设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1622|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    : I9 d- {3 I) j9 n/ _9 p% o. H1 V- z" u2 Z( m0 A& S
    解释的不错
    ) o, P# R& Y4 V6 |2 d( y, s3 d, s1 }* O6 Y2 W- {. x( j* Q
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    : y3 h3 k0 D' N. ?
    ; V6 v* g. Y5 |) ` 关键要素& O6 `8 [; M+ r+ a
    1. **基线条件(Base Case)**% Q4 W, d4 j/ a
       - 递归终止的条件,防止无限循环
      A2 @( ]4 h3 v5 U  g# f+ }   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , Z4 @$ O3 q) [) B3 [
    " b, c& b5 {' T/ S2. **递归条件(Recursive Case)**% `3 C( n1 a+ t- N1 o
       - 将原问题分解为更小的子问题9 ?. N; [. S( i$ v' N
       - 例如:n! = n × (n-1)!
    - x6 _0 I1 W6 u: {0 {8 M. t. ~+ p# r1 w2 F2 c
    经典示例:计算阶乘
    " v7 ?# K. X: X9 I; ?$ Mpython, [/ q) Y7 K( k  h3 D
    def factorial(n):$ P7 H  C, B, S% ^: ?
        if n == 0:        # 基线条件- c9 C" h+ H0 X( Z/ \
            return 19 w6 P2 p2 d& H0 M$ j0 o
        else:             # 递归条件7 H) [) D! ]  R/ z
            return n * factorial(n-1)
    ' _/ s0 r  a) C. V- k& c执行过程(以计算 3! 为例):
      E7 n& u4 C) h7 I. \8 P; Wfactorial(3)
    1 C( V# w" [8 }3 * factorial(2)
    ( V4 A9 V; M- ]' \, k3 X" J3 * (2 * factorial(1))
    , z7 I& f0 u, `8 y7 }7 h3 * (2 * (1 * factorial(0)))
    0 X: N, X( B9 j  e8 l5 g3 * (2 * (1 * 1)) = 60 \1 r+ K6 z7 M5 F' p6 V

    - N" H: |7 t1 \ 递归思维要点
    ( C* _4 p% q8 |# H! [1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    / `- j$ z2 x: @. n- B  g* Z9 \8 W2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
      g% F7 A" e" {( E" K3. **递推过程**:不断向下分解问题(递)
    ; l! P7 o; [9 E3 F- E4. **回溯过程**:组合子问题结果返回(归)
    ( d. h8 f7 J' t
    6 C6 B9 w9 H5 u5 G, k2 S 注意事项
    & V, i6 n; L( l" g$ M必须要有终止条件4 X( y( Z, c2 r$ |
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    5 y9 P* o5 _: ?3 i* f% A( s- _0 d某些问题用递归更直观(如树遍历),但效率可能不如迭代4 @6 t# H  k+ D
    尾递归优化可以提升效率(但Python不支持)
    5 q# g5 U# k; U% C: F/ U9 i6 l9 x! d# W" v7 n
    递归 vs 迭代
    & o5 G: |# v; y/ r# D" `|          | 递归                          | 迭代               |% [) I4 B4 [: [. ?
    |----------|-----------------------------|------------------|
    " `8 s, _, @( w5 x6 b2 ~+ b| 实现方式    | 函数自调用                        | 循环结构            |
    ) L9 \: ~1 }6 s  `4 Q| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ' K4 A1 |% Y5 v7 z  v; [, \| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' m, l- w6 |- H
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    + \; Y6 O$ S" |: w0 U# \# ]0 e- m- q. b: k- E0 F! K" C
    经典递归应用场景
    6 X" I- ]) C, o1. 文件系统遍历(目录树结构)
    3 Q  M& k' m. R; R5 b2. 快速排序/归并排序算法/ W" P1 R$ {( w( r8 N- P
    3. 汉诺塔问题
    ! E& v; D& X/ e1 \  ^2 a* n4. 二叉树遍历(前序/中序/后序)& ~5 |3 {2 q' A( j
    5. 生成所有可能的组合(回溯算法)* S3 x  V5 Z& e
    ' G( V2 ?. q, P. ?/ l
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    9 小时前
  • 签到天数: 3126 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, F* ~' f% i- T/ u- F/ C5 W
    我推理机的核心算法应该是二叉树遍历的变种。
    8 P0 f* B0 v+ j0 Z另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 P) i1 ?: Z$ ]  }; w: T
    Key Idea of Recursion1 e: W8 L: B5 Y( f7 p
    % L$ f6 V2 b" I  q: W) [, |6 g
    A recursive function solves a problem by:
    ' c7 U, X0 y# A8 |& @: ~. y8 T- X- C& h2 o
        Breaking the problem into smaller instances of the same problem.! N' e( U9 h+ n& V) _4 t
    + y/ h' C: k- G7 q  z4 x
        Solving the smallest instance directly (base case).$ v4 ]6 p* V, ]+ o& V9 N
    - Y+ N( W) f' n0 v& T
        Combining the results of smaller instances to solve the larger problem.
    ' Y% Z1 i  A! D" v' X% w3 @5 C0 C6 B9 ~2 T5 Z; \; X: s4 e
    Components of a Recursive Function3 P8 l! C0 p+ v& b' K

    1 q8 M( X% _# `7 @. L    Base Case:: X" n4 a% B1 X2 |" ~/ Q

    4 V# B! |' Y- M% g" @' O+ k- G5 P        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 R* M8 f9 Q5 {. C; ^/ G+ n! I# v' c" @& s) Z8 [6 y; t5 i+ j: d
            It acts as the stopping condition to prevent infinite recursion.
    $ V% [1 d- n1 d2 P6 @1 N. E1 U! b% f( ^: A* r/ l1 r4 W. {- O8 x5 a
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.7 U4 b! E" w" Y' i
    7 {8 u: ~* ^% }
        Recursive Case:
    : p1 z  V  `) q# ~1 [, I5 `/ U* o$ y  }
            This is where the function calls itself with a smaller or simpler version of the problem.& i' Z2 R- B) l+ t5 P) }( Q
    ; x. Z+ Q8 D* F  d
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    # P* X# I! m/ x, a1 J5 M; A& J3 I: B% ^$ c/ q+ l) X
    Example: Factorial Calculation6 U4 j# p& _1 u9 j, H

    4 G6 Q8 u( `& K, b3 w$ r3 S4 qThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    - ?9 t$ U2 J% \' b/ \% c5 c8 J3 L  ?. z/ l0 ?8 A1 t
        Base case: 0! = 13 {; [: Z3 V: U; ]
    4 L+ W' @7 _; n: W+ H
        Recursive case: n! = n * (n-1)!! l/ G0 t/ v: H5 v/ f# _8 b
    9 R# B+ W/ Z2 I9 b) {
    Here’s how it looks in code (Python):
    # N& s" _  ^/ @( a3 P0 a% ^: Hpython
    / F. E) I* r- B% L! r9 z1 x# C& j$ G
    8 m* t3 V+ Y6 i6 j) u. u8 C4 ]% T/ C
    def factorial(n):! U# j; H! a! a
        # Base case
    * [5 b2 n$ ?: r. E3 C    if n == 0:  N1 B7 C& Q4 ]
            return 1# q  W8 S$ d/ u( t
        # Recursive case/ M$ w, S" W; i9 z4 c; q
        else:; d4 Q# _( C( t4 l) |1 S
            return n * factorial(n - 1)
    6 ~7 j- r+ D8 D+ R$ x" Y0 t1 K1 w# o9 _, y
    # Example usage
    9 G" e8 T' d: K2 ]) ?( v' U. Bprint(factorial(5))  # Output: 120* ]( J* v% I; f$ I  G
    & S8 F/ k. O; J9 [! l* A6 A
    How Recursion Works& U: U: D+ ~- c# C
      W. q% j0 ~9 K! k. j7 t8 ~1 U
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ! h  ^& J% Y( S
    0 h, |0 Q; {( D, T. S: O3 D( N    Once the base case is reached, the function starts returning values back up the call stack.
    : u" K+ D* f, @- N' [+ z$ l) }* z6 w
    9 Z7 m7 v5 L8 ~: `1 t    These returned values are combined to produce the final result.
    2 j) a/ ^. N# C( ?2 F( v' m7 d/ x+ Z
    For factorial(5):# [, C9 `/ A+ X$ A
    1 O8 v& `. G8 F; l2 Q' N! u
    . e$ O) q- q7 f# ?$ y) {! i
    factorial(5) = 5 * factorial(4)% Z) A2 _$ ~2 d. O( f$ P
    factorial(4) = 4 * factorial(3)2 h( D8 X% |$ Q( u5 ?" i
    factorial(3) = 3 * factorial(2)# ^+ x! I9 ^; J! C1 z
    factorial(2) = 2 * factorial(1)
    6 g! X( v6 R1 P/ mfactorial(1) = 1 * factorial(0)
    $ [1 @& p6 c3 |& [factorial(0) = 1  # Base case: _6 U7 S# g/ K" s$ h; Y

    ! B; `. o$ s3 Q! mThen, the results are combined:  L0 T; }5 {* y- g* ^" x8 U) ~
    % x8 D8 o* ^+ t4 ~0 |5 [
    $ o* ^1 I' n8 l# @( j
    factorial(1) = 1 * 1 = 1
    * h2 t3 c% L( sfactorial(2) = 2 * 1 = 2" P& d6 v! q) Q- \4 o( Z0 d
    factorial(3) = 3 * 2 = 6
    % {* g) |# g5 u% y! F/ T& b( tfactorial(4) = 4 * 6 = 24
    4 N5 _, ?/ o1 }factorial(5) = 5 * 24 = 120) y3 R2 C7 O6 i" s7 k

    4 P8 f; X0 k1 L) }/ ~  I1 k7 T. [  W  jAdvantages of Recursion- [* J) N& }. s- o7 f6 ?* v
      V2 H1 M- S. B7 H
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    / c* F% d$ J; U: u  T3 n5 c% |1 `* v- Q3 M/ w
        Readability: Recursive code can be more readable and concise compared to iterative solutions.6 @8 ?% e$ f) X3 W& }4 Y# N
    % y' C2 y1 U, V" W- O
    Disadvantages of Recursion! |; F7 y7 H6 S% P' l" A/ [2 |  |

    0 g8 g0 Z& `( E. m* c: [* _    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion., q% o) s# r* y/ o2 O

    5 b6 Y" j# N" Z( r0 V. A    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ) g9 i9 U) X/ y0 l
    - Q9 d$ z4 M6 _+ N4 GWhen to Use Recursion
    $ g! i5 |0 m) g0 k+ A- M1 `) ~! r3 V3 u$ w) W
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    % q8 ~+ t  `6 _: Y1 Y7 c' C5 H. P/ ^3 J( p5 {
        Problems with a clear base case and recursive case.
    ( b- m3 V1 r! F: h
    ' ?$ S8 r8 B9 f8 F. \) iExample: Fibonacci Sequence' [9 y% D; a& D8 _
    * ?  u) {- |7 Q* z7 S( I7 q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:2 |+ x" B) {6 N1 o2 d

    , c$ n) _  m# w" q# V) O    Base case: fib(0) = 0, fib(1) = 1
    / ^% p2 a! K6 D9 P' f2 z0 M! P7 G# C/ i) O5 t. @3 t# R
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 ]7 \5 `9 f+ m
    / f- H5 j. X1 E* ^2 t) P4 z+ Y% _) _python# w1 }5 x4 L* T  r0 _" m6 X8 o. V

    2 c) ?+ B# d  S" p" W$ ~) D9 Y
    2 E4 J# e5 _& s0 s2 {4 G* Q: q4 T( mdef fibonacci(n):6 c( t  n9 m: N$ z' t* H
        # Base cases/ @4 V! n% ]. K; \9 r% g5 ^
        if n == 0:
    : l8 E. U, j( _9 F        return 0
    . s2 ~% x2 W) \9 J+ F6 x7 R    elif n == 1:) U' Y$ {: u6 A) r' N
            return 1
    7 u: u! g# u6 i    # Recursive case
    / m6 Q4 B$ `4 m$ B8 B5 a    else:
    - l' W. O  T6 U( T        return fibonacci(n - 1) + fibonacci(n - 2)
    - }8 ]; I6 s( X. A6 ]( A
    ! ^3 ]/ B; K* M) J# Example usage0 i9 b/ L" e# z( J
    print(fibonacci(6))  # Output: 8
    ( l) H6 T9 O4 }4 \* J6 M3 `. L7 h, Q" F3 U, n  f
    Tail Recursion- z" G1 I0 C5 v1 m2 R- D
    3 r0 x1 S7 K0 U
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ( b, t7 i; j4 l
    0 C8 [* K1 n- m* a$ tIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-24 17:39 , Processed in 0.030110 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表