设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1484|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    7 X% z! q3 a/ l+ L; n6 S0 X
    3 ?! s# K0 k% b; U解释的不错- V, b8 f$ Q4 W0 Z
    ! l3 D2 N$ b& `& f" I5 J# t$ N
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。, w* P. w: v: r3 Q( m; k

    ) M5 [4 M1 V& G9 H8 @4 h# w, ^% p+ ] 关键要素+ x& G( D# Q# W' F( t
    1. **基线条件(Base Case)**5 o, n4 N7 ?4 K0 v
       - 递归终止的条件,防止无限循环! v; Q+ ?- X; e6 U+ ]. M' }
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1$ R+ y" p# S8 K; l" k' _& f+ H, W

    $ e8 c' d( Q4 H8 X9 n2. **递归条件(Recursive Case)**
    % D  k+ A; {9 y) Q2 A4 f& w6 R. X   - 将原问题分解为更小的子问题( S! W6 T' q; E
       - 例如:n! = n × (n-1)!) e8 p/ q! f; O+ q! t3 S) y

    9 G8 s$ Q' e. p- h! X9 }. ?% v 经典示例:计算阶乘
    8 ]6 }7 [/ B( W# C+ V* apython
    8 J3 N$ N/ ]+ O+ ^def factorial(n):# q) `& V! O2 e! A2 V
        if n == 0:        # 基线条件
    : Z& H3 x6 y; g( P0 n        return 1
    & g) R1 k5 G" j    else:             # 递归条件
    ! R, y" ]: X4 C  [& R        return n * factorial(n-1)
    / ~. I9 m2 T' K* m4 ?9 [( t执行过程(以计算 3! 为例):' o# h# r  z' k* V5 @# Y- L
    factorial(3)# ]1 I3 m6 a  F  p
    3 * factorial(2)8 ?$ G3 e& p, {% [
    3 * (2 * factorial(1))5 w6 W0 _' y# A. z6 W
    3 * (2 * (1 * factorial(0)))# Z; p4 J- k' U8 x" s
    3 * (2 * (1 * 1)) = 62 G7 m# W" x8 g* ?; K" b9 x0 t

    $ @. ?  o8 L) `$ y 递归思维要点
    - ?$ }) C5 R" C' D1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 Q% o) k% @: p( S2. **栈结构**:每次调用都会创建新的栈帧(内存空间)5 Q7 C7 V- _! A7 n$ G2 w* }
    3. **递推过程**:不断向下分解问题(递)/ S3 x! l0 \* y/ E/ y: Z
    4. **回溯过程**:组合子问题结果返回(归)* J/ t4 N3 [& l. r. S& }7 c

    & V5 S% g6 Z: g5 L& p: ] 注意事项- c0 p" }+ h7 j, K
    必须要有终止条件
    6 ?4 Z4 S: p5 l! G0 F9 _! Q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    2 g9 H$ Q$ C( Y+ }" K2 J某些问题用递归更直观(如树遍历),但效率可能不如迭代. W* W2 t: S& g8 G! h  _! [/ y
    尾递归优化可以提升效率(但Python不支持)
    & P+ F& l8 ~3 Q5 }7 }2 B# I) B1 l& Y, k, z* Q$ a
    递归 vs 迭代
    ) Z- Y' \1 q: G! x  Q! R5 N& t|          | 递归                          | 迭代               |
    1 n* i4 G0 I$ ^+ B+ C7 p$ t|----------|-----------------------------|------------------|
    % ~2 k7 c) t( O& Q| 实现方式    | 函数自调用                        | 循环结构            |
    ' R( z( S. W& }: n  [! e5 f| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |- g, `- I$ J% X* z; O, s. P# d
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |! j( c1 r; l, q
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |2 r# e/ P5 ?% C/ l
    5 ]6 {9 T9 r3 D* H- x5 G
    经典递归应用场景
      H7 E1 F0 ]8 q1. 文件系统遍历(目录树结构)
    ; `* n) O- \1 W2. 快速排序/归并排序算法" Y" \3 C+ H% w. L* |; ]
    3. 汉诺塔问题. K6 e" e+ \  C5 ?) ~
    4. 二叉树遍历(前序/中序/后序)
    / P% n) u% H" h5. 生成所有可能的组合(回溯算法)
    . M! [5 z6 x% h/ @1 x
    4 E3 D! X2 i* ?, m9 ?. ]试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 01:20
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    8 B) M% L7 @- k3 T! G+ `: ~7 t我推理机的核心算法应该是二叉树遍历的变种。
    % @* ~& e7 l4 |. t4 {另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ F. U" E$ o5 z4 n; J# XKey Idea of Recursion* {7 g4 d& W1 M' A% Z
    , h* Q/ X  Z, j  F% m- ~1 U6 s
    A recursive function solves a problem by:
    1 w" B: z$ W# O: W$ |
    $ H# Q# D' k. y9 w9 ~8 U- X    Breaking the problem into smaller instances of the same problem.
    8 o: {' C7 {& r! t- ]; ?2 H  v* r' _/ q8 F
        Solving the smallest instance directly (base case).
    6 z# d- \8 _; ]" m$ C
    $ C' D% {0 f; N% _    Combining the results of smaller instances to solve the larger problem.
    0 h# t# r* x' Z( F2 x1 d
    " }. |5 ^9 l0 H" @5 M8 m/ w7 uComponents of a Recursive Function0 f" W: c9 ]( E! t$ u
    ) Z1 ~2 z  f- M. b
        Base Case:6 M' B% p  G: l4 F9 W
    9 F3 r7 l5 {* Q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.5 K) e: Q# ~9 Q  W! q$ b3 M

    6 v3 L4 Y4 L! _- D( T        It acts as the stopping condition to prevent infinite recursion.. E4 m' \4 c6 o: V1 J1 t* x

    . Z* @1 z* u/ j# r# w/ R0 p        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; L  o9 t' f; p

    8 e* D5 s( P" {# T' ^* A+ [    Recursive Case:
    , N9 A6 X, {7 [! @+ s  w& W, s% d/ C( o- T7 L8 w* N) m7 g! b
            This is where the function calls itself with a smaller or simpler version of the problem.( ?; [7 g+ G$ j( N7 J4 o
    5 b3 ?+ ^! Q* J6 w" O3 |
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ( d. w' q9 N5 H9 h3 G( S: K; {: V: u
    Example: Factorial Calculation
    9 R' y( S/ G$ \$ y2 a& @
    & |/ ^/ q: u" Z3 _  dThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    4 v& y6 s! P4 N; ?3 x. C
    & q7 G) M- n# v: `    Base case: 0! = 1" a, b. |' p. {' V; U  ?
    5 Z) ]0 y( H/ s( ~. J9 I" F) q
        Recursive case: n! = n * (n-1)!* S0 U1 D' ~8 J# s/ [
    % }# l7 q7 w) ^  P7 B4 I
    Here’s how it looks in code (Python):6 e+ ]4 d7 P& H+ j0 \- g
    python( Z9 D- R0 Z( h( l, V/ y' I
    ( p; e6 M* U2 O7 u5 [9 ^( i
    1 M7 Y" W& u8 l$ E
    def factorial(n):
    ; M$ f( W3 D( J/ V    # Base case
    3 b" _: t' U4 z! F4 {5 _    if n == 0:% p7 x4 A, E2 V
            return 1
    , Z% @! R* P2 g) [3 p/ ?/ `! {    # Recursive case2 Z. S4 D) S+ {4 ]4 @( k( t6 B
        else:
    6 v: u1 `( g% G4 b6 F        return n * factorial(n - 1)  A$ M; w& W8 F- @& T2 ^5 c4 w

    $ J% N4 F. w* o/ A5 g8 H+ A+ b# Example usage
    / e1 v* {8 y0 c- gprint(factorial(5))  # Output: 120; f6 H- e" C/ Y- v8 I- f
    " V5 S1 l$ o" Y5 N$ ]
    How Recursion Works* J9 C. u9 F  K; x; ~
    ; \& S5 k. `% v# U
        The function keeps calling itself with smaller inputs until it reaches the base case.
    , s4 a1 r) ~5 R
    - N7 M) ], ^5 ?) U2 B) ^    Once the base case is reached, the function starts returning values back up the call stack.
    , K# w& r* m$ {1 K5 _3 t+ y
    * b& r: C! V2 b' W5 i) ]    These returned values are combined to produce the final result.& L& \7 [- E0 k; R3 }+ c
    9 G9 q0 v- N6 t4 Z" |$ s
    For factorial(5):# O, F6 ]/ [2 x; x: u3 R4 k

    + V% a" e0 ?6 w& O' Q9 v+ @6 k! }5 y4 x( L
    factorial(5) = 5 * factorial(4): |# D4 ?( ^% Y* J% E, ?
    factorial(4) = 4 * factorial(3)
    2 x0 |8 O5 A3 g  Dfactorial(3) = 3 * factorial(2)
    # ~/ k5 j% g5 Qfactorial(2) = 2 * factorial(1)( ~- M' P0 i" C6 E( q
    factorial(1) = 1 * factorial(0): v! F0 p$ N, l! X6 k
    factorial(0) = 1  # Base case
    1 e- O" V' h% ^6 _
    & G+ d. ~, L( ?0 T/ y2 d0 U2 n# vThen, the results are combined:
    " d8 A9 f' B5 b" K( C/ \' a; ?7 A5 w  M: l* g& {/ X2 F

    1 K) ]# I" T# ~# G! q0 W2 S* lfactorial(1) = 1 * 1 = 1
    " p5 j- q3 L) g8 k7 A0 V  d$ tfactorial(2) = 2 * 1 = 2
    * o/ U" d7 y+ Q( ~% w1 ~factorial(3) = 3 * 2 = 6/ D) J. d4 g/ s5 T
    factorial(4) = 4 * 6 = 24: Z' N( L. I1 @7 Y7 X
    factorial(5) = 5 * 24 = 120
    + ^( g1 F9 U& y& U. |5 d$ T" ?, X6 D
    Advantages of Recursion
    / G- O. H) Z: J  `! ^2 }4 K$ }
    / V0 q% a/ ?. @    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ P" H) r* p+ q$ D# I; q

    / @& F9 e+ l- _    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 h, u1 g7 M/ ?$ w3 s9 H
    - d" K7 D. }' {, W: c( MDisadvantages of Recursion& H3 G8 n4 p0 a- b' B% E

    & d* F$ j" Z! @& u* d7 L& M    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.  n) `- D9 d' z5 m: j4 Y, k: |
    ! k7 o' O% {4 b. j6 S
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    4 E- h' m& h) }
    % G! T+ Y: b& b( qWhen to Use Recursion
    5 b, W; p' N5 T$ C, z6 q  |6 {# b. x" d8 T9 C$ c2 c' G
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! E/ O# m' _/ M5 y- N0 Z* t6 M* {$ i4 I) J
        Problems with a clear base case and recursive case./ j4 T! A: ^( i# u: j

    " A4 I5 y; X0 u3 D& _. O. zExample: Fibonacci Sequence4 s7 L. Z3 f1 P" D
    ) Q1 x0 @( v' a5 |
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    8 N8 F5 [. e) J6 l( v2 s( `; P- U! f' J' h  J; j( g- f
        Base case: fib(0) = 0, fib(1) = 1' h; W$ G9 F. u: h4 K
    , c* N2 H7 T" ^4 H
        Recursive case: fib(n) = fib(n-1) + fib(n-2)/ e5 y" b1 T- k# u* R; L! v

    6 ], x& p4 J4 K, zpython5 H# h9 [* x& T1 M
    : k0 D& s* `8 o+ ]4 G. T

    - E% x$ k- ]- gdef fibonacci(n):
    9 f% t4 y1 `3 o$ r+ y( @( L9 E3 e    # Base cases: ?" r5 ^, D3 D
        if n == 0:
    * y1 R- j) a2 e# O2 `8 d4 N        return 0
    2 Q4 _& J) M4 Q7 ?    elif n == 1:
    ) p8 D( h$ X1 p! \) d        return 1
    * v! L; c4 s* K) U) C# T    # Recursive case
    , k7 q+ E9 |+ h5 t0 {$ ~    else:
    * B' Z" a' K, r3 \2 x6 S# L6 L( X. W        return fibonacci(n - 1) + fibonacci(n - 2)
    # L3 }* |6 v9 O& m' p0 G
    2 K) V3 `. f! X' e7 T# Example usage+ m  A- R& x4 H% n& v# h
    print(fibonacci(6))  # Output: 81 a, c/ R1 m3 S- `
    8 x0 y: y$ {3 j7 S' G
    Tail Recursion
    $ T) R3 b* U2 @; ]8 ~9 d' k, `* T( F/ [: v$ `& ]( [
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., @) j: R) }9 u5 m: w

    7 x; n& S. O* KIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-12 18:59 , Processed in 0.036881 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表