设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1898|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : e3 y" F# B+ F! Z5 O# O. e7 @# G
    ! {3 g( y5 f* S( ]: O  E$ A
    解释的不错
    0 N# a; H3 N' q4 D/ G  p- |4 f9 }' [* B, B
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    , x  T4 t$ o7 i9 E% x) x2 m- `) a; T& K
    关键要素+ o' o" [3 r7 h
    1. **基线条件(Base Case)**
    ! k$ K7 M- D3 c0 a4 [& ?8 [8 k   - 递归终止的条件,防止无限循环* P$ I# v! q8 C% v# ~0 n
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  a: E! K6 c& r: S7 l/ n

    * U/ x% n! M9 j1 H- N2. **递归条件(Recursive Case)**
    / v- s5 U" b  q4 f# s   - 将原问题分解为更小的子问题- _- d0 e0 Q% G+ k% Y+ U
       - 例如:n! = n × (n-1)!
    % s# ]& n. l4 O  V2 ]/ d' m" n4 q1 }, J4 p4 ^3 \0 c9 u7 X  t
    经典示例:计算阶乘8 p% B+ o" t- I$ V, G# J
    python
    4 [) s9 X3 h( t; J/ cdef factorial(n):
    ! V8 e8 z0 f( {* P4 Z    if n == 0:        # 基线条件
    5 g; i0 E' y, }        return 1
    ' I' e9 ^( o( V4 ~. Y5 r* z' u9 c    else:             # 递归条件
    0 R: i. W: q9 s        return n * factorial(n-1)+ N9 e! }* [9 O0 o
    执行过程(以计算 3! 为例):' Y# y' j; r- U+ P, g
    factorial(3)
    1 y+ [6 e2 H& a3 ?3 * factorial(2)
    * F% y/ k+ D3 e( h3 * (2 * factorial(1))8 p5 f- K; C; ~9 t( y
    3 * (2 * (1 * factorial(0)))4 i5 u! C" L8 w* S/ j
    3 * (2 * (1 * 1)) = 63 g7 Y8 [' _. M$ J! r$ R2 F

    ; s+ R& [; Y! Z" l9 R 递归思维要点) x5 a/ t3 ?2 g7 n
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ) V6 l7 o& d) F' w0 x$ R/ `2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    5 Y0 Q# k- _; G' M6 }4 N# l: Z3. **递推过程**:不断向下分解问题(递)
    6 _# b% ^% C5 E4. **回溯过程**:组合子问题结果返回(归)
    0 ^4 v# T  H. {+ Q8 B" m* I0 I9 W5 n5 I5 D
    注意事项5 ]2 i; h3 V( N/ `) R0 G
    必须要有终止条件
    ( ]6 s' k* y( l; S" K/ p递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ' x6 A, G+ z" Z某些问题用递归更直观(如树遍历),但效率可能不如迭代
    6 H( ^6 @7 P5 `, V尾递归优化可以提升效率(但Python不支持)1 Z, h! K  e5 \  L. e; `
    . x8 K+ i' |0 k" j; }: e
    递归 vs 迭代
    7 i5 t5 l5 c3 y: d+ v* Z" p|          | 递归                          | 迭代               |
    7 Z! e$ S5 U2 k|----------|-----------------------------|------------------|
    + o, Z: m4 f! B" b8 a# N| 实现方式    | 函数自调用                        | 循环结构            |
    , d: D: ^. R1 U7 M, S| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 }9 p3 R7 n2 x. M$ W  y| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    - l/ a+ ^8 ^/ Z| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  i( \8 n& b8 `. g
    : X/ {5 n; H# Q9 f  ^1 l7 C
    经典递归应用场景8 b$ t$ k  {( g& U3 `( d: d
    1. 文件系统遍历(目录树结构)
    ( j  ^4 Y1 J; N2. 快速排序/归并排序算法: g# ]/ L) V  Z! j. S
    3. 汉诺塔问题0 x8 L" F$ ?) v  G4 `. L# S8 j
    4. 二叉树遍历(前序/中序/后序)
    ; j8 v) G, f% R- U8 q5. 生成所有可能的组合(回溯算法)  r/ `0 C8 `- U  g3 ~$ L! j, f
    ! q" i! z. W! u! p0 }$ H
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    10 小时前
  • 签到天数: 3150 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ g& C5 S+ `% ^) M$ K! _( u1 y% j
    我推理机的核心算法应该是二叉树遍历的变种。* O, {+ @3 C; p' h$ h
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:# E% s: |: |# M1 M2 g. B
    Key Idea of Recursion
    1 C  Q' V, }7 I+ m) c( g  d3 t/ X1 f) }* z5 p* k$ K
    A recursive function solves a problem by:* J6 v# w7 g- n1 i* D0 x

    . B0 l3 b: i8 E: I4 ]  j  \    Breaking the problem into smaller instances of the same problem.+ w2 l& x; H1 e. i6 f! i7 D
    * S3 M3 [: i9 X
        Solving the smallest instance directly (base case).
    ; G, Q  c8 m, u1 e# T( W
    7 M! i- F+ @8 z- J    Combining the results of smaller instances to solve the larger problem./ {$ j) ^( w3 C1 W* W

    5 f5 i  z  o1 fComponents of a Recursive Function
    ) V6 M2 W, }, i. Y6 b: [6 G/ O* {1 u, U
        Base Case:8 Z$ |" l* g. m2 [
    ) \% N3 v5 r3 [: E0 z
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    3 h: Z+ z& z6 V* D8 b, ~3 }6 b# H
      }' V& j2 [$ v! Z  m0 @8 J6 A% Q        It acts as the stopping condition to prevent infinite recursion.
    ! z: y4 h6 o% d( z  ]6 e- ?3 R1 T' x2 W. Y  b7 h4 a" [" _
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: b: |: _' H$ M- H
    4 v( B# Z, F$ I4 j8 o+ x; z
        Recursive Case:
    0 G; O6 ]- h/ `, O, s5 {; D' G% i  R! S$ C; r
            This is where the function calls itself with a smaller or simpler version of the problem.$ O) U2 ?  [$ W- Y% n

    1 P! a5 T  q5 m6 d        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).7 T# ^+ P% _, W9 P9 `

    7 d" p  U7 n) _: l4 zExample: Factorial Calculation4 l7 r5 H, L6 {, e, |

    ) G# t5 g0 V. P! AThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:1 @; X, K5 Z/ W* h- g* f
    / H9 Z9 F" |' _
        Base case: 0! = 1
    9 }# t% s; q% X/ n' ]1 I
    8 z! B9 h! ~# G" U    Recursive case: n! = n * (n-1)!, N2 A1 V0 [" q) H9 ^  G
    & d* A, x+ J6 Y9 z, x
    Here’s how it looks in code (Python):
      k$ e' V; r* g- }python4 d* r0 E$ K. T  y
    ' E6 j- r2 \" M* y/ }9 I
    3 A) V4 [) T+ u3 a- F4 R
    def factorial(n):( a5 C5 z, a) q. x8 Z
        # Base case
    3 A# u9 B9 _; X# l: D' k8 Q8 b" R    if n == 0:
    & B. {) y7 P, n% h. z% b# O' w# J        return 1# |: z3 J* e8 m
        # Recursive case- t; f3 e# j" O0 V& {; J: j& h
        else:
    0 c. }# k' p7 |# z  Z        return n * factorial(n - 1)& v% n/ i  a7 r- Z9 w5 {

      L( ?+ H4 h1 m* W# [  _8 M# Example usage
    , z3 a0 H3 k- M8 iprint(factorial(5))  # Output: 120* P- x% R# N6 k  ^# W3 T* ]. L: n
    7 e2 z, f# e4 v2 C( A5 F' B) M6 S
    How Recursion Works
    6 ]+ ]# V7 w5 n/ ~% b  o+ C; B( D! s6 D- a, W/ G  t
        The function keeps calling itself with smaller inputs until it reaches the base case.
    # b1 \: J3 K; B8 ]; `5 e6 O- G5 q! t: h3 A" @/ k
        Once the base case is reached, the function starts returning values back up the call stack.
    2 V, }  l+ b0 z( g, K; J7 ]* b4 R! \5 z5 z' M& g3 U  b
        These returned values are combined to produce the final result.
    ' n: L8 z" t1 {8 c% G
      n2 Q, G& V  i: nFor factorial(5):
    " M7 {  }+ _  s6 U% y: N* ?3 m3 a+ r& p$ U2 p8 p
    * _( ?) V- o4 b, X; a9 @7 X
    factorial(5) = 5 * factorial(4)8 N+ \% J" q' b0 y
    factorial(4) = 4 * factorial(3)) T" U( G5 o8 w5 ~0 X
    factorial(3) = 3 * factorial(2)0 l+ _" `8 p4 h. @# [5 K9 F
    factorial(2) = 2 * factorial(1)
    2 j) R' Z' A4 ^/ l4 Xfactorial(1) = 1 * factorial(0)
    , [( O9 M* L- K" t+ U9 Ofactorial(0) = 1  # Base case( \' B9 h* H5 a. o
    1 p- m8 P" X: ^  U
    Then, the results are combined:, b. }2 P. Z9 w5 s
    9 L, W5 y1 k6 D  U. }2 K) G

    5 j" V% q' f& afactorial(1) = 1 * 1 = 1$ l" @& I9 d# l' k5 F
    factorial(2) = 2 * 1 = 2
    6 c0 S  t; e# r" m3 Tfactorial(3) = 3 * 2 = 6
    8 P, `% ], h2 V+ P3 ~factorial(4) = 4 * 6 = 24
    , w4 L0 m, m7 g4 W0 N/ C, t* ?6 Dfactorial(5) = 5 * 24 = 120
    6 D$ Z, y8 o3 B, C4 _; \) e1 j1 h7 N" v1 ?' h5 A! I- G
    Advantages of Recursion
      {! K! a8 u' }5 E" N" A. w4 S, P6 k& S2 Y
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ( n/ a1 L+ U. z  ]. L$ a3 z2 d
        Readability: Recursive code can be more readable and concise compared to iterative solutions./ J7 G" b% I2 _4 z9 Q* D, S

    , e. A% ^( x  R0 k: q8 w6 O1 X% YDisadvantages of Recursion
    4 o0 x7 _; ]$ }0 [1 o4 z! }% V( i4 X' l4 ]3 b4 i) D* Z
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    : ]1 R+ _! x5 l$ G, f0 Q9 F5 Y5 \  J8 B8 Z
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).8 F4 L7 I! ?6 x6 _

    ( P4 s4 c) p1 O, ]3 }# oWhen to Use Recursion
    0 t+ w) ], b  T
    5 e- ^- x% [. }. i    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
      N) `& j( T" |1 E! h: |4 g, p- }* B1 x) o
        Problems with a clear base case and recursive case.* e5 d2 g$ U" u
    / J6 ]4 ?# V1 `# E: ]/ Z8 p# R; ^8 b9 A
    Example: Fibonacci Sequence- g. f0 k; F" h5 h
    ) d/ [: y- d3 B1 M& |; q8 f
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) D7 j$ X# Q; N, C0 v6 B) Y* z: ], r( b% X; E4 o5 w9 x1 f) D! |
        Base case: fib(0) = 0, fib(1) = 1
    : C) N7 u" X5 Y9 J+ Z- m: U
    . Q; c2 g# ~+ i/ ]! z" \    Recursive case: fib(n) = fib(n-1) + fib(n-2)' i, G  _" o& _2 z/ {

    : J1 N* C, ?3 x6 U/ gpython
    # o4 P! ~/ V# o
    . z5 |+ t  E9 Z* z% G; W  g5 {8 ]. ^. p/ s" I2 E( ^
    def fibonacci(n):
    ' \4 f. v' n9 J& M* J    # Base cases
    5 d6 P& |# m: X# h% x7 b/ _* w    if n == 0:
    5 i& k% P/ ^; t! ^4 C+ q        return 0
    3 K# a; X6 W. L% E% G3 j6 x    elif n == 1:
    & N+ t/ n, A6 s; j# d        return 1$ J, `+ U2 J) I! H0 b! ?# m
        # Recursive case- v. L8 t: I6 _' D2 q6 Y
        else:
    % ?6 `( p7 ^0 I4 ~0 I6 N        return fibonacci(n - 1) + fibonacci(n - 2)( P1 M, U1 p8 r9 ^+ \4 ~+ i
    : }8 _2 w9 x0 I) {0 W6 [4 [* c
    # Example usage
    $ ~9 ^9 j0 I$ ?5 x" |print(fibonacci(6))  # Output: 8: _1 z+ y/ n- p/ a8 G$ M

    * p" F$ R) u; E6 fTail Recursion2 l% H' z" z2 d, k9 E  s4 \- ^

    8 P, C5 N! ?7 z/ pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    % n9 c3 G* @5 ?( ]& }5 n$ _7 T7 j% s( g5 ~/ _- s. t
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-20 17:22 , Processed in 0.064879 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表