设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2016|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 7 ^3 u: y1 V& K, B  C3 R
    7 |* K& Q! L) a* `) l, N6 d
    解释的不错& O; @, J+ f; X5 n0 p, z
    7 f( c. |3 _- _" H0 F1 }
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    : s3 }8 r3 J$ w- j& }9 U% U, i9 P' s0 q% Y
    关键要素
    4 ]0 m9 Z( n+ {8 {0 V: F1. **基线条件(Base Case)**- w8 n7 a! {$ U0 t
       - 递归终止的条件,防止无限循环) h( @  M* g; m7 r; h
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1. h" v% v0 _, \  [5 u4 \9 @

    5 S5 [) t& m, ]* `& ?6 \, b2. **递归条件(Recursive Case)**) ^3 |/ E" ]+ B7 z- b, {! `: O
       - 将原问题分解为更小的子问题% l& ^7 _+ E2 x" f$ d" A
       - 例如:n! = n × (n-1)!9 k4 H4 y/ V/ m
    6 |# B( W  {( E, \3 S; O
    经典示例:计算阶乘/ k1 v6 U2 a& U# p! }$ d
    python6 |1 p# v2 z7 S/ r& @, N+ U
    def factorial(n):3 T8 k9 [. ^: l$ E8 g
        if n == 0:        # 基线条件
    ( \1 {* }, l' [9 v. g& q        return 1" d* C8 B0 j. w$ V. W
        else:             # 递归条件+ ~5 d8 i5 [3 t8 P$ `& F/ g
            return n * factorial(n-1)" X8 m" D; q( v" O
    执行过程(以计算 3! 为例):) ?: q2 b/ i7 e
    factorial(3)' r. ^$ C' @+ L
    3 * factorial(2). \+ @" e! w4 d& f& e5 a
    3 * (2 * factorial(1))
    ) K8 B0 ]  e4 ^7 B, O/ T3 * (2 * (1 * factorial(0)))
    7 }* l) E# E) o, u" {4 z: m- k3 * (2 * (1 * 1)) = 6( B! z3 n3 A4 o  W2 Y0 k
    $ u9 l5 q+ j9 q+ D
    递归思维要点
    , g1 z) k; I8 _  }$ I1. **信任递归**:假设子问题已经解决,专注当前层逻辑7 Q; v1 E, _) o$ X% x! ], n
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 ~+ o9 N9 B9 Q: |8 k5 q/ E
    3. **递推过程**:不断向下分解问题(递)
    8 C# R; c# C) p, r8 Z: Z% }4. **回溯过程**:组合子问题结果返回(归)7 [  U" R$ s1 m8 ^2 L+ V' I& e# _
    4 {. E, m4 X  g! l2 N
    注意事项
    1 ]' r9 `1 V. ]+ i/ E必须要有终止条件+ h6 y, S: h4 C5 N% M1 @
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    9 p, k& v- h$ ?某些问题用递归更直观(如树遍历),但效率可能不如迭代
    4 e7 W+ q* u' R尾递归优化可以提升效率(但Python不支持)
      E8 K: V* k* x- X  U2 U
    4 ^( d# }9 q# ~' Z 递归 vs 迭代  ^7 z  F; t) l! {* Y
    |          | 递归                          | 迭代               |
    ! R: O3 s( q, O  V( D$ p|----------|-----------------------------|------------------|- m+ i) y) y7 Z2 [% F
    | 实现方式    | 函数自调用                        | 循环结构            |! l7 t5 {) |/ S! R4 a* b
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    2 r$ o9 ^" z; m* @! Q: {  s| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    9 T) F+ r0 r& C: A9 n* H+ A$ t| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
      T' l. N# L% ~& g9 ?: w0 r" v0 j" r7 c5 R+ y! V- }
    经典递归应用场景
    # [* u" d4 O* Z1. 文件系统遍历(目录树结构)
    0 E7 b* F* @/ T6 N" x2. 快速排序/归并排序算法" l, t  L( I( X& f! Q. r
    3. 汉诺塔问题
    3 b1 M; w$ p. o) }3 o4. 二叉树遍历(前序/中序/后序)8 I* V6 c/ P% |* Z) ~. p3 ?
    5. 生成所有可能的组合(回溯算法)) X5 I9 d% c/ a5 [5 h3 @( }+ Q

    ' ~1 W  r9 h1 `$ M# @试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    12 小时前
  • 签到天数: 3164 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,5 \* [8 X) M: c9 R
    我推理机的核心算法应该是二叉树遍历的变种。, C* ?$ F9 a  w- A$ [6 C
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    # O% _% w3 E# B9 }3 m- ^9 j  f5 CKey Idea of Recursion2 Z9 h4 Q& s$ n0 s

    3 x& F! P! V: \5 S& P5 H% IA recursive function solves a problem by:6 K& K+ {0 w* ]; b8 e% Y

    * U3 H) ^2 J$ C4 ^8 j    Breaking the problem into smaller instances of the same problem.
    6 P. g+ O' K0 w5 h
    ! }4 Y8 g( U; I8 J1 c$ h, t, b+ B    Solving the smallest instance directly (base case).. B: r. m" N; h" x4 b% s/ O

    5 Y: H! j. O. O/ w' A    Combining the results of smaller instances to solve the larger problem.6 P( m) G$ j/ ]4 s  r
    + X9 h8 M+ g! }4 x1 S, Y3 n, B4 F
    Components of a Recursive Function
    4 y* E, s( _2 ~2 T3 k$ J7 _" m5 l
    , k7 f5 C1 c. y    Base Case:1 ~+ b' e( w$ e4 b! E: ]4 D3 Q

    / ?$ s4 x5 `4 S0 @' Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    1 Y. S- d) ^0 z$ F: V+ v  C
    ! s7 |( D0 B0 |! o$ ^        It acts as the stopping condition to prevent infinite recursion.8 _" s0 @+ m  B* H3 U1 c
    ' g9 e7 C* {; U' z0 U% c1 {
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ) z) ]; g$ G9 A4 M) Q9 @1 P% A/ t9 |7 |& ?0 N
        Recursive Case:2 Q, b$ `/ y7 I+ m; I
    - @4 H$ o: k  q" _- x# c
            This is where the function calls itself with a smaller or simpler version of the problem.' t# q5 s+ ~6 H! ]- K
    # U9 }! N2 q! ?# r0 h' B1 Y2 m
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    * J! q6 J$ C! t8 q' {5 f$ B$ K* n
    Example: Factorial Calculation
    + x* O2 |% i6 [
    ' V1 M4 j+ N  h! p9 I' L! L" q+ QThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, G+ L1 F- o1 `) I  s- U
    6 n& @2 I9 m% ?6 h/ L
        Base case: 0! = 1  a4 D- `1 ^% X! _: c- Q

    - g& c) Z' Z' e2 g5 N. P9 w8 `    Recursive case: n! = n * (n-1)!9 r# g5 G  @1 m4 ]0 [
      t7 P! j  c- ], S7 n/ `" T8 L( }
    Here’s how it looks in code (Python):2 [4 C  {8 G7 E( p; c
    python
    ; P9 K0 e* }/ j! D$ P# ?# V1 p! _
    6 u3 p: s$ z" ?1 i7 e) ^* X1 i/ C+ o- z" C- M" \
    def factorial(n):4 b; n2 m7 G. G' s5 e9 ]; W8 ]  I
        # Base case
      P8 M; Y& G; C% \8 g- e  W    if n == 0:
    : l, n7 D  i7 W! Y# y& f        return 1
    ( x; G* @$ U) h- J/ h    # Recursive case* X# F) i$ J6 K9 E+ L
        else:
    % H8 `* e1 y8 ?8 P; [" X" i        return n * factorial(n - 1)) d$ h6 M4 M. Q, b

    9 Z9 F! M6 V* J; w0 r! z# Example usage6 [/ t& @. Z3 w
    print(factorial(5))  # Output: 1204 Y' C/ |" U6 n' ^0 B  t

    3 z: X1 Y1 {1 \2 e4 ?1 o9 UHow Recursion Works; F+ H4 @  w! d. K

    6 `8 ~# h! k" S    The function keeps calling itself with smaller inputs until it reaches the base case.9 Z1 e* v1 M& o7 K8 l- k% ]: B

    : [2 X% d( v/ w! Q: x9 F    Once the base case is reached, the function starts returning values back up the call stack.( z+ k, J& p; V

    3 J) K8 ^( w, O3 S* a; L    These returned values are combined to produce the final result.+ K- \! O+ S% z' V

    1 Q/ G5 L) h1 d: iFor factorial(5):& R: c) m4 D) \
    - o3 R- g* ]3 M5 }* J
    " l& B& u9 I6 i9 P
    factorial(5) = 5 * factorial(4)" u+ S8 f2 U/ a' X# c
    factorial(4) = 4 * factorial(3)& O$ h  ]( ?7 b5 q: h
    factorial(3) = 3 * factorial(2)
    1 n5 I3 `9 ?$ r4 Wfactorial(2) = 2 * factorial(1)  _2 C3 e; J' |( L, \0 r7 j/ L
    factorial(1) = 1 * factorial(0)
    ! B/ M1 p- e/ w" q3 t; I* t, v" cfactorial(0) = 1  # Base case
    " {1 l$ O: `+ \' v) w0 n
    # E, w7 C4 N  a! W' D3 gThen, the results are combined:7 A: L  @# F  p; x/ H9 G- a
    & N4 R- x+ ^: Q  F4 y8 b$ g
    , [2 H& I& X0 ^8 Z8 k. l
    factorial(1) = 1 * 1 = 1
    6 _6 y2 c) X0 qfactorial(2) = 2 * 1 = 2
    2 S# t+ P& \! ]" i7 Zfactorial(3) = 3 * 2 = 6
    7 i1 N  E( ?% J6 Y1 B8 U$ \factorial(4) = 4 * 6 = 24; r; V& v* t% V3 E# e. r
    factorial(5) = 5 * 24 = 1203 z4 p' C9 W4 q: y; h- Z% E

    & n. d1 t" |4 E2 a& qAdvantages of Recursion) L, A0 H3 L& X* ]
    ; o% l' s6 o$ }! _
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! U- |$ Y/ A, p2 @  J
    3 x& L8 j$ K" `7 ^
        Readability: Recursive code can be more readable and concise compared to iterative solutions.4 U* T' }* R+ }5 k) w2 p
    2 w( S1 x1 L( w1 s
    Disadvantages of Recursion( R6 q9 p7 T( c: ^8 U0 g
    5 ?; U. u8 {6 A! J0 w
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    + K: u- @* _, b4 H% e- L8 |' U. X* C" j: c, R+ e* p
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).6 q' v: F) F0 g% {

    9 U. ^' F  }* q$ L  X! QWhen to Use Recursion7 _# f7 Q* N5 w

    9 h& v6 C% ?) ?3 A+ t    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    / l" B2 T" G9 g, P# b9 ]
    ) I5 B" l9 R) `/ M* h- j0 W6 u    Problems with a clear base case and recursive case.. d& ]' t; ?( \" M7 I
    ( T5 |9 x$ w$ f
    Example: Fibonacci Sequence. u6 M5 f5 X9 T0 e* y8 R, P% n
    : i2 N. `7 u( l+ y2 r( f
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) {. E0 O  n# H3 f3 k
    " n9 @- a3 X- y
        Base case: fib(0) = 0, fib(1) = 1
    ' \+ [4 ~+ J- O1 s- v
    2 H, r9 F$ L5 I% f' V" {    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    5 w+ ?0 ]% f' e; W7 \% s
    . L* V' E' W& D4 a$ Zpython( E1 j: q. e' A% F) v5 X8 O6 u2 G4 k  }

      `$ T9 H! v7 r# i  M/ r  Q# l2 n4 B# U* l
    def fibonacci(n):$ R3 {3 S9 p, G' o
        # Base cases
    % @7 @: [( j0 l4 P7 b! f7 c    if n == 0:
    / s/ z- T$ Q( G2 [9 |4 g8 ?        return 00 y& x* y4 o9 S. s# ]$ k3 s
        elif n == 1:
    ; U% V  u8 U+ ~2 J2 Z        return 1
    ! B0 N. A; J) Q; \" p& J0 {    # Recursive case* f: z1 n! @+ A, r8 y- c  u
        else:: k: W% ~) u" m  _, c, C
            return fibonacci(n - 1) + fibonacci(n - 2)4 ]8 G) a9 h2 d

    6 n9 M) w: H% `4 z# Example usage3 F* k* m% z% p$ s( r5 u& K" n
    print(fibonacci(6))  # Output: 81 }$ W" W( G4 U8 i' h( s* O
    9 [' D5 x3 U, ]2 N' Q
    Tail Recursion8 Q0 H+ R/ ]0 G7 ~  q: A0 T, s& T
    ; r" m2 k( F5 `, c  o+ \' V
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ' ]; i  ]& B4 ?6 H- q4 k6 D* W: M) T5 O0 E* d
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-5 19:19 , Processed in 0.056976 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表