设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2025|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    5 c- h! z- l! @6 t) I
    , b) w, Y8 q( w解释的不错
    3 O( y+ i, k! D1 l4 T0 s3 Y' T  q9 O. f- c& x5 V3 K* E
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。8 p8 e8 L1 X7 q7 ]
    7 o0 B" J5 _3 b4 V3 v
    关键要素- s* A+ L% i! x. f
    1. **基线条件(Base Case)**
    . {5 G) M* l: Z8 v0 @7 ~   - 递归终止的条件,防止无限循环
    ) Y4 [5 N( j. A+ k  d) g   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 L; P! t* o. e( c3 w; i( ]
    0 s* L( O* D% U' L) q6 u' l$ `
    2. **递归条件(Recursive Case)**. C, r- G: i' f" r/ `& M
       - 将原问题分解为更小的子问题) m% x5 N( e; W. K/ t# |4 w
       - 例如:n! = n × (n-1)!/ s" B2 O) R5 B# X; \

    % Y$ C. c/ `% f1 H6 C" {+ }& Y 经典示例:计算阶乘. _' T$ L* ?: C6 Q
    python; R7 @- \" n3 D* ?" k
    def factorial(n):
    2 z: ]6 O& o0 m7 r, O- ?2 r7 n    if n == 0:        # 基线条件
    ! y4 R& O! D& i- h+ v3 G        return 1
    8 B$ l1 N  H5 ?3 U; [* f7 M1 P    else:             # 递归条件
    8 K% X7 |2 V' N4 J0 A$ q/ h+ Z        return n * factorial(n-1)
    * C+ [9 l; A# `% @0 n' K  g执行过程(以计算 3! 为例):
    1 j( C1 `6 R6 N/ T' \9 j" j  [factorial(3)
    * R, [+ \2 j& f: `! j3 k3 * factorial(2)) j' P: E( u  Q
    3 * (2 * factorial(1))
    / j: q4 Y! q! d3 * (2 * (1 * factorial(0)))! G" c2 p; _+ v& E
    3 * (2 * (1 * 1)) = 6
    # F& u+ ]+ f; ]' f* Y: h/ i- Q. t4 {, V; r
    递归思维要点
    # c: u% p& q) g1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    1 \; k. P3 }; T) ]' y  d2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ( e/ j9 O" v+ ?; @+ a3. **递推过程**:不断向下分解问题(递)/ ^- Y3 h2 |2 [2 E. E- [5 S0 {
    4. **回溯过程**:组合子问题结果返回(归)
    - C8 P* i' N( t# G
    8 f) c$ b$ y& j/ v; @- V( T/ h 注意事项6 e$ K0 P/ [7 J& _0 ~, U! O
    必须要有终止条件
    ) g; }, M% f2 [* m# s递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 H8 h. q7 ~5 S! m7 m+ R. N某些问题用递归更直观(如树遍历),但效率可能不如迭代6 w" X9 V# h% i+ ~
    尾递归优化可以提升效率(但Python不支持)8 y: M  @; L, h  U

    ( y6 R$ c: }, j( w 递归 vs 迭代5 K' T& ^  q1 ?7 z! U( N
    |          | 递归                          | 迭代               |( o3 x1 \* H0 N& j) t8 `
    |----------|-----------------------------|------------------|$ F8 o8 R7 i8 ?
    | 实现方式    | 函数自调用                        | 循环结构            |3 g5 s2 k( q( c/ Z& e  |6 }( I
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |+ q. R: Z- L! W4 D1 j" d  e
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |7 X$ Q  }( n6 N# f3 K3 t6 \
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    7 F6 O$ @8 [, |4 t. l
    + X( ^. W% b8 V4 a2 t 经典递归应用场景7 e4 U5 W; \( U; n+ ^) n
    1. 文件系统遍历(目录树结构)
    0 u  I+ h8 a! v( Y' Y/ V% T8 ]2. 快速排序/归并排序算法- @/ n% b' r6 x
    3. 汉诺塔问题
    - o3 a& D( H9 Z, ~. k8 p, N4. 二叉树遍历(前序/中序/后序)
    ) C$ A' O8 @1 R1 K5. 生成所有可能的组合(回溯算法)
    1 I, f' \' B- }6 Q
    : z+ j( K/ K/ ?, X; h8 x试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 05:29
  • 签到天数: 3165 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    6 g, Z* ^( n# u) b+ }. s" B0 s) r$ N我推理机的核心算法应该是二叉树遍历的变种。! A- G# e9 u6 G% k0 F2 W
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:$ F+ m+ p! ?3 P
    Key Idea of Recursion* s' R/ b* I" \) e

    . j) c  D3 G9 I" s% a  ?A recursive function solves a problem by:
    , h1 W# T% M4 q. T- Y1 Z
    ; y& l! h+ `) O$ K  I    Breaking the problem into smaller instances of the same problem.
    8 q5 q* l' @7 a( [$ D! h5 V; D& ~, b- l' ~) X+ k
        Solving the smallest instance directly (base case).
    # r7 i" e$ p4 h) T8 L4 i9 f( F# O6 R/ V- w5 R$ X- o# z
        Combining the results of smaller instances to solve the larger problem.* C9 Q2 x3 o! D' U% d" l4 w
    ; j' f! i% @$ e
    Components of a Recursive Function9 D+ t$ k; I) x: B6 W

    1 U) V7 b: ]1 j# ~0 {9 p' l    Base Case:4 {0 H4 w- S2 F8 A

    4 M% q* H1 o- s1 q7 J        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    5 y  N4 Y1 u( ^4 N# |6 ^* q+ A$ y( F8 ?! D
            It acts as the stopping condition to prevent infinite recursion.* |3 b' h- y! g& G7 a

    / }& f8 L5 k$ i+ W. Q- m% @3 M! _, w        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
      Y. t3 ]: W+ d$ m# p, e
    - F: B+ |8 z: Q7 V; T, u  \6 X. }$ [    Recursive Case:
    3 |9 p6 w6 X; Z& t! X9 D0 W) I* E' k
            This is where the function calls itself with a smaller or simpler version of the problem.
    * [7 F# i" T* \% j7 S. f
    & M' T; k' n: r5 x        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: G- F: ]* m( ]0 s# }3 a  S

    ; u; Y; Y- s7 d; L! rExample: Factorial Calculation
    3 i/ Y/ x  Q& ^! A: u, S
    4 v* R4 u8 C0 A; s; w4 {The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 `; S! u6 R7 V: S- L; N
    + U! z: s( y1 A; ?, d! M  U! a4 h7 G4 p+ I
        Base case: 0! = 14 J6 ?8 a4 a2 n- p# J4 u# w

    ! M# |  {  a' k& R) T    Recursive case: n! = n * (n-1)!
    6 J3 t" y9 U9 Z' J! v% D- ?2 v& W+ [- y( g6 t
    Here’s how it looks in code (Python):
    + G7 p6 ?( X% q2 C/ V; ~: @python1 Y, E+ E5 l4 m$ f
    2 d1 T3 U! L' V1 ?; @% I
    8 M' R7 P1 n$ e* F$ }
    def factorial(n):) H6 W7 r+ L8 R/ W  L
        # Base case5 J+ v! r0 k, T* E" u( S
        if n == 0:: \5 E/ {% ^; {& |" _( G, Y0 L0 Y
            return 1. U+ k7 T6 h1 }7 ]
        # Recursive case% w" k, y" u9 V0 @' O1 x
        else:, P& ?! ^& {) Y+ U& @
            return n * factorial(n - 1)0 o; c/ _2 X$ l& @' F% D* Q7 N

    * |5 H  C/ N* d) l0 H1 R) j) L1 I% L# Example usage* O8 w! E* U! M/ J+ c
    print(factorial(5))  # Output: 1202 B* l" P9 }1 D" V3 x5 |6 K- k% Y/ a
    6 u9 ?$ \, d, y+ D1 ~
    How Recursion Works
    6 i) D# ~; [- r5 p( v5 N& r0 S0 q7 d$ Z; T. r
        The function keeps calling itself with smaller inputs until it reaches the base case." z7 A9 n+ H" N+ ?) v6 ?6 p6 I

      x( t/ s' x) ~' V" ?    Once the base case is reached, the function starts returning values back up the call stack.( R% u5 ?/ Z. p8 g( p
    . x5 V0 K7 M9 [6 D) H7 |: M
        These returned values are combined to produce the final result.2 G3 w9 a& z( ^1 A7 f
    : f) t4 e, Z6 h! o4 u7 H3 k
    For factorial(5):2 |) e: O1 a8 X2 m" [0 X

    : p# a! |4 c7 L8 D/ x! y( R( z
    8 N2 z2 X5 h1 o1 u6 pfactorial(5) = 5 * factorial(4)$ ~5 Q) i& p7 Q" |2 [, X. d
    factorial(4) = 4 * factorial(3)( I2 R4 c& C4 i, G4 K
    factorial(3) = 3 * factorial(2)- Z3 E7 A. p+ g. t5 }
    factorial(2) = 2 * factorial(1)3 u+ q9 s0 D# I/ P8 o
    factorial(1) = 1 * factorial(0)! m( F, ]1 `+ V, j8 q3 L
    factorial(0) = 1  # Base case
    6 z  X1 w' c+ r6 g
    4 ]* \9 |3 D' U3 O+ _. i) pThen, the results are combined:
    $ C( [* h" w- X. E: `1 ?) r* |+ d! r- \

    6 x, v& c$ G( Sfactorial(1) = 1 * 1 = 14 ?1 m3 o5 M( _
    factorial(2) = 2 * 1 = 2( r3 c! P# I# D2 J) Q5 v! G) b0 b% B
    factorial(3) = 3 * 2 = 6
    7 m/ x: R; K( s# o4 T. tfactorial(4) = 4 * 6 = 24
    - i; G% r  F) z( R) R6 H+ ?factorial(5) = 5 * 24 = 1202 {& O" [  \5 y

    ! c3 A& ~1 G% KAdvantages of Recursion2 t' q% ?2 F( R: P" H% e/ [: z

    $ j0 E4 d& ?% v1 K% z3 p* v    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    3 W- K  d- |) c$ M7 X  @0 A. O# m8 S
        Readability: Recursive code can be more readable and concise compared to iterative solutions.; W/ p2 k8 A- P7 {% J$ b

    $ V# a8 v4 q2 s. [9 z9 P/ TDisadvantages of Recursion
    7 y6 Y7 k, ~: l2 ~& x& U
    & k: d( P8 ^9 o. a# u6 {6 l    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    6 M9 A! {4 |. g( h3 Z2 `: j9 v- x3 W( M0 Y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* B0 `6 L, ^! [# L: r2 E/ b
    3 j4 ]! i/ U# O& a
    When to Use Recursion- `$ g% }: F/ i6 |1 [2 C. o

    ) A1 V, N; j2 l    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).. X- B0 \  I  ^  D
    ; p* T% `  J7 A+ v8 y3 z
        Problems with a clear base case and recursive case.
    ; M6 |. X6 C, k1 T
    : a! B; [  Q+ T3 m& B' ]  }/ p: rExample: Fibonacci Sequence
    8 V( \0 Y& P: b+ }6 M
    ; X# `4 O' ]0 K& O  P# wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:9 H1 a% }1 V0 L" P  y
    . l( B' r# S; k. |( b
        Base case: fib(0) = 0, fib(1) = 1
    0 V9 c/ p  y% i# F& z
    / A2 {# s# }$ ^+ f    Recursive case: fib(n) = fib(n-1) + fib(n-2)! K5 b6 @- m2 T4 \) X( r) l  f
    7 A, v7 c8 D! B/ }, {& g$ @' A+ p
    python; H& \+ d* t* Q8 M2 B

    8 }! X( Q, V2 z8 v% ?0 Z( O
    $ q5 U# x% }: ]- ~/ G$ edef fibonacci(n):6 W3 H$ y+ d+ Y$ s. H( m/ m" z. O
        # Base cases
    $ K9 ^- V4 ]" e    if n == 0:
      {) {! s8 l6 X( q" s  ?/ J        return 0) ~2 I( N5 M6 {( C
        elif n == 1:
    1 w5 I( }7 ~5 b, u/ B# k        return 1) Q" E1 {1 l& ^% [, Y8 Z- Y9 t
        # Recursive case
    " E. f8 ]0 x( |5 f    else:
    , A' T" @  E2 a% t: t  K        return fibonacci(n - 1) + fibonacci(n - 2)
    5 i! G6 O) V7 _6 D0 ~. ?6 i
    2 l! C( i* @2 r2 i2 b3 h# |$ _# Example usage+ a& ]2 g. }7 U+ x
    print(fibonacci(6))  # Output: 85 a5 b  i$ C8 |

    1 ^+ g, e+ @# c. _: Z- O& dTail Recursion
      x" v/ l5 J2 h' m
    6 B' D& i4 F0 R6 I$ JTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).$ A/ @" J# F  Q/ r
    , t- c: C7 q% e- m
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-7 13:00 , Processed in 0.066832 second(s), 17 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表