设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1354|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 9 Y  p) d* r. T& E
    $ W& p* R6 k3 t" e, s
    解释的不错  ?4 J$ Z( w. Z' I1 X! X: g+ ~

    1 B- d/ {6 n) d4 Z0 L5 ^9 h7 Q递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* P+ F7 l8 H" @4 S1 w
      l; h. n% b" S" u
    关键要素, o, s* u( T9 a
    1. **基线条件(Base Case)**/ b% O7 b6 z, `; K# P% F
       - 递归终止的条件,防止无限循环
    ' S& e) e. n+ M6 F   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    + f5 ^* u# A8 E5 S; l% ^2 r' e- G3 b% S2 y. {3 Q8 Z( m; O- v% M; T
    2. **递归条件(Recursive Case)**
    * B$ J( f" u5 U: K, x! E   - 将原问题分解为更小的子问题
    3 ]* k2 a0 R6 D; ~5 ]. r$ Z   - 例如:n! = n × (n-1)!
    ) w7 W8 j6 n0 d/ V
    # S. z% [; V% \! x 经典示例:计算阶乘
    ) Z  J; U: O2 u* ~; _5 f6 [python  x3 e  H- d3 v
    def factorial(n):
    5 Q3 [9 f( Q* R( f7 l) P    if n == 0:        # 基线条件# N6 F$ s* D% z
            return 1
    ) E1 v$ v1 C, |8 c4 s: z' ]2 S# A    else:             # 递归条件$ {, v9 X) i! F- p
            return n * factorial(n-1)0 e5 O( B* t  H" I6 Q, H' Z+ ~
    执行过程(以计算 3! 为例):
    & {; q8 {% j. p  j7 I; l5 mfactorial(3)" h8 p( ^) C( a$ M5 E/ u8 ?
    3 * factorial(2)/ ?  ?- Z  r, K
    3 * (2 * factorial(1))4 f3 `$ R3 C/ _  a& |$ i7 k" G
    3 * (2 * (1 * factorial(0))): S2 o9 b* A3 M
    3 * (2 * (1 * 1)) = 6
    # w: a9 q, E" }! w( Z
    , Y( G8 f3 Y* g1 n% C& R$ D! ], k 递归思维要点3 X& B6 b' @2 P
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    9 g- ^' }. X* N2 E2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : G  Q, m' F' H5 z+ v- c$ X* x& }3. **递推过程**:不断向下分解问题(递)
    8 Z9 G* n$ Y' q' h3 G4. **回溯过程**:组合子问题结果返回(归)3 \3 c, E" w, B4 m
    * I3 W" [$ t- O
    注意事项: ^6 n- f: n6 Q9 b5 T( P  @
    必须要有终止条件
    6 T# W4 {, K7 L2 s, w递归深度过大可能导致栈溢出(Python默认递归深度约1000层)  H+ }7 a% C9 g( L) \0 a
    某些问题用递归更直观(如树遍历),但效率可能不如迭代8 b6 f0 O" g1 j" {) t9 `7 b
    尾递归优化可以提升效率(但Python不支持)1 K8 C# ?1 O2 U8 V" f: O1 f# M

    # k' a" A5 G# t; p* ]4 s* A" Z# K 递归 vs 迭代# _8 F/ X. y" x6 Q
    |          | 递归                          | 迭代               |' M' J( W" V  \- n" O4 J
    |----------|-----------------------------|------------------|
    + G2 W' L/ _" O7 i( D" J| 实现方式    | 函数自调用                        | 循环结构            |/ z; C" ^3 K/ ?1 B4 v7 z8 |
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ' M+ D# \% a/ h( b| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    2 X) [' @' {' R- d% e| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 {* i8 W2 E6 A0 R6 L' V2 G
    2 [' h" h% j/ s) ?  w  n 经典递归应用场景3 H$ z/ o2 i0 M* A4 H! {) K
    1. 文件系统遍历(目录树结构)
    & N5 V, f1 v5 `0 H0 D& {& w2. 快速排序/归并排序算法5 T0 A# j/ }# ?# r
    3. 汉诺塔问题/ v# t1 [+ K5 X2 T% w0 ]6 }
    4. 二叉树遍历(前序/中序/后序)( s& Y9 |% v+ b9 U
    5. 生成所有可能的组合(回溯算法)1 }6 K" z+ S3 @, S8 T

    % [8 W: ^' G* h试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 08:50
  • 签到天数: 3109 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,+ c; T) b. }" l8 o- g
    我推理机的核心算法应该是二叉树遍历的变种。4 p/ U) w5 u$ y; G$ [0 w
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:6 T8 `% j% c- [1 t  Y
    Key Idea of Recursion
    5 u) @6 U2 X. \- ~9 A
    ) f2 J# u( M! Q: X  `& d: [A recursive function solves a problem by:0 W) n8 X  w$ A3 G7 e

    : L' q1 c$ ~  D) m' g2 `$ }    Breaking the problem into smaller instances of the same problem.
    - @8 }* Q; ]* \, @8 |6 c. f
    $ P7 L! t! N8 k8 L& w5 m) Q2 u/ \    Solving the smallest instance directly (base case).
    ! W& d9 s& V7 D! k! {/ `$ F* a7 r% ]$ B4 f. o' M
        Combining the results of smaller instances to solve the larger problem.6 V- C: z3 t: @7 S1 S
    : @, T, r9 K$ }1 E# I8 {
    Components of a Recursive Function- I+ _5 W; u9 F6 p7 b; n4 d  e0 O2 s
    6 w0 ?$ r5 {0 i
        Base Case:
    . O: `: ^2 W( m" B7 Z% i+ \! O
    0 c! L1 T8 I7 Z1 g3 @6 Y" H        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ! A" s. h' U! Z; g3 \  T9 p- C. F+ @* Z' W
            It acts as the stopping condition to prevent infinite recursion.9 z) ?6 w4 X' }0 h* [

    * u3 R" v1 s. o6 s4 v' s. N        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    + f$ |3 r6 K/ N6 w
    - K/ \, r: ]. }1 ~7 b8 `2 i8 a8 X& S2 Q, q    Recursive Case:+ e  F, a9 [  g, h- E& D

    + @. y* R  q0 ~) j  T        This is where the function calls itself with a smaller or simpler version of the problem.
    0 m4 c+ X: I* T1 d$ p& W* Z5 m- q: [
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ b. t3 r# [' V4 R# x
    4 V; l" G+ Y/ T
    Example: Factorial Calculation9 [& @1 f; ~0 |0 Q" p
    0 T. R& ~. u6 B' `4 k, @4 E1 w
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    7 S" [5 K, p$ f# K; s9 ~
    $ @; R6 k% H, {3 l* I% s    Base case: 0! = 1$ q3 j. F( H. S

    - d# P9 K/ V! z( ~" c    Recursive case: n! = n * (n-1)!
    8 s/ {. U4 b# E/ u' a7 Y) S
    : S# G6 {$ S( d% N- G1 _6 wHere’s how it looks in code (Python):: i( I! q, m1 v
    python% B' W, c4 V8 c! r$ Z$ f5 |4 U
    ( M# l3 x: M" i

    6 v* W& N7 d0 L( F( Y0 T' hdef factorial(n):& V( e- a5 q# B7 G, h
        # Base case
    ' B% ~: J* Y- @; v$ L/ e  W    if n == 0:$ \! Q# Z* F/ c& q4 V1 y0 i* n8 X
            return 1
    - I7 j8 d5 q" W4 L$ v/ W* a- R    # Recursive case4 o0 f. H, ]3 f
        else:# }. ^7 W9 F6 Y" a. m, X$ _: L( E
            return n * factorial(n - 1)) T' |/ r3 [) A2 f" k" `6 v
    ! A9 Y+ H7 n- I
    # Example usage
    . S) A3 G  S/ m3 uprint(factorial(5))  # Output: 120( P; }$ b, _5 a3 [0 u, b, C

    8 u  ~2 R: ]4 M- qHow Recursion Works+ O3 {9 D, N' H
    ! z0 n/ y0 b0 A9 r- B) y& u8 ]
        The function keeps calling itself with smaller inputs until it reaches the base case.
    1 s; s. Z4 U8 J) {9 x! _3 a. A, r5 u; Z' @: y+ |* i5 J
        Once the base case is reached, the function starts returning values back up the call stack.( b9 L( y% t5 M( t9 `

    $ ?' i3 q$ h7 s+ `; c/ ?- [    These returned values are combined to produce the final result.) j: X3 B, B4 }& R
    * H+ X" n8 b- b  r1 i7 y
    For factorial(5):+ ]% m, M" z, g; W- i9 H! A- f( f, S5 u
    4 n8 @" e% r# g* v- a. i5 ]5 n0 x

    0 o$ @% I3 S3 V. j% Ffactorial(5) = 5 * factorial(4)  ]" Q" M7 S! h' H; K4 i2 I" V$ K; P
    factorial(4) = 4 * factorial(3)
    % d+ ^0 ], u. b; X, rfactorial(3) = 3 * factorial(2). h" e+ d6 M- c8 o$ K& k
    factorial(2) = 2 * factorial(1), J2 n; m8 @7 i, G9 k8 f
    factorial(1) = 1 * factorial(0)
    / D4 j  k4 M! }$ qfactorial(0) = 1  # Base case
    * q' E" C8 e& p, M8 `, p1 d& |9 p% [$ o; n) g0 H% e
    Then, the results are combined:2 W4 u9 e: ]8 E. O$ L) O

    : p; K2 a6 R  A. `
    " p1 A2 k+ o- B% E- ffactorial(1) = 1 * 1 = 1
    ; |; D  n/ d" f0 H1 O2 r0 Wfactorial(2) = 2 * 1 = 2
    + M+ F  ^5 W+ O5 Wfactorial(3) = 3 * 2 = 6
    / l* m1 E' Q$ O/ X9 nfactorial(4) = 4 * 6 = 24
    4 Q" l2 H( @" w; cfactorial(5) = 5 * 24 = 120; U1 D! q0 E: O: [( a& s

    & f. q0 l- H* U9 H' s2 a) N$ C! IAdvantages of Recursion
    : i" w4 k2 E4 `  l2 \6 v; Q4 a$ r" X2 z; A4 I. L4 F- T1 u2 u
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    + ?  P' l5 n, j. c! F* G* o- V9 S) p* [
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % ]8 [; t# Q9 r+ j4 {9 S  ~8 U( I" s  f0 ?8 q
    Disadvantages of Recursion
    ) {' D7 J8 s3 E2 ^% ]
    - L4 ?) f/ u- N9 x" w4 U4 [6 g    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.. f( ^" b( O& y! T8 `1 Z1 l/ d( F

    ( L" Q9 i' v# X. {1 m    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).) I' Y/ k% B; f8 |" d6 k0 e* w! }

      B( r# ]# B# Q6 X% O8 ]When to Use Recursion# ?5 [+ ]2 {7 {- A

    2 l& |8 ^% T3 @6 V    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
      P1 p$ ^3 ^$ B' {( P. C  ]' R& g  D( x! E
        Problems with a clear base case and recursive case.
    0 z. e- l' z/ C* T
    # q$ L" Q  I3 \/ |Example: Fibonacci Sequence3 V( P/ n5 `9 W, f) d/ `2 q) G2 m4 w
    # r  p5 r$ S: A1 n
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ e! M1 ]* V1 c  s" }/ ~: J
    & R8 X7 l* t& ~) k9 O
        Base case: fib(0) = 0, fib(1) = 19 C: @4 c; |; M" V

    $ u: ?4 I% g+ w; _/ q: t    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    & u+ V+ Q- h) r- m0 R
    4 w$ p7 E: V- s3 ?python
    ( L7 W8 j+ X- M) P( _$ j6 R/ |/ H0 G( v1 O7 M
    ) J/ b, H) t7 T/ \4 C$ \3 k/ c
    def fibonacci(n):' J! Q' Q  R8 ^5 K
        # Base cases
    9 F) b- \7 E( r8 b1 c9 U* m    if n == 0:
    9 r: W9 b% X5 G5 _( `: [        return 0: X+ _$ p6 |- e4 F7 ]+ ]
        elif n == 1:& x6 a3 v1 \- {* F
            return 1% k+ w# I. I/ g; \
        # Recursive case; y- ~3 d' I* B  q/ G7 ?3 ]
        else:
    9 K" B  n# ]5 l        return fibonacci(n - 1) + fibonacci(n - 2)
    0 \# F/ Y/ z! e' V( D9 A1 H
    * r" y0 b5 e3 g# v( f# Example usage
    # z9 B/ }- U* ^& Aprint(fibonacci(6))  # Output: 8
    ' N& Y* d7 O" \' R. F$ L* y4 ^3 U' M
    Tail Recursion
    4 y  h4 j- [0 L0 ]5 G7 J+ ^3 j$ |5 e6 R6 O+ g5 u  @
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    $ }5 d6 }$ [4 W# B
    % [6 N" i1 B; K* V6 ?3 _In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-6 00:42 , Processed in 0.041952 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表