设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1725|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 / J  Q5 X% F1 ~+ l( Z, K
    ) D4 b0 K1 g$ Y
    解释的不错4 f" h5 U) Q! Y6 F

    & ]9 Y# X% G5 v6 d# M9 q递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。, H' N8 ^$ q: l, H8 |

    , N, i* [: }) w$ } 关键要素
    # m' {1 d3 l- Z' S/ u1. **基线条件(Base Case)**1 }- W' |) }) z* U1 D
       - 递归终止的条件,防止无限循环8 c1 q& y& t) O2 C
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    1 h+ c( ]1 a3 L4 {0 g5 ~. T- f, V, J) k& u3 M8 ~; W/ ?9 X9 q
    2. **递归条件(Recursive Case)**
    : q# q$ r. j1 c. ]1 S/ C; H   - 将原问题分解为更小的子问题
    3 C# u4 M7 k' x1 c7 t   - 例如:n! = n × (n-1)!0 n9 d0 u2 K) R4 _  D, D- {

    . R( @8 s% |3 v% x) ~3 | 经典示例:计算阶乘7 T& y1 q4 [( B- g+ Q- b  _
    python% F$ s7 ?2 U% \" a; W" _
    def factorial(n):/ D9 Z0 r5 C5 W
        if n == 0:        # 基线条件
    9 S6 K9 L0 {2 o; B0 A) C        return 17 z  ~6 m# v. L6 E+ J" S! [
        else:             # 递归条件
    , h" z+ o" s! `* h( X9 z        return n * factorial(n-1)
    " \& o8 ^1 B' P) B$ @1 m4 w4 G8 o执行过程(以计算 3! 为例):' v8 a% r$ A0 t: j) N+ p
    factorial(3)
    6 U+ `: t4 U- ?4 K* I3 U% q3 * factorial(2)7 u, F6 A) q& D/ g8 K
    3 * (2 * factorial(1))* z7 k  s1 U* D3 O
    3 * (2 * (1 * factorial(0)))
    & E  k1 a7 `% ^% N# h7 p) I6 L3 * (2 * (1 * 1)) = 6
    / s8 {* C. W* O
    . W" K) H% R' `/ ?+ q5 _, N- W8 B 递归思维要点
    - @5 B& J6 H8 U/ J1. **信任递归**:假设子问题已经解决,专注当前层逻辑: u* A1 @" }" ~! B
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" q- e9 S9 x, A7 {3 F' Z; b3 \
    3. **递推过程**:不断向下分解问题(递)4 F8 _" I5 m; P% l
    4. **回溯过程**:组合子问题结果返回(归)4 v3 y/ {0 N+ ?/ r+ m

    " i. N% \3 p3 ?1 V5 I 注意事项
    5 v' ~9 Y# a; k  B/ N0 S! ~# T; W必须要有终止条件
    5 F* e$ C( O& y( _& ~& M递归深度过大可能导致栈溢出(Python默认递归深度约1000层)# s" j! o/ ]: e5 y; ]
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ) f$ n$ x) f; B. s6 b尾递归优化可以提升效率(但Python不支持)* [8 x- t( x* ^6 p! O

    9 C6 G1 _( b& ]- {8 F! K 递归 vs 迭代! V- R. F5 H9 l1 j; [4 N  @
    |          | 递归                          | 迭代               |' J; n& m$ k- w/ m8 C7 H5 E2 p0 O# U
    |----------|-----------------------------|------------------|
    " f/ M$ V. N9 S% I| 实现方式    | 函数自调用                        | 循环结构            |
    & z6 b5 H* `5 E2 V* d( X5 t5 f# X| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    0 L# k" Q; `' c* \  e3 r2 t+ _| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
      n7 _6 n" _' h' X" R4 i+ J| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    8 M- ]) O5 J# Z* L7 a$ V0 _
    ) T+ |! L5 n  C" F+ B5 h- n) ], l' f 经典递归应用场景4 H, e+ k8 q  h- f; i' b) T
    1. 文件系统遍历(目录树结构)3 a  k8 \% x. {) y0 Q) T" k
    2. 快速排序/归并排序算法
    4 @1 K+ G; x% I7 O" ]3. 汉诺塔问题  ^! O0 d* L+ w) ?! `$ @9 @
    4. 二叉树遍历(前序/中序/后序)9 C! p/ n- @" t8 X' [' i
    5. 生成所有可能的组合(回溯算法)
    / t  \5 @6 T5 ^; _0 k% E. F- j/ x4 q
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 14:57
  • 签到天数: 3134 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( I6 d& {+ Y4 z7 D' {" m
    我推理机的核心算法应该是二叉树遍历的变种。
    5 q0 ~1 J9 X- i, G0 h另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ( S. X4 d6 E! Q* ^7 JKey Idea of Recursion
    $ y2 _3 @# e  B. T% p$ i; G3 i+ Z
    A recursive function solves a problem by:- I8 D7 \- o2 m( I4 h* G

    3 M. l! q; h% x" R( O& e    Breaking the problem into smaller instances of the same problem.& i' `& ~0 E( j5 q% ]4 i/ J
    $ J6 l% \* n# O% w* U
        Solving the smallest instance directly (base case).& ?( d! h0 ~2 X" p6 |, W
    " F. M# c6 y, V" x. [3 e$ s
        Combining the results of smaller instances to solve the larger problem.- g4 J. m% e2 U8 c8 E
    2 ^9 @/ H0 U# A& i
    Components of a Recursive Function
    ( }4 @6 l& u1 l2 T. {7 q' W9 X2 ?  T4 q3 z" ~7 V1 P: n
        Base Case:' K0 g0 U: L) d' o" V5 ?8 m. j
    0 H1 j8 g: d0 z6 N. f
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    " W+ G( C% e; Q; S" [# l* s. F8 x' V" D6 [% C
            It acts as the stopping condition to prevent infinite recursion.
    / }& h  U# e' Y4 M$ L  b( L9 \0 k& _+ a. b+ i5 g
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.% E: _3 q: n4 G: P4 Y3 e. Y" F
    8 L  ]  j( h; Z3 M; J; Y
        Recursive Case:
    / a/ l7 Q$ x/ I6 I' H4 c. K' U' a$ q" s0 s1 O% r, {+ {
            This is where the function calls itself with a smaller or simpler version of the problem.8 T3 a& V: \7 c0 E/ p! O# K. m
    1 O7 j+ O+ q) s. y3 {* R
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ R, D9 @9 d# y5 {% h! m, [( K% M
    : P# B# M- \$ A) A6 o+ l" R2 @3 Y
    Example: Factorial Calculation
    8 s* U% ?( Z  W" i3 Q1 ^9 Z3 a
    , {. e, D, z( d5 L( M1 F  WThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    8 j' M! Y  a; I
    ; X3 A0 A8 Z" A- X    Base case: 0! = 15 H2 F! R8 X" w5 U" t4 s
    4 r" O5 O6 I7 z/ R
        Recursive case: n! = n * (n-1)!) }; ^" K& M( z% t

    ) C, Z. m" m* K5 MHere’s how it looks in code (Python):/ h( Q7 l( z% I! f" W6 B* C
    python8 t$ }% B- L6 x; v
    ' I7 c8 w3 C; L5 l& z7 _9 V
    - \4 @, a+ l+ G3 E
    def factorial(n):
    2 }4 s! N+ _' N6 R    # Base case
    1 S* b$ U# z, x7 d  E    if n == 0:' d1 w! m9 k# B7 @
            return 1
    2 u9 ~9 Y- O: N7 N    # Recursive case
    9 ]( U+ }! C5 g- B, B    else:
    5 r" [# C* r+ G( F        return n * factorial(n - 1): D7 y* y) Y5 _, _3 f. a
    3 t& p& m9 g: B. P1 ]( H/ h7 a$ D1 q4 E
    # Example usage! c8 P1 A6 M3 I) p8 D. z
    print(factorial(5))  # Output: 120
    ' I6 C# o! M4 o9 k0 t. ?9 Z& e
    : L1 m% t" O2 ?) i$ jHow Recursion Works, V% S/ C9 ^- S4 i5 H

    0 S# Y; m( C+ |& d    The function keeps calling itself with smaller inputs until it reaches the base case.  R0 i% c& }' W( i+ ~( d  W
    + C% @6 t3 D1 n- d& d# v
        Once the base case is reached, the function starts returning values back up the call stack.' u9 i! p& R* \. `. p, M
    0 ]3 u: {; O6 r" v) x
        These returned values are combined to produce the final result.9 ?1 f$ u( m; C: P
    , G0 i) E/ a6 w; m- p& g- @0 a1 b
    For factorial(5):- D; u5 t6 W6 \" P) G' _
    4 d  |* C. k$ Y: Q6 h

    & [$ {; q' B8 R! H  o% W. F0 ufactorial(5) = 5 * factorial(4)
    9 m, x# i/ p& Z" Y3 ]factorial(4) = 4 * factorial(3)3 K9 T" ~: {" V; I8 H) {
    factorial(3) = 3 * factorial(2)
    3 U: @. x7 p( cfactorial(2) = 2 * factorial(1)" l5 R' s& [( ~! H6 f% n; s
    factorial(1) = 1 * factorial(0)
    * Q: b6 G! `0 g. y% C3 A9 qfactorial(0) = 1  # Base case& Q7 y2 x# Z9 M) L2 M- N
    2 |0 ~, m& o1 ?. V6 B# B+ F! Z0 y. N
    Then, the results are combined:* ]# N' O2 }; @% x. E

    , c* \" e5 ~! v
    5 ^/ g" b, u, {/ y1 Wfactorial(1) = 1 * 1 = 1
    5 f% h! e% F2 C" ]factorial(2) = 2 * 1 = 2
    5 V' f( Y; Y7 Y0 y) {factorial(3) = 3 * 2 = 6
    1 V- }4 l: Y; w* H" ]factorial(4) = 4 * 6 = 24
    4 t2 T6 Q; o3 y4 H$ J# Z0 Hfactorial(5) = 5 * 24 = 120; _4 W# x/ a, ^/ V; W' @5 J1 R3 J) M
    4 [; @% R, k; T0 R3 D+ ~" n
    Advantages of Recursion
    * t1 ?+ T- h# ?/ D& S
    + G. t" [# i+ _9 B; U  R    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    , U0 D7 {6 z* j( m- N3 M7 z5 ?# g( i* L: y
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    1 t' a  d# [. `; ?8 ^7 ^' ?: j# X) N8 Z, v: H+ K
    Disadvantages of Recursion
    + o, _2 C( k" C; k$ S0 i( o* V1 v; Y2 d7 c) Y
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.4 k, E; l4 M  i9 @: e5 M3 C
    ! K, U: W* E8 z5 z1 X
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).9 R; T/ u, u5 Q! V

    9 y" |+ A* V2 y* [When to Use Recursion
    $ X3 @2 D& N* y! c1 `+ @9 K4 T
    . N" \/ a+ ^' d* j# c    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ) a/ W6 V; F! |* `$ `( W/ w4 \- N- d0 J
        Problems with a clear base case and recursive case.
    ! k* F6 G% ~7 V5 `* S" m1 B; o: p/ `  `; z2 S* [5 v6 N
    Example: Fibonacci Sequence2 S! J& [9 {: C( R. _
    & F% y6 q* _: A. f" q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& e3 U2 o: A! R) [
    6 H/ l# J  X: C0 o
        Base case: fib(0) = 0, fib(1) = 1) c* u1 g4 k* X+ j$ o
    9 @/ W- ~( ^5 u  o+ ]' e3 d
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    : X3 y4 K3 K; \: ?# ?) z6 ?3 E) J  E9 y2 T
    python7 t; Y- D. T& s! S0 \

    7 F3 i( C& h1 w8 T. S7 \
    ( r# }& Y' |+ R6 U9 f4 Cdef fibonacci(n):* x/ _8 c* h1 Z( z
        # Base cases
    # E; h' I/ r6 W6 S    if n == 0:7 @. t" R) i3 ?& n' n' ^; t5 J0 z+ `/ l
            return 0( h' r+ Z. X, E8 K' b1 f* j
        elif n == 1:- u) q- D  o! ^; f1 |
            return 1+ ]" `2 _& _8 Z9 d5 T5 }- M
        # Recursive case
    $ d4 @: d( o7 H4 h) S1 K; f/ _, i    else:' U  d5 ~& R( P3 p6 H/ \
            return fibonacci(n - 1) + fibonacci(n - 2)
    ( U* O8 z8 t7 V" F
    / g) c& [0 w4 O/ l: \# Example usage) D5 G! ^$ g# w+ z- N+ k- M2 ^! p
    print(fibonacci(6))  # Output: 84 S9 D  ?" ]4 i$ R$ ~& R

    6 ~, \2 O: f/ {Tail Recursion
    8 V6 ?% N$ j5 V, h5 g: P; x- n$ F0 |
    7 P$ W$ _- z/ V& XTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).- @' c' R* G0 L: D) V1 Z' j

    . g2 E2 a5 O) j& I/ X, PIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-3 00:43 , Processed in 0.042203 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表