3 * (2 * (1 * factorial(0)))5 X1 ~/ K6 \! o
    3 * (2 * (1 * 1)) = 6) `" S  E  C$ c6 I# M$ c3 a

    2 d0 `  _. y" E' _! J. ~2 U 递归思维要点: s  k( ]+ a& E) v. ?+ l
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    : L' j2 k' T8 ]2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; u+ B! ]8 `0 C3 x0 I3. **递推过程**:不断向下分解问题(递)
    . J2 f* i3 _3 X  E/ W: o4. **回溯过程**:组合子问题结果返回(归)! g! ^8 f# H; i' b+ k

    6 Y' u2 m2 l  h. E( H; r. z 注意事项( ?/ d/ ?$ e) V4 c
    必须要有终止条件% Z* ^, |; {+ Y- h& T& S9 z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层), k  R! A( ]0 f
    某些问题用递归更直观(如树遍历),但效率可能不如迭代! \) e/ E# ]; X+ m
    尾递归优化可以提升效率(但Python不支持)% b- n9 H* F4 z" B6 R

    8 @& q. c; u% V# W3 y3 N- F, t) n2 Q( A 递归 vs 迭代
    & {6 Z, L& N. W& o; \|          | 递归                          | 迭代               |4 t! z; [6 ]: I7 }, e* `
    |----------|-----------------------------|------------------|: h/ I. k, f( Q& o
    | 实现方式    | 函数自调用                        | 循环结构            |* P' ?! L, ?' z. V
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |, T( V3 k7 s+ f" g
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |4 Z. O4 h7 B) C* D
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    8 I" K5 o( t& x: R
    7 `) r! H0 b: |' Z8 q" X( V5 | 经典递归应用场景
    : ?- c8 m: W8 W! t+ D1. 文件系统遍历(目录树结构)/ }% {- V- I1 T7 Z$ g/ f1 W
    2. 快速排序/归并排序算法+ e& p4 d/ ^8 j- N/ s1 F5 K5 H, X0 H9 x
    3. 汉诺塔问题$ y4 B( H  m3 ~1 a0 {  p% U7 n, z
    4. 二叉树遍历(前序/中序/后序)3 S7 U8 ~% l, r& M
    5. 生成所有可能的组合(回溯算法)' n4 X- ^7 u4 U" [; p/ e. x6 e7 g

    / Z" }% q8 i1 C/ j2 j4 S/ x8 ^3 W试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    7 小时前
  • 签到天数: 3164 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,2 e- V# Q9 [, j0 L. o% L* {, U
    我推理机的核心算法应该是二叉树遍历的变种。
    0 S9 e/ J4 Q9 L4 d# w/ h$ s另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:( Z# N; g( X8 ?1 \9 L; H% K
    Key Idea of Recursion+ A- q$ ?1 g2 U

    & N. R& b6 ], a  AA recursive function solves a problem by:
    . `: K8 t& U4 R
    $ ~) {6 G' s. ], O    Breaking the problem into smaller instances of the same problem.
    : V8 y& k1 w. e: ~  I3 p) r8 B4 v5 y' k# e$ S8 E+ C" i) X. H
        Solving the smallest instance directly (base case).; Y% q, h; g+ I( x3 H5 w
    0 ?; m. p/ P6 Q' I1 Q& l
        Combining the results of smaller instances to solve the larger problem.
    7 H0 B* o  b) u" {0 k) s2 `' u
    " F0 s9 p5 C$ T2 L4 G1 YComponents of a Recursive Function) B9 s" z- b" b& J

    / L. q. S/ q2 I* W7 v; c4 `    Base Case:2 }' W/ M$ d8 f8 t; m+ Q
      p3 O7 I* ^. h) {, p
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    4 [: H2 c0 b  K/ p. ?, r* H
    7 V  S* \( b$ {' w" }        It acts as the stopping condition to prevent infinite recursion.. J/ Q1 z: }' K5 ]/ ]

    ! }# s0 h- A; r        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    9 r$ m; y& Z; ~' {2 u8 `  s
    * a# x: m' t+ X: U- H8 }* \3 o    Recursive Case:
    2 X$ V# U# y$ m' O& c3 l8 I  y( b, w6 B% B
            This is where the function calls itself with a smaller or simpler version of the problem.4 r& {/ g( ^5 j1 k

    % y" L3 k. [: @  K! u1 V/ Y        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).2 Q- C8 M7 g3 K6 N# {; f# |

      ?; u% \3 Y1 M. ?Example: Factorial Calculation
    ) C0 N+ F* F. I& e8 T, o; L% B2 Q$ D
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    8 L4 P+ P  h- K' I. ~' B
    , f( ~" M% l7 H# Z! R; Q/ @" T7 z    Base case: 0! = 1
    . h. s6 ^& D# G) j
    + {( d2 ~, O+ b" W7 _    Recursive case: n! = n * (n-1)!3 h2 o5 t  M9 a0 W- V
    9 ^# f, P8 B0 \
    Here’s how it looks in code (Python):) f" A2 |% S% ]* v, r; K
    python
    # w) K) X  R5 }4 |) s) @" k+ E" Y( x- {$ a' K2 D

    - U/ W+ k7 [3 T* Q* fdef factorial(n):7 x/ d; i0 B0 G- X$ {
        # Base case
    ! B, I5 ^' }  _: G4 Z; _    if n == 0:1 t2 ]; y* |# H& q9 B8 P
            return 1! \$ k) f4 v. Z+ ]3 @! i# Z% x' m
        # Recursive case
    4 Z) B4 f& N; s- }8 R1 J- N    else:
    ; _+ x% u9 O) x- V2 F7 ~; x% [' y5 ^) k- [        return n * factorial(n - 1), e! X6 O) d$ h3 ^
    5 @% ]: e3 j$ ]+ q
    # Example usage  o4 m7 c! a& R4 R
    print(factorial(5))  # Output: 120
    $ i# s, C5 |, c0 d, q. [( u6 K* m9 y% @* }
    How Recursion Works
    & d- |4 [' P0 l! N- S# X, V1 Q3 c6 {+ ]6 m. P: M3 Y( Z4 }2 E+ q
        The function keeps calling itself with smaller inputs until it reaches the base case.
    8 N. W0 |3 o) _; h! H
    6 z! J) C; I7 r. r- ]; r    Once the base case is reached, the function starts returning values back up the call stack.
    ; k0 F( F1 b' V0 C- i4 N7 c# ?( F
      q0 H% {3 `& ~. a5 f    These returned values are combined to produce the final result.
    , R) W/ u, }! O" C( f& `( q4 G" l+ u  i" e; u% E! Y
    For factorial(5):
    * j! t$ O) Q0 f: n, k2 }$ X! g# z! ^; c# ?

    2 P/ a- w) C1 z' ifactorial(5) = 5 * factorial(4)
    " Y+ L$ M% D$ U& e6 m% Cfactorial(4) = 4 * factorial(3)/ c; Y( G8 w' X! H% ?
    factorial(3) = 3 * factorial(2)
    . e8 t( K3 e" d3 Y* B' ?factorial(2) = 2 * factorial(1)2 ]4 h* a2 t( f! ^4 ~
    factorial(1) = 1 * factorial(0)
    ) A4 i* O8 I% M5 Ffactorial(0) = 1  # Base case
    + i7 e& y3 ~$ {. i5 w: G: ?
      s$ o: `' {; LThen, the results are combined:0 ^/ _! D$ s' J! i8 n. n. X/ _

    9 L9 v5 u& `7 A. F& c9 v4 z
    % O+ E( H4 ~2 d* A+ w- z; M- @* L* h. Vfactorial(1) = 1 * 1 = 19 G- S9 b0 U( d
    factorial(2) = 2 * 1 = 2
    ; t, a& G! o7 f; c; J) M! U0 Rfactorial(3) = 3 * 2 = 6& b& B) k1 d% Y0 l3 Z7 E
    factorial(4) = 4 * 6 = 24# E0 [* J5 k0 r! F  k
    factorial(5) = 5 * 24 = 120
    " v% s# `' ~$ U% P' Q0 V0 l, S7 T( C! \$ O
    Advantages of Recursion
    2 I$ _$ ^. m; Z$ z2 T: P
    - m0 K; N; K( d2 z, m4 i    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    4 q5 F5 M) [* G) [
    4 i# b" \: ^& \/ P% d( \    Readability: Recursive code can be more readable and concise compared to iterative solutions." ^; F' }5 S; f7 x# d
    " T. ?& E/ s( \6 u/ ]9 a
    Disadvantages of Recursion
    2 G5 ^* l! \. q$ k7 i3 c( P9 Q; D' D- F5 L" u" _
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.- G" m& L- V. r* ?: k

    & V" e/ [" C, y; S; P" h* ^    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    " C& |+ V  f( {1 b
    9 b& m! f9 E; m/ F6 O! i- aWhen to Use Recursion
    1 a; T: K$ W) _9 Y7 `+ J* A* t$ t3 m" V* a/ c+ E9 L
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    , w8 M! e1 |! K4 b: ~1 b1 z" S  `3 F# {  K  q
        Problems with a clear base case and recursive case.6 S2 H2 I) Z9 Y1 h

    $ r9 a3 J( |, n" S0 V4 RExample: Fibonacci Sequence1 y$ ?  Q' l' A9 J( y4 P: }6 G
    ! @. X& ~5 \% Y: [: r6 A6 j
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    & l; Y5 n7 g& k) k# Z+ ?7 ]2 A
    4 T' ^9 f& A- c2 l8 j# y7 m  ]6 `6 g    Base case: fib(0) = 0, fib(1) = 1
    , v( z) Q" D7 M* E" {, G/ _) S. y. p" X; P" k' k- A$ a
        Recursive case: fib(n) = fib(n-1) + fib(n-2)+ }& ~% z+ c( X, q

    $ J- O* F; l5 Opython
    # W7 e( G5 N8 _( V" p: F8 E, L( i
    5 F+ w7 J9 Q! i$ K
    + o0 ^/ f& R+ @4 c" ldef fibonacci(n):
    % x, ]" {* D5 y8 }    # Base cases
    ' V6 K% P; q9 h1 v) T* V% {    if n == 0:( U7 N3 C. f& K' l# r  S2 A% N& p
            return 0
    7 [' @7 S7 y7 O    elif n == 1:' Y% K' ~( T% r1 g
            return 1
    5 c& _% y: B: t* |1 x) C' D    # Recursive case
    6 S$ o! [) f# U; o    else:0 e0 Y3 X( S- N! z: ~8 h* x% U
            return fibonacci(n - 1) + fibonacci(n - 2)( }2 r, ~" o5 j! u; ~

    6 [7 C% F! s4 p# Example usage/ V+ b' ^* W: C$ Y
    print(fibonacci(6))  # Output: 8" |2 C2 W& Y: F
    4 b( H+ Q2 o$ d4 h# D* I9 Y& F
    Tail Recursion. x0 `6 e2 Q  \' q

    8 f- }! Q- @* \# j) wTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    $ ~; V) ^% _8 ^5 q
    5 B0 J. K8 n! ~! n* _/ Z% D, KIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-5 13:59 , Processed in 0.055035 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表