设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2023|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 7 b6 S0 W) ~& ?. E; `

    4 j3 M4 E0 @  ?解释的不错, A2 P6 J% R+ R8 @5 d. j: b4 w
    - d" p9 @1 N4 C$ E* q
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
      V$ u9 K' q2 U! S" |! o
    5 f( i4 s' J, Y1 Z0 V# e, Y: O 关键要素
    % o; n6 s' f+ ?9 D/ G0 G1. **基线条件(Base Case)**
    4 t. A3 c* V" i   - 递归终止的条件,防止无限循环+ U1 B3 o1 v. Q2 Q5 W8 C
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 18 h; L" s; W+ O7 f$ A' y

    5 u0 v( w: B/ S" D1 q2. **递归条件(Recursive Case)**
      B! B/ d' v( f9 }( ]: T- R5 o0 @! Y   - 将原问题分解为更小的子问题
    " N% C* l( D) a. X: D% Z   - 例如:n! = n × (n-1)!3 |& H1 C2 u7 ^' F
    $ L7 ]& m5 K% r2 O0 _$ k5 k
    经典示例:计算阶乘
    2 E0 b2 U/ Y0 `8 Ypython
    % A( o0 j/ Z" n2 Fdef factorial(n):: O- b# j" g8 a4 ~9 ]) ~- q
        if n == 0:        # 基线条件; U4 ^; _; ?1 \- o
            return 12 o  q$ G; p( _. f/ z0 N
        else:             # 递归条件
    4 D/ Y7 j0 S$ j- R: i        return n * factorial(n-1)
    # }: ^6 K7 @& Z执行过程(以计算 3! 为例):
    1 h8 E' n7 b' ffactorial(3)
    ; X& n0 l+ o/ _  [2 Y3 * factorial(2)
    ( q2 |8 p0 q. M+ p/ z2 A0 h: V3 * (2 * factorial(1))- e) Y6 p  [. Q; Z' K( M2 I" R( y/ B( c
    3 * (2 * (1 * factorial(0)))
    0 A/ s5 h2 l: E0 `) u' u3 * (2 * (1 * 1)) = 6: I$ p! G- p( U' l' R0 k

    . O$ |  v$ _' U2 I- \* ^! J 递归思维要点
    5 N, Y! m  T) @4 c8 F* u: L+ ^1. **信任递归**:假设子问题已经解决,专注当前层逻辑0 u; Y% o* K, d& U4 B, B# f. B
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % w$ \; ]/ a+ P' F/ [6 V( v2 V3. **递推过程**:不断向下分解问题(递)5 t: B- O: A6 N! Q3 y  h5 I
    4. **回溯过程**:组合子问题结果返回(归)
    7 I6 T% \& ^3 i; Q
    - k; s' i$ X, p9 K0 C% P9 p3 q( S 注意事项1 ]/ X1 z2 P  ?4 ]/ E9 j- k
    必须要有终止条件
    " n0 G* d' \  c& e& R% r$ _递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 S7 F! W; ]  e+ a
    某些问题用递归更直观(如树遍历),但效率可能不如迭代; o, a3 ?% a( _) M" E% ]
    尾递归优化可以提升效率(但Python不支持)
    3 Z' I) c1 C& f
    ) G) {1 J3 V" ]( ^8 ] 递归 vs 迭代
    6 ]) F  D! F) R; Y3 U|          | 递归                          | 迭代               |
    8 O+ Q# d4 g; X- m/ H8 M/ V|----------|-----------------------------|------------------|' h5 M7 U- u; @% D% W
    | 实现方式    | 函数自调用                        | 循环结构            |& z3 b! r( b2 s& S
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |& Y; ~# X3 [' K' u
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |5 S1 s7 S) r; d! {9 G
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |2 p+ p, M2 ]+ W# l% `  m+ v

    0 s, M- x% M3 o. [7 m 经典递归应用场景
    0 v  y& t* K7 R( f8 R  i1. 文件系统遍历(目录树结构)- s, g$ ?! m8 y$ q
    2. 快速排序/归并排序算法
    ( C7 {. O. l6 B3. 汉诺塔问题
    , C8 G, o- N1 }  H- Q0 u( c$ q4. 二叉树遍历(前序/中序/后序)
    0 E$ y% A9 l' |, \% d3 j5. 生成所有可能的组合(回溯算法)
    % J- t7 \6 V% R/ a% _. Q; t  y8 T; l! P! n% ]. m) z
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 05:29
  • 签到天数: 3165 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ' z  c; c% _( n$ }+ }' e我推理机的核心算法应该是二叉树遍历的变种。9 J9 [  l; l! n8 w: N) W$ D3 B
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:# _7 k' }& ?, M2 e6 d5 L
    Key Idea of Recursion
    : C# V8 F9 b8 ?# J
    . v# Y! U0 z# b: r# gA recursive function solves a problem by:% W. h, U% I+ v* w
    ' j8 t1 u5 U) J  q
        Breaking the problem into smaller instances of the same problem.- T6 c5 Q: |2 }2 R7 {

    $ n! m# y9 J, m# e) \6 U7 g    Solving the smallest instance directly (base case)./ O4 P; a8 a& h2 W, n) G& S

    7 _' _/ O1 F" R2 e    Combining the results of smaller instances to solve the larger problem.
    : G' @0 P- b. x. o8 ?8 C
    & ?& Q$ I" M" t+ J# _  f- g9 NComponents of a Recursive Function0 u" Z# n0 S5 X4 k
    % B% q  c% B/ z4 ], C" M0 k9 {
        Base Case:' G. x7 U' E; H4 p; M) n' w2 C) f
    ; @" I3 `+ O/ H+ J5 C4 q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
      Y' U5 t1 s/ k3 Z4 ?' X* [, F. |# P( ^" g* D  a$ |9 @& R& _, z
            It acts as the stopping condition to prevent infinite recursion.
    $ s, S& M# W3 f, c; s
    ) U" r2 K6 q0 P' l1 u, c        Example: In calculating the factorial of a number, the base case is factorial(0) = 1., \3 ]( ~3 Q9 [2 V& F' G

    ( t4 o  C/ ^) K2 ~8 C8 B0 I* `    Recursive Case:
    ; }4 W/ \9 j) f( W3 s: ]% o& s& D" ?: y$ S
            This is where the function calls itself with a smaller or simpler version of the problem.* [# c' ~9 M4 }
    ( I9 m- s' y; w2 Y1 l
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    / ?, v. @- j+ D; J% o% b7 G( @$ U6 |6 P" ]
    Example: Factorial Calculation
    * |& {' u+ p' ^6 n- Q
    9 z1 I) }( ?3 u6 H+ Z* t6 a, zThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:) N$ a7 j3 G) z* X

    0 D: y2 z3 |) `    Base case: 0! = 13 ?2 q( k3 ~2 {8 C$ o0 y2 ?
    " T4 `" e' m7 l0 [$ k
        Recursive case: n! = n * (n-1)!
    . A" w, {, q. u% x
    / J& Y" J* |- D8 v: O7 bHere’s how it looks in code (Python):
    & [# ?2 U5 Q, k- C0 x& a, J4 y/ apython
    * z2 G; a  V; C/ j1 y- q7 n8 h/ _1 `* S/ k+ H/ e
    " J) X6 b7 `+ ~2 ]/ @# y0 }: G
    def factorial(n):6 D+ W' t6 m/ l* V6 W% v1 R
        # Base case
    7 y' D$ Q& P) {$ f4 ~( a; Z    if n == 0:
    4 ?) k; R  ~, d- a, M& Y        return 18 M  Q" x  [; P# ^' E
        # Recursive case
    , Q% u2 Q8 }8 R7 J# R, k# q    else:) I, Y2 f! c. s6 M  h& m
            return n * factorial(n - 1)
    1 K3 b2 n% Z& p1 \
    8 H( m/ W1 M# O' d8 _" \# Example usage& \, u3 A% F1 @$ l  d  }1 b: b6 H3 s* [
    print(factorial(5))  # Output: 120
    ( @  x8 ]2 ?3 P; g7 ^( Z( W/ ?
    % S0 i0 s) F8 UHow Recursion Works( R% U% Y$ a7 L9 r- ~; o8 b) [
    + f4 U' x% f5 T- V. W! W+ J
        The function keeps calling itself with smaller inputs until it reaches the base case.
    9 J$ I4 ?& D4 `; ~  F
    2 I$ x( \) ?' f. }3 M    Once the base case is reached, the function starts returning values back up the call stack.( w- [0 R5 T" t3 ]  v8 Z

    - C4 R8 r( {5 s% G. T( i' }! ^    These returned values are combined to produce the final result.# \" a. @0 x# L* r
    , j* R1 T$ B/ l0 w
    For factorial(5):( w& Z/ U- s+ e- z

    7 x! C5 R! i/ D/ k  x/ ^- O" }2 \; [8 V! J5 i
    factorial(5) = 5 * factorial(4)8 Y' H4 e) h5 d/ G) q4 ]% G" a( @
    factorial(4) = 4 * factorial(3)5 h$ X' I! G9 z, n" k* j
    factorial(3) = 3 * factorial(2)
    1 e/ X1 ]& a$ C* ?' @' yfactorial(2) = 2 * factorial(1)5 l5 S8 J+ X: i9 s8 O
    factorial(1) = 1 * factorial(0)0 J5 q+ X- ?1 K$ z2 T
    factorial(0) = 1  # Base case
    - t- h$ J5 z% z7 h0 S' U) z* e& t/ i! q, K$ r: h# Y* o
    Then, the results are combined:
    - |$ ?( j3 s5 i7 R) [% }" `7 C7 X* ]9 S3 o) k, j% A
    7 r8 c0 k" i  t4 f
    factorial(1) = 1 * 1 = 1/ A4 K6 G* a* @
    factorial(2) = 2 * 1 = 2, q$ a: F+ |9 H# O
    factorial(3) = 3 * 2 = 6
    ) a5 Z6 |/ r7 V9 |% pfactorial(4) = 4 * 6 = 247 U% i1 f- Z, k( d/ D7 C* P
    factorial(5) = 5 * 24 = 1207 u1 r+ i2 W" ~! Z

    $ _0 E8 |, L* ^% F. w# G2 ?Advantages of Recursion2 R( p; Q% w* h5 i8 r

    % I6 ]. T% P+ u% X    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ a/ C$ ]( q) @6 L+ e
    , m( ^. ]* |' d$ c4 Z1 ]0 V$ i
        Readability: Recursive code can be more readable and concise compared to iterative solutions.7 P/ c8 S4 q; y1 g: j- Y2 l( V, u2 A# C
    & k4 [8 R8 V$ w2 c# B* e
    Disadvantages of Recursion1 D4 U, |& k- P7 S+ G- F
    0 ?: G" q# t+ T7 l+ \* s
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    - ]# `5 {. D' Z: Y$ O# y4 P0 n, d: ^& ^4 w+ N
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! G4 [  P/ Z& h, `6 W
    : p  a! [, X& M4 k( C: tWhen to Use Recursion
    : p- j  Q- y5 Z, j; z  M1 h; O$ c! |. j' c: Z  C0 v2 l
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    7 p8 d5 g5 i" S' K1 G3 f
    " O+ ^- ~/ w0 N5 N$ J    Problems with a clear base case and recursive case.2 S; S: n9 M8 G: F# {) ?* O* M( E
    1 m3 y5 ^4 O9 _: l9 ]5 W( u
    Example: Fibonacci Sequence
    & D2 o. i8 Y4 R7 i8 J/ ^3 J# i6 S* \# T
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; M. L6 ]/ @$ F3 _5 @2 h3 ^, w$ p! ]* q* I3 @+ F
        Base case: fib(0) = 0, fib(1) = 1; ?/ @' u( u: _$ I5 X: z. V8 P
    $ g: K" L; r8 r( L) ?/ @0 j  p
        Recursive case: fib(n) = fib(n-1) + fib(n-2)7 I8 ]# k1 Y6 y. s- _) ]

    , @! x+ y! v, T, a! s: upython4 w/ i) h% i/ @1 {# x; d* m
    ! m% j+ P6 T8 ^4 z$ `6 R

    + O- a- R% s8 W+ q/ {5 O  k/ \! \+ Ldef fibonacci(n):# W7 h1 x  {2 o0 c# W7 B2 \
        # Base cases
    & k* [# L6 ]5 F2 Z; D9 d    if n == 0:
    ' _& A- \1 o( ?0 i; G1 |        return 07 T+ A0 D! m2 \" G/ O7 b
        elif n == 1:3 W# O! c8 I4 E
            return 10 z. Q9 t7 W/ x$ `: s) X9 q- s
        # Recursive case
    / }3 c; [* G( K# }- z$ j! ]% x7 e    else:0 V  K& o( n6 u
            return fibonacci(n - 1) + fibonacci(n - 2): m2 M9 X5 t  H" b+ w5 v

    5 d+ a3 P( K2 [/ u3 y4 }- |2 f# Example usage
    : [, q) @# o! I5 ~2 J3 Y7 i3 Cprint(fibonacci(6))  # Output: 8
    , b" N- k+ H# _1 C* W( y$ Q, P
    4 U4 y  E3 U# E; o1 H: C8 BTail Recursion3 o" I/ A7 H5 f7 f5 Q; d0 _

    + T  w  c' O6 M- h( {Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ' T3 C0 y+ n& T' ]& X  h, ^8 ^* q; G, \% m, m) v$ j5 H; d8 K
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-7 00:40 , Processed in 0.055868 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表