设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1779|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ; x$ b* F, R) J5 j; l

    ; M, S# [0 U, B& G解释的不错, J) F$ I" K) c5 O4 z
    4 S% i# C+ O$ Z* B+ d" x+ H
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
      R3 _( w- O- @6 j5 M
    - f, h3 T; O% i! P1 [ 关键要素$ J, y* Y9 j6 B3 g2 x9 P7 a- s
    1. **基线条件(Base Case)**
    ; d( X+ R; [1 }9 k9 z   - 递归终止的条件,防止无限循环
      I2 S2 O* q" M   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    - F! {9 k) ^) U# A9 `9 H
    / l0 {$ R% F& D7 W1 V2. **递归条件(Recursive Case)**4 `/ u$ V1 q3 p  i$ @: n
       - 将原问题分解为更小的子问题
    ! M8 r. C# D% `, @3 y   - 例如:n! = n × (n-1)!
    7 V: \& P- E7 R! O8 \: |$ [: [. }( O% U5 s" I2 ?6 R
    经典示例:计算阶乘, [* I6 l1 e6 Z9 h) N& Z# M
    python- W* a7 {' b$ _3 |) u% I3 a
    def factorial(n):) f! @* w+ A2 l! s+ ?
        if n == 0:        # 基线条件+ X$ I2 C5 B8 e5 o  S7 y% A
            return 19 R3 s6 W2 b& s& _
        else:             # 递归条件% s% i' j; j6 [( ^4 |
            return n * factorial(n-1)' N0 k  P9 ?- L) ^- |. d' ~
    执行过程(以计算 3! 为例):
    2 U7 k! _4 _% T: Q3 p% nfactorial(3)
    : J$ T" [* _9 d8 a9 Z3 * factorial(2)
    $ [( T' c- s6 e2 m% Z) C3 * (2 * factorial(1))
    & k# s! p: l2 U; D  c0 k3 * (2 * (1 * factorial(0)))4 p! i  n+ s; m- _) x+ b
    3 * (2 * (1 * 1)) = 6: z$ F/ n+ U; o
    % g! E6 y8 x9 D% z
    递归思维要点
    8 }, U2 \! C8 w& q" c1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ d) n2 y& T) H- a% X1 a" D6 N* ]5 p- C
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& S: G. G" L' P2 W- h+ z
    3. **递推过程**:不断向下分解问题(递)( B1 N! \6 Q2 e+ P- [  v
    4. **回溯过程**:组合子问题结果返回(归)
    ! k; {7 u9 L, A; ]8 V* U4 w6 G
    2 X, j8 e- a1 ^) Q; B% r9 s 注意事项2 s+ g! Z: z% U1 ]3 M, I9 H
    必须要有终止条件7 i1 r" n3 ^6 O, D4 R
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    1 ?5 p. B/ V% n* |- c$ E某些问题用递归更直观(如树遍历),但效率可能不如迭代% g( O$ ~* P( ?/ L( S! P/ P
    尾递归优化可以提升效率(但Python不支持)$ @9 P$ a+ J' O& r

    # Q2 d# q* w3 L7 @ 递归 vs 迭代
    & r( x8 j: }% N" \) h|          | 递归                          | 迭代               |7 V# E) a! j2 _
    |----------|-----------------------------|------------------|# g& a3 j! O* F: P
    | 实现方式    | 函数自调用                        | 循环结构            |
    8 b' {4 W  R* x3 ~  Y| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 G$ ], v  M9 K7 Y2 p2 P! X- O| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |5 I" g4 M% \: d9 c" y5 z* c3 ^0 H
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |0 ]. i: X# ?* E1 f0 D( h3 {
    $ B% Z4 `/ F2 C! j! p
    经典递归应用场景# Z1 p  w! O9 O) i2 }
    1. 文件系统遍历(目录树结构)
    ( ]" k- z2 Y' J. A+ h. N2. 快速排序/归并排序算法$ P# J  w4 h4 T  C: E8 L  X9 O
    3. 汉诺塔问题! k; ?2 n; ~& R: Q- U% q* Z
    4. 二叉树遍历(前序/中序/后序). y. E' z  Z/ X5 Y
    5. 生成所有可能的组合(回溯算法)2 K9 B% O6 J2 G9 q9 q: c

    & ^* G  l, p9 N. ~1 J; @0 d4 ^5 E试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    13 小时前
  • 签到天数: 3143 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) b( Q! }, m! T5 o3 i8 ]我推理机的核心算法应该是二叉树遍历的变种。
    ' I2 o4 |/ X3 Y7 _, K. \6 D7 v) y另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:6 h0 b& c; Y& c( _
    Key Idea of Recursion
    ( A, P9 W4 p! ], D' J% u
    ' T% U0 q2 j" s9 Z; |A recursive function solves a problem by:
    ' C2 F5 ?) Z0 e" I! D: |. E0 y1 `
    8 {- L4 Q, `0 d. E4 v    Breaking the problem into smaller instances of the same problem.4 j6 E. N3 Z  I8 l# x! l

    % N2 F" H; I; h' o4 b: o3 H* [    Solving the smallest instance directly (base case).
    6 u% y# |( @" R2 z: D6 u9 q9 P: }+ d* S0 [
        Combining the results of smaller instances to solve the larger problem.3 h. ?  K4 h6 y$ E: G( a2 S3 {

    3 t2 @# f* H, QComponents of a Recursive Function
    $ D$ J% b! [0 V5 y$ C" O+ B
    4 H' k5 y- ^, f# P- {* R    Base Case:
    3 X* F! ]/ j5 Y- @7 P
    $ I4 i( y! q, P8 |        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    $ d4 u" J& N) f, Z* H0 w8 D2 L" a* M6 v4 ]9 h: d' z
            It acts as the stopping condition to prevent infinite recursion.! Z1 z. ~( \1 J0 z: k
    1 S( i5 r& V" w& Y+ `! ]7 ?$ L" T: g: E0 @
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    0 h5 ]2 p8 R9 @! w& w+ {1 ]. q* B6 q/ j
        Recursive Case:
    ; f8 ?9 u  s  P1 z7 `/ r
    ! s" {: T" u  s: A) }. x$ @        This is where the function calls itself with a smaller or simpler version of the problem.9 H) O/ V9 a- \& x5 Y1 c
    3 P3 t2 K% b9 q. h; X
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    : c7 q2 Y9 ]5 Q" e
    * V3 e# @' F4 \" A  XExample: Factorial Calculation
    3 }+ D+ w0 I, u
    $ ]& T% T, a& y, RThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    " p  L: N; [9 p  O+ ?- O
    0 x* N8 `- b2 I3 e& B* b    Base case: 0! = 1
    + e/ H9 g" ^5 |/ k* Z) U$ Q( Y$ j' Y' W
        Recursive case: n! = n * (n-1)!, u  n8 s) t. t+ D

    ) I7 C4 m( B5 k5 X% \+ EHere’s how it looks in code (Python):9 _: K% {/ N- w& n; Q1 B$ ~2 M
    python0 a) q, W( Z- b- \/ q
    % ]6 x0 T$ U7 y; ~( s$ R' D

    % K' }! K5 M% kdef factorial(n):
    5 f- W# a- W9 r$ j4 D* S. Y    # Base case, H8 A. {* y: G2 n; M% y" m2 i
        if n == 0:
    6 M; Q' s( i* Q2 G2 L  g        return 17 F5 i5 ~# A& I
        # Recursive case- w' i1 n4 H5 E
        else:
    + I7 ~8 u2 f  X' [' [! f% ]1 w+ v9 [* k        return n * factorial(n - 1)
      ?5 v/ f7 K& t6 @
    7 q0 |" r( R* |. f# Example usage- B4 E. @( A) e" R# a. V
    print(factorial(5))  # Output: 120( Q7 B  B' T7 y% B6 x8 z
    ' m* N6 q. e$ C# V
    How Recursion Works  x- a4 {! [) M* c( s1 f3 t$ R
    5 {4 p/ K" V8 b% ~6 d; T- h2 k
        The function keeps calling itself with smaller inputs until it reaches the base case.
    1 i) v5 b# S; o/ c
    4 A! E6 }& u8 i" e. s, l    Once the base case is reached, the function starts returning values back up the call stack.
    * y" ?* ]3 u% u9 q* q( a" W  T( U; L; w
        These returned values are combined to produce the final result.0 [: p+ o; P, U7 z5 G% t" }

    8 m) {( j( a) c+ `, y' L+ P  b1 AFor factorial(5):
    ' x: t' f2 W4 U2 i0 Z2 }+ G- v6 N) J

    % W& ?" w- Q5 f! r" }0 Z; vfactorial(5) = 5 * factorial(4)
    + h( E% u' J% c' `' Q1 Qfactorial(4) = 4 * factorial(3)% B# t- e; ?1 q/ ?5 |
    factorial(3) = 3 * factorial(2)
    + O0 G7 y; I, a& t" S0 Z: v7 }4 y4 bfactorial(2) = 2 * factorial(1)) E/ J5 R  L" w) M
    factorial(1) = 1 * factorial(0)  P% ?% d, E, C$ V
    factorial(0) = 1  # Base case( t9 C3 A, H# D% u

    2 _$ P- ]3 L% i$ L8 ]1 WThen, the results are combined:
    % A- n% u% p3 w
    " j0 j& G7 d' [+ T* {* q
    0 Y. u& e. V& i* O8 r2 ~* Jfactorial(1) = 1 * 1 = 1, G, Z' F6 Z2 P& W* U% K
    factorial(2) = 2 * 1 = 2
    6 A' z+ h' w1 a2 `factorial(3) = 3 * 2 = 6
    + o0 s) u8 Y! o6 p1 Kfactorial(4) = 4 * 6 = 24$ g3 {( Y( n7 b2 S3 @1 \1 [
    factorial(5) = 5 * 24 = 120
    ! Z7 K1 M# v+ s& X: Y3 V0 C' w* C, N  m8 h  T, H, f
    Advantages of Recursion. {8 U4 N- g* H: }( B
    ( Q; R0 ]& E6 I
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    1 R+ O: v+ p! k7 S- D* g
    , g2 z& n  R( |3 M6 ?! Z0 W    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 ?& E% P# Y5 f" C( D/ z1 \
    6 O% W' A8 W- q/ aDisadvantages of Recursion# ^4 y: `- g4 j
    4 a6 Y1 K9 \7 H5 t$ |
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ) J& Q0 q; V. i, u3 Y& \) F1 c4 c# a; B# P; O
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    4 U: j8 n) F3 w2 i2 U3 e/ j4 m, `1 U" W& v* C+ q, D! V- x
    When to Use Recursion8 j2 q. |+ b$ h  {; J
    ! @! t8 u) D( M6 w( ^
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).' X! R% L4 K; t/ H
    . K/ z% `. I: g4 h. j: ?
        Problems with a clear base case and recursive case.
    ( ]% i' X! m9 t3 {1 ?- F
    6 U7 z. B# _# q( ?Example: Fibonacci Sequence
    7 p' e! h1 G. b* N/ N( `0 E9 @0 ]3 ?( H1 }. y& ~" ~/ M
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    1 O4 V5 U. w$ ]/ C" u
    % j. Y& b9 U6 G    Base case: fib(0) = 0, fib(1) = 1
    3 [1 W- S; A6 C) b, [8 Z- V( O* y  d* q
        Recursive case: fib(n) = fib(n-1) + fib(n-2)" Y) t- R6 Q- A2 M/ Z  x& x

    # y' @2 Q) e& H% r  r5 cpython
    $ N$ Y( M; ?; {( e  r1 p. D0 j( ]+ R
    & ~4 x" a" ^" _
    def fibonacci(n):
    8 ^9 Q3 V; T9 o. F) F; F% @    # Base cases8 E) _! L1 J8 U. p* t
        if n == 0:
    ) ?! }  v' f: l. j% l% N2 i        return 0
    / P8 ]" T  _1 z/ h; w, ^2 X0 D    elif n == 1:
    : M) z" @$ ~  J0 T# e' m+ u        return 1
    4 `4 t9 f: f/ b* L8 ^! x) v    # Recursive case
    + R  m* ^" o1 O, k    else:! f) R8 `+ P! Q. f, }
            return fibonacci(n - 1) + fibonacci(n - 2)
    8 n7 P' R) P: E8 w5 K6 \( H
    ) `' s# K% \8 \( b, H# Example usage" V9 Y6 H" e. T0 J. @
    print(fibonacci(6))  # Output: 85 }( X4 a1 t+ N. ^3 p3 ^0 V
    . T) ]- g3 z! X8 A
    Tail Recursion+ v4 s2 X( B# `3 S" Y( c# y
    / b$ B- [/ w* x) u, L. B( m8 C
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ) w; C4 N0 @9 e# h* X+ [* x
    ; ~+ t# f, X" i* |In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-11 20:12 , Processed in 0.034357 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表