设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1786|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    + M6 J$ s* I& c( d0 k4 {1 `- J: K# f! i5 P2 \( h( H4 t
    解释的不错
    4 R" k: Z  @1 J/ W# B# z% o8 f+ f2 z4 }4 O1 E
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    0 _3 e' z0 t5 [6 _. M1 `: y& U! I5 d# q) q# y
    关键要素; ?( V8 J; X; A- h* s  ?
    1. **基线条件(Base Case)**. X+ I! v, x9 t3 W; f2 `4 c
       - 递归终止的条件,防止无限循环
    1 [& S6 W' C) j& D" f# K3 k   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1# U. R' e( W1 ~

    5 i- `7 A1 e; r  s2. **递归条件(Recursive Case)**
    , o6 p6 b: g! B  E9 _/ N  x   - 将原问题分解为更小的子问题" x9 a/ q  f- B
       - 例如:n! = n × (n-1)!
    7 `6 U+ u: n2 u9 T% N& P% u- ]+ N# V1 G+ n! F. A
    经典示例:计算阶乘' j1 n7 w# j! H6 |1 k' p# A2 l: ?
    python. w( B1 H' ^* k/ a+ h( r) |
    def factorial(n):$ |& H4 z0 l' w3 ^) n0 w
        if n == 0:        # 基线条件( q9 u4 Y3 ~1 H1 ]- h6 i' r4 c% ^
            return 1% ~# c# F9 V3 g' l7 [* ^+ l
        else:             # 递归条件7 g$ J2 i. r) b" N
            return n * factorial(n-1)
    $ a9 X8 b& j1 q+ i5 I6 ~6 z执行过程(以计算 3! 为例):
    7 K1 ?& v/ ~6 o. qfactorial(3)! f$ w) S3 b! t0 H0 I
    3 * factorial(2)
    1 P; ^5 a% {( x3 * (2 * factorial(1)), E0 [3 a, n7 `1 F( _
    3 * (2 * (1 * factorial(0)))
    9 c% M3 v7 Z0 j& r& v* g5 {3 * (2 * (1 * 1)) = 6" F( l$ j3 [  U3 x9 l
    : J( O7 t7 r2 R% j% P, t( q
    递归思维要点
    # e* O/ q) p7 e* y7 ]1. **信任递归**:假设子问题已经解决,专注当前层逻辑# k% j3 Z/ b9 v1 D9 s. \4 p+ B& P
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间), g( O2 r8 @- h* V9 x& o4 C
    3. **递推过程**:不断向下分解问题(递)# m+ r$ d' h8 _+ f) |2 d' k
    4. **回溯过程**:组合子问题结果返回(归)
    ' n# O7 s* b) W, `3 F
    0 _* u) z- I, a- \3 j" E 注意事项- R" K' ^' }9 Q& P
    必须要有终止条件" y2 L$ C! L3 w
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    $ A1 F4 F; B0 n6 w5 r7 v某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 _* _( p3 |/ y0 D8 j尾递归优化可以提升效率(但Python不支持)
    5 `0 T6 `3 F# q7 e8 k& ?
    7 Z8 G$ @) l9 y  }, i' C 递归 vs 迭代
    : J: K" Z6 Q( p7 e0 {! F- M) e|          | 递归                          | 迭代               |3 }8 J, z  o% j# r
    |----------|-----------------------------|------------------|
    / m; M% v. }7 v- F| 实现方式    | 函数自调用                        | 循环结构            |0 g, z4 |* m% G, v! ?- b, h: V
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    % S1 M  ]. D& C; w( K$ f. f| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |( K( C! p1 Z; f& U1 b4 z7 u
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    4 e2 Q; X5 _/ j; o/ n: P& K% A6 P; R! l3 V
    经典递归应用场景3 r$ n+ L8 I" W4 }9 E% s
    1. 文件系统遍历(目录树结构)" y8 o+ Q1 h/ k; m0 P
    2. 快速排序/归并排序算法# M, u. [* E- m- i9 w
    3. 汉诺塔问题
    9 G; {/ w& a8 @, I# c4. 二叉树遍历(前序/中序/后序)( R0 x. X! O/ I! T, b" @+ E; R
    5. 生成所有可能的组合(回溯算法)1 L% _$ \# R$ _3 h: K6 X9 _" Y

    , e% N6 D9 Z2 d. ~试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 07:05
  • 签到天数: 3143 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ I$ T- T) C$ u; s: B: P
    我推理机的核心算法应该是二叉树遍历的变种。3 g' a! q% Y6 a8 w, K' k7 \5 Y% {  e
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    % d% [+ Q# O5 M2 W# c% rKey Idea of Recursion
    5 T4 D% ?5 O0 G5 L; }8 l
    7 V9 b  B' F( }' I" @7 a: nA recursive function solves a problem by:
    ! S9 Y* j1 B1 D
    . i2 f/ S0 W; ]/ V* K    Breaking the problem into smaller instances of the same problem.
    6 C) i! s. Y% ?5 G( R( O% b0 M, y/ p% Y
        Solving the smallest instance directly (base case).
    9 l! d# |8 A- x9 V& u3 M$ P3 o' y  k, O5 h$ E
        Combining the results of smaller instances to solve the larger problem.0 b" G! b. k+ R' |/ h
    : u) N/ f; w: K- S2 L( ^! H% `, T
    Components of a Recursive Function
    : J& ~* }* k9 R7 U+ r, i. s! l7 g# z  g* G
        Base Case:8 y( |7 S1 ~! x1 J; o+ ~+ O1 L
    / p( z) W+ j9 A* ?- l
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.; k  {  ?! K! _( J* n

    8 D* @" n" Q* v& p        It acts as the stopping condition to prevent infinite recursion.
    * }% R; m$ J$ \- m3 t) u, b, I0 b+ g3 q! M
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1./ m* ^1 p* i- z3 T1 x% Z
    ) r$ [+ d/ W9 w* F7 n
        Recursive Case:
    1 r1 o: F. r3 V+ o) }) P$ h5 y& G7 {
            This is where the function calls itself with a smaller or simpler version of the problem.0 g9 f/ p* u( V+ m+ h( X
    9 A2 o" r# _1 @/ J  D
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      R0 }% N+ d; }  b6 r& C4 s/ ^# _! e: d6 s9 ~$ K8 {) `$ J* J
    Example: Factorial Calculation, M1 y2 e0 [" f% L, m

    5 _+ A! z7 q7 T* E1 K! EThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % i4 _$ n9 x* r( U* H/ ^
    . e5 E/ P" v- ^. ?' u9 ^+ U  |" k6 k$ j5 g    Base case: 0! = 1/ g9 x' N( R! h1 e- c4 a+ [9 M- Y
    ( Z: F) Y1 ~) B; n$ z; M7 K# N9 T
        Recursive case: n! = n * (n-1)!, p4 J* G- x6 `2 Q; {

    # Q" Q: s" t, H$ wHere’s how it looks in code (Python):
    7 q7 o% L3 Y3 y1 u  m. [! o* _python( ], r4 I$ M: w% m: D
    8 h: d3 M% l) m1 D) {6 K

    # e, [$ E% p7 g# D. idef factorial(n):# T$ s8 @5 T" [9 G
        # Base case
    9 n  l6 J# B, c( n8 L5 M- d    if n == 0:
    9 T0 v+ W' {1 j# ]5 r- Q        return 1
    5 \2 l$ r  P; w* n! t4 c    # Recursive case$ S- }1 D& F! \5 G
        else:
    ' h- O- c. Z% n        return n * factorial(n - 1)
    5 \( m8 L$ b4 c
    " _+ M, T/ R4 R' w( y9 M# Example usage4 V" }0 ]3 a7 U6 a: F4 |0 K) |
    print(factorial(5))  # Output: 120$ t" w# ]% u* @

    / n& o: }5 r2 i0 C/ @% @How Recursion Works. `9 T; r7 c) }! E7 v( ?  y% V! b
    : v8 J# A$ Q  K4 E1 l! V
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ) `+ C# ?* A7 y  ?8 v% k* ~+ C% P5 Z
        Once the base case is reached, the function starts returning values back up the call stack.( A  m5 x$ J  I" W6 D. B8 P! }
    ) p1 I9 L+ `* p' O
        These returned values are combined to produce the final result.) ^% d* ~/ O" T7 c3 E* [
    3 X5 M6 D( z8 f# p; O/ b9 v
    For factorial(5):* B6 u: ]! n- s+ F& T

    % _5 [9 ]% a! [# N& H2 \
    1 B) k2 g+ J; M4 e6 g( \- nfactorial(5) = 5 * factorial(4)! R9 g$ ^) C$ f  m( X
    factorial(4) = 4 * factorial(3)
    0 W4 b. h: u9 `* Nfactorial(3) = 3 * factorial(2)# |  h8 K7 @: W& g, P* H
    factorial(2) = 2 * factorial(1)4 A2 F1 n! R$ J
    factorial(1) = 1 * factorial(0)
    3 Q! j' [/ z, G9 \1 W* Tfactorial(0) = 1  # Base case, l: x7 a7 |; f' m2 ^* ~. d- @

    2 |  Q3 F# i2 t$ ~* H8 f* V1 `* Q, SThen, the results are combined:
    8 O, U( \0 G: V9 j; M
    / p; a: X8 K3 ]! |* x6 P* i5 n
    . E" A2 m( ^# w8 Kfactorial(1) = 1 * 1 = 17 V$ h1 J& b, ?) F9 d' }3 L
    factorial(2) = 2 * 1 = 2
    - }9 i9 l* Q5 L' T" jfactorial(3) = 3 * 2 = 6
    . }8 u. }: l9 A! S. ]+ ~6 sfactorial(4) = 4 * 6 = 24
    1 G$ N, F+ G! H. R4 v! }: t* pfactorial(5) = 5 * 24 = 1206 M# g4 \' s& n) `4 p1 o

    & p6 @7 U# A% |" i3 a" d( t* t2 P% l% GAdvantages of Recursion
    . u  J; g6 g' R9 W  w& Q
    9 r) R' m& }7 X" q( }$ R    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    : Z! U: |. Y" `. z0 k6 N4 y8 [. \. K/ {% _" z) P* g! h& u% @9 ?
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    5 L8 D; ]  ]( Y+ W
    4 D2 v+ V- I" V& pDisadvantages of Recursion
    7 c, t2 \, |) h! q3 p8 Q+ j5 r% M
    2 h+ c& r" ^3 i0 E    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    8 a' z' o' S$ R: k" i( B$ u, `5 s
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    : X7 r: o/ ?' I# q% d5 ~+ m, J# ~/ U0 c5 c; k6 [4 J9 i, M
    When to Use Recursion) F* t- M) r! g

    * K) ^" B) t7 T    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    $ {5 h0 o$ a" r8 q4 a7 B, }( }
    4 n- l6 w% Y5 I% x; ~5 y    Problems with a clear base case and recursive case.
    9 U- D; F' U4 h4 p" G' ]6 n# M# F# C* U. o; `$ W
    Example: Fibonacci Sequence! [% `: Q! ^; Y: M# T3 h8 j& w
    # Y4 N: D! p  J
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ! D5 |" o) T. E# {* K; z; U2 x- {
        Base case: fib(0) = 0, fib(1) = 1$ k  f3 l/ Z; `( M
    9 N4 _' S6 O' d
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 M9 \  n6 v- {& v( p: |2 z9 |0 L' B
    python
    6 Q8 d! J4 H5 Z( I4 p! Z) S4 v; f+ x  f

    . J  S" ?% N& n- ~def fibonacci(n):! N1 Z9 s9 g* s! }
        # Base cases
    . b9 k3 j$ S) B7 w" _" T    if n == 0:
    * M8 C0 ?/ g8 n1 c7 g+ _: ]        return 0
    $ l2 V& R% t1 [8 o. Z    elif n == 1:9 h1 a+ A. r0 z$ ?
            return 15 ?8 }# m$ Y2 P& S6 b2 F
        # Recursive case/ J7 m5 K  _: ?5 Y& X  V6 Y
        else:0 V4 Y2 I9 T( ^/ Q& H
            return fibonacci(n - 1) + fibonacci(n - 2)9 W, i0 z1 A( H, u

    : S( ]8 q: v) a9 k/ X# Example usage, z. |$ N' ^* H3 H  I
    print(fibonacci(6))  # Output: 8
    4 O6 z, n! C' s' z0 o: W" @, |0 f: B8 b+ c( u, p# Z
    Tail Recursion# N4 V+ ~9 C9 R* R4 {7 D
    ) f% S! u7 v8 j. i- d, m* x2 Q
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).; h- D  P: j. V0 h0 ]# f' C

    4 |/ Z7 O7 \$ j5 U5 X  D( {7 wIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-12 06:49 , Processed in 0.029333 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表