设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2095|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    " v) o: ?$ [( W6 H  ^0 t; U3 x
    9 {8 {/ t& u  _0 ]. x: Z% D3 E解释的不错
    % G- ^4 g) P" _. {& O7 x; q$ j% J: v. ?' a& r9 b
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ) {4 i) ]/ [5 B7 v9 Q# }% W3 v, u7 c6 c# P3 m
    关键要素3 z/ \" ?+ x; _
    1. **基线条件(Base Case)**
    ) Y2 o* E. ~1 z! a" \2 e, K# q   - 递归终止的条件,防止无限循环
    / m8 T. w3 J3 J# E4 b% f' W# C   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    8 f! Z% P4 ^+ X
    0 N5 w0 m" K: ^: f6 U  F! @& r6 r2. **递归条件(Recursive Case)**
    ' u9 P' u, v* Y4 ~7 S2 [   - 将原问题分解为更小的子问题% d0 s5 ~0 x; F+ H
       - 例如:n! = n × (n-1)!
    ( n5 R- P& A) l+ ~$ F" S- m5 ]3 \, Q" E/ w9 e; a0 a
    经典示例:计算阶乘+ j2 n( v7 r' e( F
    python& z" {- K6 d& Y0 y: y( P' L& I
    def factorial(n):+ e- H$ r1 p  Z3 d( n0 w1 @$ y
        if n == 0:        # 基线条件: Z2 l8 t9 U* L: n: [  o/ R! m
            return 1
    0 e5 g; C) L, [3 ]5 l    else:             # 递归条件
    " ]5 X% O: X! z1 d. M        return n * factorial(n-1)
    . b( ]3 W+ k1 j( s执行过程(以计算 3! 为例):- ~$ v1 T  Y6 s: I: O. m% x, X& a
    factorial(3)
    ! m! j& m% r% s/ _" ?4 M7 ^% u3 * factorial(2)
    1 d& t) p4 h5 j5 i5 D0 Z# q3 * (2 * factorial(1))9 @# C, p) t* s; T9 |
    3 * (2 * (1 * factorial(0)))
    ( G$ B, j5 T; M( e, j! m. }, y3 * (2 * (1 * 1)) = 62 I2 b9 q+ X) ?2 t

    # n) |5 w- e1 X* K$ [0 c 递归思维要点
    9 b/ F9 r( H( D/ m5 S8 P1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 P7 T: X; B2 A3 U$ G2 O0 t2. **栈结构**:每次调用都会创建新的栈帧(内存空间)3 D/ A: B5 o: C# ]
    3. **递推过程**:不断向下分解问题(递)
    - E) E! P0 |7 K5 g0 H4. **回溯过程**:组合子问题结果返回(归)
    0 F/ g; g4 K+ _# V  O' @7 y0 z+ M( w: ?$ H1 }( n/ n' d. ^
    注意事项' }4 `; P6 Y4 k8 U
    必须要有终止条件
    1 U% Z- \, L: C递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    & Y  Q) I  q( g5 I' @0 k某些问题用递归更直观(如树遍历),但效率可能不如迭代, I+ z+ `8 }0 W5 x* @( C
    尾递归优化可以提升效率(但Python不支持)
      \& k$ a' t& R" C
    & V/ V, B" `; V/ y" y 递归 vs 迭代5 v+ `6 `1 a  v+ z' |- u7 C
    |          | 递归                          | 迭代               |' Q# K# I5 w/ l  F5 E- q6 Y
    |----------|-----------------------------|------------------|0 J7 U. z6 P; U: L7 B" K7 U% U
    | 实现方式    | 函数自调用                        | 循环结构            |5 M* {/ R$ [) B* K* [& s
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |% H- g& M( u$ _" h
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ) E4 k, T* i3 }( u  @; Z3 O2 v| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  c; H: f7 ?- k
    ) {' v9 ~7 }  t$ ^2 U
    经典递归应用场景
    * L0 a8 r' u, a. t1. 文件系统遍历(目录树结构), z; G% }2 B9 j3 u3 o: Y/ z. }
    2. 快速排序/归并排序算法
    2 x7 J% M0 l+ e0 a6 y8 v) f7 C  O3. 汉诺塔问题% E8 V7 o! \9 z/ @
    4. 二叉树遍历(前序/中序/后序)
    . n0 r+ U- G3 p. Z; C( A; ]5. 生成所有可能的组合(回溯算法)
    9 A3 l5 t7 W, I& K. e- _9 o6 j! v* g8 d4 E! p3 J. K, w
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    6 小时前
  • 签到天数: 3175 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,9 @. I/ U$ c8 Y3 a/ u
    我推理机的核心算法应该是二叉树遍历的变种。
    . z# y8 i& a( Z& l0 r另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ' {+ l/ F6 \0 {! O  c& b+ AKey Idea of Recursion
    , \8 F5 i& `- {- `
    ) _/ O& v8 f' H% SA recursive function solves a problem by:, D  f7 P0 E) g" R' O

    8 T; ?2 i- q: a: p$ u% I' k+ _+ X    Breaking the problem into smaller instances of the same problem.
    + \2 E2 o: u: J) |6 m$ W( C* u  g/ K& q/ G8 F7 W5 V$ T
        Solving the smallest instance directly (base case).( ?2 @/ U4 L3 R' b
    1 J/ s! k& M* Z# z$ s4 N' }$ N
        Combining the results of smaller instances to solve the larger problem.
      S' R8 W8 F  S* R
    ( f" ]5 \+ p+ ~7 }7 F# w3 |Components of a Recursive Function
    / _" Z3 L8 {3 B# Z' q1 ~/ ]4 j% z8 g: H% w
        Base Case:2 p( R$ V7 m' t; n6 b

    2 D  c- t6 V$ e. Z  t! E        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.% m1 V7 R2 N4 L) p/ D6 O

    & u' t) _1 q$ [- A( o        It acts as the stopping condition to prevent infinite recursion.
    & k4 l9 G- A: S( ?6 V" C% w7 l! c+ Y! ]" i. r& z
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.# p4 W% g8 v4 J2 R
    9 `3 Q: u+ F  T! f
        Recursive Case:- G1 R* y1 ~5 _; K
    + p' e  \1 R/ {1 @
            This is where the function calls itself with a smaller or simpler version of the problem.
    1 q" K) |/ [. `) w
    ( @0 ~3 A; r- H& d0 @' z        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    & f" b0 H9 J( L+ p6 m# W) {7 H8 ?* V! z' }7 m, b  l
    Example: Factorial Calculation
    ; A, ~% r/ p9 i$ s
    ; l  @; Y) {( k. w  vThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  Z' E/ t% S9 t/ J9 M
      K4 Z9 O9 ^$ W4 R( n
        Base case: 0! = 1
    / e8 Y& P+ }2 [, D# Y. \' y4 g
      I* F" z- m, J" v+ `    Recursive case: n! = n * (n-1)!
    ( ]$ Z4 G3 f3 T3 k$ A9 [; Q
    - \1 ?6 a; V' G+ _+ E$ Q5 ?Here’s how it looks in code (Python):
    / O+ Y2 m) I: i8 A6 Wpython  N/ G" E! i9 ]" F

    . Y& c& O! a- D( M) `8 X, Y! |9 v# J: x- h8 C' f
    def factorial(n):; B7 t& E" u! ~0 w( t) O. u
        # Base case
    2 I/ D0 ^/ O2 }7 J    if n == 0:1 s+ F. U3 p; |! s9 o! c
            return 1
    : }9 p, e6 F* i5 G; q9 Z( u+ W' f    # Recursive case
    * k3 e: c  `8 b, R; J% f7 w    else:, X$ M2 R$ n: f
            return n * factorial(n - 1)
    : z6 S3 W  c7 D$ g% l1 g
    2 ]+ }) y% z. P, W8 j4 e' p+ U# Example usage
    + t5 [$ m7 P7 ]# r8 F; Fprint(factorial(5))  # Output: 120
    0 j7 n2 j9 J/ @% P/ q
    ! F0 r2 H( i" O) DHow Recursion Works+ U9 B) @4 A1 ?! X

    ' X+ `4 W" r+ ^% n    The function keeps calling itself with smaller inputs until it reaches the base case.
    + [1 S3 W' H. g0 I2 @# r
    , a9 N2 e3 `6 q4 [! w    Once the base case is reached, the function starts returning values back up the call stack.
    : N2 A: z9 Z. L& E" i, F# M
      S( g: v; [& B' G; T9 ~    These returned values are combined to produce the final result.% V; Z" L" s% F

    4 S- k! z) T4 b+ k( e, M- jFor factorial(5):
    ! G  ]8 u5 @: [. q6 W  i- z  |  o* I7 F# s. O
    ( F* v/ h5 S5 B% Q6 I2 a% l2 ?8 F% V
    factorial(5) = 5 * factorial(4)' p5 H# d4 R* K! R3 O) h5 s
    factorial(4) = 4 * factorial(3)
    / O- A2 R9 [3 K2 N* @factorial(3) = 3 * factorial(2)' ]8 G2 U# }- g1 R' h. O" S. B6 u
    factorial(2) = 2 * factorial(1)
    6 L2 C. e$ e, H+ F5 y/ n9 Rfactorial(1) = 1 * factorial(0)
    6 O$ C9 h) @$ K% Ifactorial(0) = 1  # Base case
    ) Y4 k% o1 @0 w/ D1 B, z' k
    8 N7 K) c" @* X9 @  NThen, the results are combined:
    + H3 f8 Y+ G' c# c4 Q- J
    * x& S0 i9 q7 p% W% `, ~
    " s6 x2 ^' x9 B1 J# tfactorial(1) = 1 * 1 = 1
    " P. r2 u! P7 s0 Mfactorial(2) = 2 * 1 = 2
    + d$ Q: R) d  g2 Z5 h! lfactorial(3) = 3 * 2 = 6
    - q0 @' v7 ^% Q5 l. }; O9 R& T8 S0 Ffactorial(4) = 4 * 6 = 24
    2 z9 I+ T( k5 ]1 Mfactorial(5) = 5 * 24 = 120
    ) s6 w! Z6 {. M. ?7 T( F( U1 n  z$ M& r! u" J& k+ \) T
    Advantages of Recursion3 `% @# z' \, l1 W5 b! [/ W% i' s
    4 h* S( Y! a1 _. D: [
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).. b) o. v( N1 r9 n
    5 K! P1 _- Z9 W! \0 G& g
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 c! p. Z+ x9 G3 g: G- V
    , V4 t: Z! I: V) j7 qDisadvantages of Recursion4 @4 b% x6 t+ B/ \+ }3 f( e: k

    . Y4 V/ z# [+ j2 @9 n. ^& {! R    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! ^! E2 g) ~9 S# K
    ; R  ~$ `7 I0 ~7 @6 C7 M) w* M
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! D8 e$ `" a1 \& L5 W
    & Z" O& B% S# E) V3 y% ]When to Use Recursion
    ' T9 k5 i3 V% K& d: K# ~& _
    8 W& ~5 \/ g8 I- Z1 n    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).7 Y5 E  H6 {2 W- i
    1 B4 Q9 D7 h/ J6 Z6 ]/ O& c: J
        Problems with a clear base case and recursive case.$ W2 ^  b9 {) n
    0 E7 Z* z2 [* f$ c- h  Z( V
    Example: Fibonacci Sequence
    / V9 ?6 ~# ^2 d9 k9 P
    6 X7 ?( y6 W2 O1 g; }( L) yThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    . b3 _7 ]) _0 L# s; b2 {7 p. I- F7 p3 |" h, F, x, Y5 F/ f6 d
        Base case: fib(0) = 0, fib(1) = 1( ~# N6 M. B8 [5 u& S, }+ }" Y

    9 w! T$ ^1 x$ G    Recursive case: fib(n) = fib(n-1) + fib(n-2)! ~$ ^6 r( d) C8 V& a  t0 j0 _5 Z
    3 _% a5 H% f' j$ x7 q; r  J
    python* Y- j8 |7 B% R! U8 g+ [
    5 n0 ]# g: \6 L. q+ V! I6 e6 w

    # m4 \5 V7 f2 z! w3 pdef fibonacci(n):
    : _5 g5 B( s% w! W; H- c    # Base cases
    5 z+ Z* G9 e  X  U. \0 t    if n == 0:1 f. i6 _  @7 o1 Z7 k) ]
            return 0
    & b  Y+ w; W/ P" Z1 T: u    elif n == 1:
    2 A9 k0 y6 [2 A# t6 `- W) L# a% D        return 1
    8 Z3 Z' l* b. |! G( Z  R  ^1 q    # Recursive case
    3 V0 l" P" M! I8 o% h' ^    else:' Y9 D7 V& I2 y6 m. [" Q) j, ]
            return fibonacci(n - 1) + fibonacci(n - 2)
    , `' V8 H4 J' Y: d
      G& P' ~# q  h* v" D# Example usage, g1 r& h% k. }
    print(fibonacci(6))  # Output: 8
    $ ?/ |2 M+ Y7 n" l# u& a( b
    . j7 C8 o6 }: t# ?# RTail Recursion
    # C0 U' y6 p# {0 j/ y9 O, g/ @: h5 @4 }; g
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 G4 H0 _; {' `& K4 F1 p7 Z/ u
    9 _/ D& z* C' m' G& V
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-16 19:12 , Processed in 0.056634 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表