设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1816|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    4 {& T% p& l; d- Y0 e/ T3 G% `; r% s
    解释的不错
    , t2 Q. M3 T* f9 F& M/ o5 y+ V- ?: H9 B
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    / A6 R" j- _1 Y# p- M- y' ~
    : f. N1 u1 m' H3 {& H 关键要素  L/ c* n6 j4 Q- F- W* F
    1. **基线条件(Base Case)**
    , y* ]* x4 b# c) [   - 递归终止的条件,防止无限循环4 i9 m5 T/ A2 B
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  ~9 `* H- B/ l! v) L- d; p4 k& y

    % Y' U, b0 M" C3 f: ?  k3 m( I2. **递归条件(Recursive Case)**" M- E% C& _9 ]  m
       - 将原问题分解为更小的子问题
    & X+ S) }. ]# z/ j8 S3 Q   - 例如:n! = n × (n-1)!
    / }/ Z: d/ U, X( ?: E+ c; J7 {! e4 a
    经典示例:计算阶乘% o& n+ t( _: @/ f
    python% V/ f; o, R; O2 @
    def factorial(n):  ~+ `$ r; i1 D
        if n == 0:        # 基线条件+ A* Z4 E$ d- Q3 w* j: S
            return 1
    3 S, [7 |8 t5 h& T0 H    else:             # 递归条件7 h/ g/ O. q0 w. y: s( d
            return n * factorial(n-1)& D3 p: l8 f  C% n' N/ Q  H) U
    执行过程(以计算 3! 为例):# o$ A' u) G0 X, o6 O! Z" v
    factorial(3)
    & }" g" |8 r- f! p7 P! \3 * factorial(2)
    9 \+ v: d) y' ]: [3 * (2 * factorial(1))4 o# P9 a. b2 K) z
    3 * (2 * (1 * factorial(0)))4 e  _) b8 B! |0 Z) W
    3 * (2 * (1 * 1)) = 6
      n  G6 O' n6 J- C8 c9 l( `; f- B
    1 q  U$ o1 c. _! o; r7 R* K 递归思维要点
    : K8 P3 i7 d" R, Z+ e1 w& D  _1. **信任递归**:假设子问题已经解决,专注当前层逻辑) l- k% U* i+ b% K
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    - k- J' {7 F( [) h3. **递推过程**:不断向下分解问题(递). J; n! H& j: l, l$ l1 l% a/ j  T
    4. **回溯过程**:组合子问题结果返回(归). t4 f7 N5 K( M
    6 m& r( L9 i  d: L: {! T5 C3 n
    注意事项% w* n" z/ r/ `6 @* f
    必须要有终止条件
    5 `4 H% @$ n) V" V) v6 U0 o/ o递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    . ~) D2 w4 \8 n# g2 t  @* n某些问题用递归更直观(如树遍历),但效率可能不如迭代+ S- Q/ d3 F/ W- }4 i
    尾递归优化可以提升效率(但Python不支持)
    * G" F6 `& F+ X: |( R  F5 n$ S
    % P0 o/ ]2 q9 r$ ~8 d& P 递归 vs 迭代
    2 I0 o& C% K+ B7 R  _|          | 递归                          | 迭代               |
    & D( S" t' v) j|----------|-----------------------------|------------------|; ^6 C7 @% X9 G6 M4 X( A/ T
    | 实现方式    | 函数自调用                        | 循环结构            |
    9 `) b) {! F% G: P! t% h| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 d9 D9 Z5 d9 I7 l2 I) Q5 P| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    1 y$ R. M9 i/ t6 M2 A: @  T: X| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 O4 _; g/ N. V4 t+ Q' y# |4 D9 n4 F9 {2 ?) _' ~
    经典递归应用场景0 b9 Y1 D& g) L' o4 \4 e+ s
    1. 文件系统遍历(目录树结构)9 h% K: \1 ?: C3 G  a% d
    2. 快速排序/归并排序算法
    ( S/ Y  S9 E) ?  \& m2 ^% R# y. h3. 汉诺塔问题
    9 M: c% I  j; C, |; r9 s" b4. 二叉树遍历(前序/中序/后序)# `; |2 M! K* j% s, d2 L) Y
    5. 生成所有可能的组合(回溯算法): {: q6 j- ?% Y; h; V1 L* R

    : F' z. a! u" u0 }$ s7 i0 \试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    16 小时前
  • 签到天数: 3145 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,7 o2 G/ [, A! D( v' m1 ~/ Z
    我推理机的核心算法应该是二叉树遍历的变种。
    . ?4 D, m9 R. H另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
      M* Y' q1 U/ wKey Idea of Recursion' o0 U+ m5 B/ Y2 B, B( i

    0 j+ K, J7 ?/ x" N: ]6 RA recursive function solves a problem by:/ F, l, S) K' N$ b

    3 O& Z  z* c. x$ m% k    Breaking the problem into smaller instances of the same problem.
    4 A! {; L( n! ?/ X  u  w8 h/ g) s# x% C7 a0 M8 b; c+ [3 H% G
        Solving the smallest instance directly (base case).) _  ^# A- Z0 S' s1 X
    , S) Z; z7 e! m" ?; m9 X- k5 |
        Combining the results of smaller instances to solve the larger problem.# D& r* N; W4 x4 c( x8 L+ D

    4 f" w$ D7 S0 e5 vComponents of a Recursive Function. x! z5 {0 p. e0 Q* C" P+ I- c

    8 |- \" T6 R" H1 g; N" u    Base Case:
    0 ^% J5 B; ^# I. L  h: B
    $ p" D3 h/ y0 a        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.; A6 J$ L. H7 L; ]5 G

    8 J& l, a+ u* k- ^7 ]) }        It acts as the stopping condition to prevent infinite recursion.) Z3 ^: v: j, s7 j8 b& h5 g

    + v1 z  v+ o2 w: ~2 t        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.2 _# f! y) ^- G8 ]- B# Z
    1 I% A, X  \) _; |6 @6 o% @
        Recursive Case:
    8 e% L9 N3 c* m' \1 C
    8 g: F- K4 b. d3 C. P        This is where the function calls itself with a smaller or simpler version of the problem." L# p4 J7 v  p4 e8 {6 ^6 A

    8 U% V( F) G# m" k2 o6 g" e        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    0 x' ^/ Q& O- S* |# P3 U6 Y
    ) p# U$ S3 d' \3 P! L( QExample: Factorial Calculation
    / G! o5 n; l( B! w. Q; o- k3 ~- r4 n5 }# S: O5 I/ n# G# G
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:7 U9 I3 Q5 D7 T6 _5 m0 n
    : j3 V) ?# r8 x; j% j
        Base case: 0! = 1
    * X: ?9 \& R6 _! |  h5 t4 U3 h8 A* J5 K% Y& z5 `* u/ A* q& c
        Recursive case: n! = n * (n-1)!
    5 Z+ n5 w: c: E5 w$ |, Y8 S8 h" L3 z' z% [2 L+ a$ I
    Here’s how it looks in code (Python):
    ( j1 h" p# A& l7 Y9 h6 |- n! T" tpython& i! U; r' M' D% e# m& u7 v

    / X4 K  r2 C+ |
    + x# r- n2 z# `& y( D" ~$ F) {def factorial(n):& ?+ `& O! C& g& f8 p
        # Base case* g& m) I4 @' R6 U
        if n == 0:/ w: M! \8 A+ f% q9 f
            return 15 j/ u+ X! G- Z% h
        # Recursive case
    9 n2 b$ [; U8 {9 ?1 o7 L8 C) ~    else:
    5 P+ g& t! R" q. f+ [+ Y9 `        return n * factorial(n - 1)
    + s, E6 ~/ o, E& W; k
    ; d6 W( H0 S; t; z' \& J2 J# Example usage
    2 a  I2 p7 F/ ?print(factorial(5))  # Output: 120
    " t4 D% [' O% X" e
    # i9 @; [) T: `. m, f4 P& B/ H# BHow Recursion Works
    $ n0 g; s  Q+ ?; X# |( F- j' v. [& a* ?& }
        The function keeps calling itself with smaller inputs until it reaches the base case.
    $ B+ z+ c7 X0 {2 \
    / I7 v( L, q3 B. E    Once the base case is reached, the function starts returning values back up the call stack.. s5 t0 o  u# T1 E7 j5 @

    7 x+ b$ u; y- \- R    These returned values are combined to produce the final result.
    5 V" B. U/ U, i6 F: b( ]9 c# `7 e/ c3 u
    For factorial(5):+ @0 F5 I: T" \
    5 [4 o  F0 M" [5 t
    & }* ]; l5 \/ m( B# K0 L3 A
    factorial(5) = 5 * factorial(4)' m  R! k- D0 ]+ S8 o$ D5 O
    factorial(4) = 4 * factorial(3)
    0 e* v' q( V! I  W8 M0 d. r. Zfactorial(3) = 3 * factorial(2)! K8 F' A  I8 ]) \
    factorial(2) = 2 * factorial(1)- \; m- c5 Y1 M- W/ e  I) ?6 b
    factorial(1) = 1 * factorial(0), L  ]$ `+ l, _9 ]6 N
    factorial(0) = 1  # Base case$ x2 L- ]- e7 j& T) |2 Q) t
    8 Q9 n) l( J' M
    Then, the results are combined:3 U4 p+ X" l. u; w1 u0 D" i) ?
    + F7 A; P: j: h4 J+ r

    4 S  n& d  g, ?; a; O" w: f% W: }/ Dfactorial(1) = 1 * 1 = 1
    ; i2 z7 ?* R' n) ifactorial(2) = 2 * 1 = 22 X2 E0 M( t1 i; h4 T5 |' i
    factorial(3) = 3 * 2 = 66 q- K% D0 k- Z& ^, @
    factorial(4) = 4 * 6 = 24  q1 r" L0 `* K! |' }. P
    factorial(5) = 5 * 24 = 1206 A0 A' X3 m9 N
    % z/ v: e4 ^' S6 T
    Advantages of Recursion
    + K" E. n8 S6 C: x! `- P$ V2 ~  |: b2 s/ z/ Z) n
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    3 H/ c- I* P8 f8 z% u; c: R
    / p6 `7 H5 R6 b. z8 u    Readability: Recursive code can be more readable and concise compared to iterative solutions.  l4 r* {: k2 j/ X6 s% V
    + W. e- S. F% g( Z
    Disadvantages of Recursion8 x* h* b2 W4 y( }2 J. B

    ! e- J  g, H. k( ^    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 u: b$ g0 c2 k5 X0 @
    : Y8 t( b$ T4 X. R7 T0 G) H
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    - K, G3 e5 ~9 [. j( k
    " o: h$ n6 B! v5 V$ J& Y/ Q7 @: DWhen to Use Recursion/ d1 r. q, T) }1 ]
    9 O, y1 o- P* b" q: u
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    3 s: C2 d! ^" i" _1 J! ]$ k' h7 z3 x0 M3 E' `
        Problems with a clear base case and recursive case.
    0 a1 u  u0 j2 Y/ ?' W$ o1 j6 z, c/ u8 A- D% t
    Example: Fibonacci Sequence" {# |, ~* b* ]. ]/ X$ G
    % Y: A2 r1 n+ C+ G
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; ]& C; F  Y# D. z
    ' N3 R. m9 B" s1 k1 U$ K    Base case: fib(0) = 0, fib(1) = 1# D- y9 \% h* |: K$ V, P# A
    . a$ G" f7 {! h4 \8 u" X  C9 G* r
        Recursive case: fib(n) = fib(n-1) + fib(n-2); @; u8 ?+ u$ x0 q

    ! q# m& m2 |0 n1 Q# R* k7 bpython
    $ h, W3 n) B& b1 C6 N+ }/ F
    $ Y, J; r) N6 [3 v
    7 ^7 C" ?3 e& u! Z: odef fibonacci(n):0 q7 N  J3 A3 R
        # Base cases
    . K$ H, ?( l) I3 g% l    if n == 0:
    3 t) ?- B  W2 @) S: L1 ^        return 0
    1 E. f' P! F+ [: [- r    elif n == 1:( E5 C  ~5 e! K  K. \" ^, F
            return 1
    4 W- }' x2 c1 p$ `' L2 P8 l    # Recursive case6 ]8 w2 B, u: ~% w
        else:
    " V: f  V% \" O/ M# V- N        return fibonacci(n - 1) + fibonacci(n - 2)
    5 ]5 z: X9 b6 v, n5 y) h8 p- ?: l
    ! s% a  ~0 u9 P8 V; x4 i# Example usage
    2 q  C/ l+ x7 i( f- _1 j( Xprint(fibonacci(6))  # Output: 8( ?" N9 x$ {. J" _6 z: d  Z

    9 f: A7 g+ H2 S1 z- V6 z  N% t( \& eTail Recursion+ y2 Z% x) `# W7 {$ ^1 ?

    , P; h; D' U, {/ }( T1 b% ?Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ( Z) E4 x+ ^5 ~0 m# E. Q
    4 s+ f' o7 T  T9 GIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-13 23:20 , Processed in 0.052589 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表