设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1400|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ( }# ~( V3 _! m5 r

    ' X2 R( q5 u* V& ^2 ?解释的不错
    7 M2 b" c( D% f( ]3 S7 Z
    % D( ^% s* w' J, V3 `, D递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。" [5 F) X. N0 W9 j/ `8 t) W3 E9 Q4 F

    ) Y4 o* m: m% G3 t0 s" `1 E. L7 z 关键要素
    ( J% N9 D' {7 F, R! w2 l8 q" ^1. **基线条件(Base Case)**. {* L5 f0 J+ ?4 E, V) ?5 J+ q
       - 递归终止的条件,防止无限循环2 ~& @9 r- ~0 n' b8 u  ]
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ V0 H/ h  j+ H$ V3 Q, [: v# e9 M. m
    2. **递归条件(Recursive Case)*** l1 X, ]: H2 K: m, W" w& g
       - 将原问题分解为更小的子问题
    5 W7 A3 C: C$ Z   - 例如:n! = n × (n-1)!$ |/ f" |  [( x1 P6 Z
    : S% t1 t5 l: Y  G  j: ^$ y
    经典示例:计算阶乘
    ) L' c$ D* D1 p5 Y# t$ kpython
    0 \, C# c* H& J0 z9 Pdef factorial(n):, q5 ~- f1 z& f! R2 C7 l
        if n == 0:        # 基线条件
    5 P; @4 F/ j  N  d$ @4 _        return 1
    * u" k* X, [1 |, l2 x& }$ B    else:             # 递归条件
    8 m+ q. y0 a* o        return n * factorial(n-1)7 F/ f  G$ S0 a3 X8 S6 o
    执行过程(以计算 3! 为例):, M  b% Q$ t9 X9 Y+ q2 m2 j8 v' m
    factorial(3)
    * u! F- g2 L* T  \6 r3 * factorial(2)
    0 O( \5 g. \+ l+ a' p$ {, P, D3 * (2 * factorial(1))
    & v- \: X  {4 P& |3 * (2 * (1 * factorial(0)))
    ; c, L" e/ R# _" |5 ~3 |3 * (2 * (1 * 1)) = 6# \' q3 n- r+ B# ~) v7 Z; A
    : ]! G, p' r3 S4 m1 [% ~
    递归思维要点
    * {# ^% f7 p4 y" k/ }: ?" n; V1. **信任递归**:假设子问题已经解决,专注当前层逻辑! o8 v; C6 Q2 k# r2 a
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . ~) @6 k. J6 O7 o9 \1 r- o8 Q3. **递推过程**:不断向下分解问题(递)5 R% H: O! V! e6 X+ d
    4. **回溯过程**:组合子问题结果返回(归)3 c& u: i" p5 ~( H: ^" V1 x

    7 a+ e5 I+ Y7 {/ V0 Z" p! ]6 ]& @ 注意事项
    0 j  n' r2 z. X: ?% `: o8 ^: j) @必须要有终止条件
    " z+ b. A8 m. f; x递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) U, {6 n/ \: S& e& [9 o2 g1 I
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    0 P- X5 R) B, e( O尾递归优化可以提升效率(但Python不支持)
    $ S4 B1 ~% ]) _2 H
    8 q6 V: n$ O1 c/ K' O& M9 w, l 递归 vs 迭代& C- `; m+ Y+ h* G) t$ u
    |          | 递归                          | 迭代               |( {' F- J9 U. F; X, w% b' z
    |----------|-----------------------------|------------------|1 P1 J9 R2 G0 B7 H% f
    | 实现方式    | 函数自调用                        | 循环结构            |/ N$ p: `4 e  a& s3 A
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ( e$ {9 I6 @- E) F8 G| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |2 W2 `2 v0 B4 E* H. A0 F. l$ a
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |9 x! j6 s. C/ J' J7 V/ ~

    - F* K  ~& r* b- s. c 经典递归应用场景0 r  S5 F( ^  D* B( _
    1. 文件系统遍历(目录树结构)
    # J$ V( e9 P; Z4 e- P/ F, n. p5 ^2. 快速排序/归并排序算法
    7 |) T+ T& A1 @+ H( t9 x) X7 I3. 汉诺塔问题
    3 y: P" M- @" H4. 二叉树遍历(前序/中序/后序)$ z& T. q3 ?0 N* s. a: G: P
    5. 生成所有可能的组合(回溯算法)
    * {- w" o0 G6 \0 @; h: R5 [2 b$ c. x5 E0 K1 N
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 06:53
  • 签到天数: 3111 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,5 ?3 X7 R3 n# L8 \
    我推理机的核心算法应该是二叉树遍历的变种。
    * C( s2 U- ^  N* \' h另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    # Q2 ^3 U( ~) aKey Idea of Recursion+ `2 H; p9 p4 z( C
    & T) U+ K8 C* Q# e/ c
    A recursive function solves a problem by:
    . t! |$ O8 J' t7 W: p: l0 F" t/ H* E' I6 j+ G1 O4 X* R1 A4 M
        Breaking the problem into smaller instances of the same problem.
    ) o) {2 A8 k! T' m
    + b0 ~9 t, {: p! i. d4 h$ i. i    Solving the smallest instance directly (base case).! ~3 d+ f0 ^+ D! @$ l" f: S

    ' [  v7 |& @' q0 p3 C$ w% x    Combining the results of smaller instances to solve the larger problem.
    6 T7 f  Z0 i9 g( s7 W8 ~8 r  D7 A# U2 B2 Z& E) R* O; U
    Components of a Recursive Function- z! m5 o8 o; s
    7 Z, V. b7 b! v, @! Q5 r2 |5 Z
        Base Case:& S7 g3 O, @$ R

    ; [  A# X" D# j# M% v6 S. x. x; h        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.8 X8 I( {5 ^2 x( u6 C  B$ ?
    * D! P; ~! x# k# x( }8 `8 \; B
            It acts as the stopping condition to prevent infinite recursion.6 f: G1 V) \; f5 ]8 a

      u$ B: e7 H% a        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    + R9 l, J( F3 Q& H4 V+ g# v* m1 C) f( h: _7 t* r5 Q* U9 l7 ]6 P
        Recursive Case:7 h$ n) j& i# H# _, C7 Z
    ( S+ h; @# U0 }
            This is where the function calls itself with a smaller or simpler version of the problem.
    % S; u+ i4 C: W+ Y4 t: T4 Z$ |! V$ ^+ B+ h0 S9 A8 v
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).0 v2 P' u; Y1 X  {. e$ i  n0 G( ?
    ! u& s$ c; K- Y; {* _
    Example: Factorial Calculation3 z' e$ p3 b  L7 H

    4 V5 g  C3 n% [$ j2 W4 |/ eThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:: |% x5 O7 {' U8 e! D' u6 L- D
    6 |+ N& D- K' [! p, y; p) g
        Base case: 0! = 1
    * O, O2 \* }0 f: ?8 _& L' |4 s$ G& ~* x; i
        Recursive case: n! = n * (n-1)!9 T; |7 {- P$ H. B+ b

    8 m7 u! P- B& Q- ]1 `# ~# D3 gHere’s how it looks in code (Python):
    9 m8 Q, W6 X" H& v5 q/ h9 hpython, t  N. ]' L9 m/ Y: @$ }6 E4 r$ [. [

    - q, H& q1 F; Z5 }
    8 L7 c! I( K* _% u( O8 e' jdef factorial(n):
    0 |: s7 i$ ?7 M. l* ^( w    # Base case
    ' W3 r* y* ?" W  z! Y: p. a    if n == 0:/ |0 {  \0 z0 C$ K# W, L
            return 1& {3 r$ }# P( w3 T, G0 G8 A0 @8 a
        # Recursive case
    5 ?* V! p2 o: E( H    else:! l2 C- p; {; }
            return n * factorial(n - 1): m0 e+ |, G$ I

    2 H0 d% O  Y2 X  P  F1 ^7 o, Y# Example usage
    : g- F8 v0 b4 r2 Nprint(factorial(5))  # Output: 120; P4 F3 X  ^! o$ b

    . G' D$ L9 q* O; D8 p6 r* _How Recursion Works
    3 |+ r4 [& t; r0 X% ^' |8 f. T7 a1 f0 h1 g1 \) C
        The function keeps calling itself with smaller inputs until it reaches the base case.9 x4 J. i5 E2 [& L
    " {+ @8 S1 |$ H/ `
        Once the base case is reached, the function starts returning values back up the call stack./ Y4 K, M* s  x2 }+ l. k
    , K  S# S/ S& T8 |
        These returned values are combined to produce the final result.
    8 Z8 b$ h& j8 Y  n% b* v
    8 ]. L0 m& ^5 k% }5 QFor factorial(5):& ]: L+ _. r9 X
      q2 C  @8 O& m: K
    6 k) e$ P  p* \* B7 J) m7 `2 S7 s
    factorial(5) = 5 * factorial(4)
    3 H/ D6 o7 Y1 w$ I6 \factorial(4) = 4 * factorial(3)
    6 [- r! Y) [7 P5 `+ L9 Ffactorial(3) = 3 * factorial(2)+ q1 j- d4 G/ B* x% a" J' W
    factorial(2) = 2 * factorial(1)5 [( E9 X; ]  P, A
    factorial(1) = 1 * factorial(0)
    3 h& n* p# `3 l  A& \factorial(0) = 1  # Base case
    ' Z, ]4 H( {- G7 _* z+ T7 n0 f; W( n/ I; {3 r
    Then, the results are combined:2 p+ x9 ]5 N6 V* D& u/ m

    ) ^  D8 u# y) i1 I& w, e$ i
    / h( W- m# ~- C1 p6 x3 Mfactorial(1) = 1 * 1 = 1
    5 p# S. P; |* u& m8 @  L; {; Yfactorial(2) = 2 * 1 = 21 m" d2 G" B% d, I
    factorial(3) = 3 * 2 = 6, Q: i8 N, i7 d9 g! u
    factorial(4) = 4 * 6 = 24
    , U9 x" P3 Y4 `8 m+ K' qfactorial(5) = 5 * 24 = 120' f6 f; j9 G% f$ @% z9 ?$ I

    ) U  I) |6 q$ a* i! TAdvantages of Recursion* j* Z! M8 _0 l$ ]6 N# _

    ; B5 e/ Q  }2 w+ m4 U# P    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    $ p- H. F$ l( T* J9 j  m
    ' K& ?, P" r. h' f6 I. S( p( `    Readability: Recursive code can be more readable and concise compared to iterative solutions." D, |; D% z$ E3 \

    $ X1 v. b/ d$ O( p5 F* _Disadvantages of Recursion4 z; W: f/ g. l  T1 W
    $ y7 ^+ ]  S! \+ m
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 L! G2 Z! E! W0 m. }" R

    # P4 e- S7 Q: r' r' Z    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    1 ~: _  P' d/ ?9 F$ k
    " D3 R1 v) b" Y9 i# \3 L! NWhen to Use Recursion* C8 D, k; Z6 I4 D
    ( F1 w- J6 e% U% q
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    4 o3 R9 o& x( C$ E3 ]) s# }2 S8 N; \- ^$ E8 x' t4 i9 Y
        Problems with a clear base case and recursive case.0 r: O( O/ \) n) j6 _
    ' R3 k7 H6 o' |4 |
    Example: Fibonacci Sequence. |5 O+ `% ?9 O3 w) ]- v8 X: [  _7 X" y
    ! S0 [$ ?% r# q% z* N6 M! h
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" M3 ~6 Y7 b  Y; J

    $ k- Y* t" n! j! N$ J% h    Base case: fib(0) = 0, fib(1) = 1% h$ Q; l( {& j5 z. R

    ' ?  U, n. U7 r0 d    Recursive case: fib(n) = fib(n-1) + fib(n-2)" u2 V& ~) D$ Q) n0 P8 z5 _3 Y. }
    # Y1 ~5 ^( g& ?6 p* }
    python
    . h0 x! z% V) x" P, w
    . p' c2 k. f- X5 `2 a1 E% I/ D* t" [) I  k" r$ B
    def fibonacci(n):; `  k; J" m3 D. |" Y. A) r5 U
        # Base cases/ n2 _) ^( B& }
        if n == 0:
    . V$ a4 c1 z' U: B- G        return 0( m4 P, D7 E" G9 s
        elif n == 1:
    0 ], C1 H+ l# J. t        return 1  q+ W2 s2 |0 ^/ w
        # Recursive case3 t' j) x  L& L3 W# P3 z0 y
        else:
      y4 x" U+ m0 E4 h8 [        return fibonacci(n - 1) + fibonacci(n - 2)
    & y7 W. y1 B! r" q# c3 S' y9 s& A# L* ]  q( E# j
    # Example usage
    1 H. E" U$ s! }1 J3 }* J7 g8 iprint(fibonacci(6))  # Output: 82 D0 v! t) U3 r7 T6 d3 c

    % @( r2 q7 D. t& ~; c) x% [Tail Recursion
    2 a  G6 [- |0 ]& b8 w0 n- s" s3 S6 r# k/ X. _, ]
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)./ _) y  g. b  t1 H0 F' h+ _1 {
    - L4 g2 s( q5 r. U
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-8 03:29 , Processed in 0.031275 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表