设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2109|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    * ~& H4 y' R. V- i9 R; M; E/ K0 x" r. U
    & y' y, Y& q7 L* T  T9 ~4 c解释的不错
    5 r/ x4 S% M5 `1 \% V4 A) A: L+ H, V1 _2 K, s' B! R1 q& v& ~
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ! }3 v3 L7 U$ m" L" e5 x2 I1 R  ]
    ; J) E3 }. D* k# { 关键要素
    , }1 O/ e2 `% H- t4 R; y9 D1. **基线条件(Base Case)**
    & s2 k  ?+ B/ V/ T$ o   - 递归终止的条件,防止无限循环- u  Y+ y; Q* c" ]
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    8 x) Y* W1 @3 I6 B! o; M$ p$ D4 l4 y, m! j7 d
    2. **递归条件(Recursive Case)**
    , k: Z: p/ F: Z0 B3 b   - 将原问题分解为更小的子问题
    , C% y. _5 T9 o# ?   - 例如:n! = n × (n-1)!" @- l. |7 n- s  x8 H+ b5 a
    9 \- T  w' \/ A% X8 C! C
    经典示例:计算阶乘
    % B- Q- [, t0 C! A/ X8 j/ upython$ D( }. \0 A4 c% z
    def factorial(n):
      E" j/ E9 D+ ?8 B6 y& P    if n == 0:        # 基线条件7 m6 E$ z% C% B- `1 A- I/ l
            return 1+ a$ t+ s0 V' A
        else:             # 递归条件- {& ~) A. Y) F& D+ ?4 [+ d) t
            return n * factorial(n-1)
    ) g1 p. q4 B1 P, M1 k/ P: m2 p4 \执行过程(以计算 3! 为例):
    " C) l/ g. t  ^, tfactorial(3)
      h, y# z. y, x/ r$ R3 * factorial(2)
    . `- \4 ]- J+ ~3 * (2 * factorial(1))
    9 g, ~0 Y2 E8 w3 * (2 * (1 * factorial(0)))) C( q6 S$ F. u% v  H; B" \
    3 * (2 * (1 * 1)) = 6
    , @2 b" P1 @% b( z5 Q, l  g: m1 `* p( z( y% a
    递归思维要点
    6 d) |/ O; V, P1 g4 B3 A$ T2 V1. **信任递归**:假设子问题已经解决,专注当前层逻辑, i" ^" |: ~( q, j2 [
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    $ q& Z6 z" R& {% O; b3. **递推过程**:不断向下分解问题(递)- \) z4 F! u! ^& z$ b* ~6 e1 i& T1 P
    4. **回溯过程**:组合子问题结果返回(归)" s0 U( Y+ L# l! O; J( J$ C4 m

    ) ?8 U7 Y0 H' [( a  W9 d' ]0 K 注意事项+ w. }6 M' H. S/ t& M+ p
    必须要有终止条件
    ! |9 o: j/ i, t递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    + d; H& {# K& u- O# q$ [) Z某些问题用递归更直观(如树遍历),但效率可能不如迭代+ R8 j  V6 ^& d, n9 @% j
    尾递归优化可以提升效率(但Python不支持); y8 j, Y  w! J( c, `2 w' a

      Q9 s# B4 j  p* x9 p 递归 vs 迭代
    + C9 y; \" v* a0 z3 w) l: l|          | 递归                          | 迭代               |7 p( D+ Q4 Y5 B. o+ J
    |----------|-----------------------------|------------------|
    2 M# F( ^! b* s1 v* O/ Z$ f0 y7 z| 实现方式    | 函数自调用                        | 循环结构            |5 {& t' _- T6 l4 U$ n
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |9 F# C# C! \! k* Z: |) x
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |2 g& X8 |' q9 x8 `3 R; p
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    1 I. j. e/ O; M# t( x, b3 o& q) M8 f8 H/ k
    经典递归应用场景- k3 X* P/ F0 k3 j
    1. 文件系统遍历(目录树结构)
    ) X6 g8 w; s" F5 N2. 快速排序/归并排序算法3 ]( d, w3 r- X! j
    3. 汉诺塔问题# a: `; {. B  i. z( V1 j2 Q* B
    4. 二叉树遍历(前序/中序/后序)5 Q, T2 Y5 I" j5 p( G) e% T
    5. 生成所有可能的组合(回溯算法)
    6 `3 p9 _, P9 q! C! F+ U8 a, v% `
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    8 小时前
  • 签到天数: 3177 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! v6 w" c) h7 k* q% q" l/ {3 h$ L
    我推理机的核心算法应该是二叉树遍历的变种。
    $ [" `8 H- T# Q  l另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 J' c4 Q: q% M3 XKey Idea of Recursion
    + o9 h" f1 ~7 D% x/ C7 q  T  `" }* ?6 ?
    A recursive function solves a problem by:
    + c, c# T5 ~" ~+ {4 t+ y/ Z$ W
    # G$ J) ~" p* P$ C- r' n1 o9 N    Breaking the problem into smaller instances of the same problem.
    / A! b. ?# O4 S" H
    + @4 [4 T8 ~+ J# e2 a    Solving the smallest instance directly (base case).+ ]0 i3 f4 p6 r) j& n
    ; Q! ?, e% Z0 G- q) Q4 `/ A
        Combining the results of smaller instances to solve the larger problem.1 `3 i- m0 G; i' K! i; ?
    * ?# s8 v4 [" t* w1 J0 i/ O
    Components of a Recursive Function
    1 m$ J; ^( U1 i7 E3 X
    , }6 Z$ c; \+ W, W4 h$ U% w% |8 }    Base Case:
    6 F3 e4 i0 ]. [  Y
    * X$ |6 X: C$ d, a/ m        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.8 H% ?3 D( h0 K; U# p/ [3 _% a

    1 O7 J+ p7 f' K7 e% J+ \        It acts as the stopping condition to prevent infinite recursion.
      z4 }; j$ A+ L/ Y% R5 R& u7 D, Q: q4 H
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.+ R8 t7 Q  z7 K; Y5 J- B* d
    7 c+ ~7 b' `, Q: J# _5 R0 C
        Recursive Case:5 T: Y& |* r: |4 t9 s3 o
    ( \5 H. d" D' }! H/ q4 H
            This is where the function calls itself with a smaller or simpler version of the problem.
    4 p" m4 `7 O. }5 R1 O; ^* h
    ; p. q! O; [: ^( w, P        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    * _$ ]' F4 j: }+ p5 u) G5 {8 n6 [
    # U+ V  d  ^$ H) K9 wExample: Factorial Calculation
    # u8 T1 n6 C5 R5 ^, U
    % O* K! g9 t: D' y5 jThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" c. {, Z% J. O$ I
    ' V! Y9 e( y/ j' B9 b6 w
        Base case: 0! = 1
    8 a+ E  r7 O, \' x# n8 \  p
    7 C+ q  Q' h. a' w; `  x! x- a    Recursive case: n! = n * (n-1)!2 W0 k- {% w! m: L: i
    - C. ~8 j7 g/ Y, ~
    Here’s how it looks in code (Python):
    $ e% t/ X! \( b  g9 Lpython1 `& F0 f; i) C3 J2 E

    ; e, @* r6 @& N  D& C# x1 [- D( ~8 o! o
    def factorial(n):
    2 W: y1 O9 f! ]9 W, Q    # Base case
    ; t# M2 J% k/ i/ v& `7 [8 A: g    if n == 0:4 T, N! R3 A* M2 ?
            return 1( r' D/ s/ T% F5 L; O( n& g1 T
        # Recursive case7 e6 n% B. C! c1 v$ K
        else:' @5 r7 D6 j2 i4 x( V
            return n * factorial(n - 1)0 u& _2 |/ N& p; y7 q5 @, A$ ^  G

    ) O1 n& A2 n# ~6 i# Example usage
    ) D! ?! Z. q0 P+ p) r& Jprint(factorial(5))  # Output: 1202 ~7 ~  j( ]4 m7 ?" N& p

    6 ?8 ]( V+ J: v* `1 i6 ]- M5 }# f) IHow Recursion Works- P5 L% n1 w! B0 y% k0 I9 \- z; _
    6 f" I6 E8 z- ?3 ]7 u( W
        The function keeps calling itself with smaller inputs until it reaches the base case.
    # S! f" U# ]% {) r8 G+ i
    % r- {* v$ n, M! F+ }& _8 J    Once the base case is reached, the function starts returning values back up the call stack.8 d6 T) I" [) m1 _5 A
    * A2 H7 P7 d8 h4 A5 V0 ?7 g1 I0 Z
        These returned values are combined to produce the final result.
    ( i) c$ |  F6 m% Y8 i- i- g) ~. ^0 @2 I
    For factorial(5):* d7 g# i* Q3 t: a5 g- T' G

    + ], T& s2 M8 W
    - k2 n) V5 U+ t- sfactorial(5) = 5 * factorial(4)
    / B( @6 R$ ~5 ?8 I9 F/ ^" Ifactorial(4) = 4 * factorial(3)
    . q) S3 A, d; i# U7 ]factorial(3) = 3 * factorial(2)
    & w( t+ h3 k: E  I8 s* vfactorial(2) = 2 * factorial(1)
    ) O$ }7 Q, y8 z* H+ D  hfactorial(1) = 1 * factorial(0)0 V  g: }4 ?4 V6 W
    factorial(0) = 1  # Base case
    6 W+ N% [- I% g* n+ a  G0 h1 U2 ]* X: k! G& [7 H3 V1 q
    Then, the results are combined:
    $ K. R# k' T. z; h3 v9 ^2 p$ J- Q2 P% K

    - {. @: y$ R" ^) [  z( k  dfactorial(1) = 1 * 1 = 1
    4 @: l5 ?$ P3 B2 K, _factorial(2) = 2 * 1 = 2$ z4 a5 j3 Z' j2 o5 P. T* o
    factorial(3) = 3 * 2 = 6
    6 W+ x' ]# w2 n+ \factorial(4) = 4 * 6 = 24
    7 h9 _. Y9 W, ], Y3 qfactorial(5) = 5 * 24 = 120+ H: t  Z# W$ [3 E  k  o! ~6 t. U
    , S% f2 }# c  J2 F; Y! R. b8 ^2 K
    Advantages of Recursion1 i4 y% g8 Z$ r7 R* X4 R& n

    # e- R# j1 ?: A4 K% s% V8 s    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    3 x8 H. S/ ?8 z6 A( W0 h- C- M2 t( K5 G0 F1 k* Y
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
      ]$ {! X5 @' T& V% b3 n$ T' Y4 \! e  S- e, ?: [& @
    Disadvantages of Recursion
    8 w. \; v/ `7 K/ S$ {
    4 O, N: m  J6 o5 p    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.4 E% O7 q! b' z1 y

      [0 ^2 p5 g; F- R! e9 `& t& U    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    / F& N( x- n' ]! I2 I5 |
    2 K" N2 s3 S; R) `6 r2 o+ sWhen to Use Recursion: S# k/ _. M0 ?# z* L2 A. t  W
      [0 ~7 w7 i5 ]6 n
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    7 u" U: O* X* y* b& {* F* J0 n( _# _# B
        Problems with a clear base case and recursive case.1 _1 N) j" o" x
    - \, o% y1 E1 x) }5 U% t
    Example: Fibonacci Sequence" D3 i$ M+ g/ d4 [& i

    - [8 U" P" c4 i' O/ `  z9 RThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:/ W9 \$ r. M. m9 z/ ?; {  l

    + n, ~! `0 o2 H& X* `    Base case: fib(0) = 0, fib(1) = 1. ~. L1 i/ n( J# T! t' w: b

    ' l) R* Y, e1 P    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) z" r  B: A# V6 q; `
    8 ^* a8 ]7 L; z; ~) c5 d/ wpython
    , R4 a  c& t& u, h! I6 C; C4 Y% K/ m- a8 f: {( c

    ; Y( m  o: x- d: z. |( ^8 v8 ddef fibonacci(n):5 {- K! c) L; u/ r6 k: V( A0 Q
        # Base cases
    1 y" q- f" _( c1 {+ Q: z% x    if n == 0:
    ( @5 O5 F4 J0 Z) J+ j        return 0
    & H! y5 ]1 l# W* U) H$ J- l    elif n == 1:. v" s7 M  {9 A, I8 |: W! y
            return 1
      b' I, Z9 f  @/ J* N    # Recursive case
    6 f; O  a1 D3 `9 q. ?. G    else:
    9 M+ ?; f3 |( G1 y: Y        return fibonacci(n - 1) + fibonacci(n - 2)
    / C- G* G" s, z
    ! b4 Q% W! q& ^# d- M7 Z# S" H# Example usage3 M/ R* V, a; W/ e' u# d+ g
    print(fibonacci(6))  # Output: 8; s0 J) ?# K$ s( X
    ; P6 F+ f$ B8 o6 y
    Tail Recursion6 @' u: _* o/ ~
    . p& w8 o7 y* F9 w, |" t6 Q
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 t1 A, f0 c0 n/ R: F
    6 T; [% x: \+ HIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-18 21:21 , Processed in 0.056746 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表