设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1645|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 & @; d7 B$ R" A; P
      w& R; W3 `2 ]+ f
    解释的不错
    9 s7 A# o7 e* V+ C% f3 ~: F4 O; ^4 x6 f* s, B$ b# r* ~; ^- u
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。7 G1 W8 b3 K! i5 {: \* d9 P- y9 I! o

    / ^. S7 G8 @5 R' L6 n* q% M 关键要素( S! T) e$ b: t  a% b
    1. **基线条件(Base Case)**
    # S6 }+ d7 i. N3 u2 V( E0 Y8 ~   - 递归终止的条件,防止无限循环
    5 M0 Y( v' b3 J& Q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    . A( j, I" k5 ]4 W  F2 m; V0 n1 Q- P5 d6 v! J) t- ?
    2. **递归条件(Recursive Case)**2 N# b5 V4 q5 ]! e) r0 \5 e
       - 将原问题分解为更小的子问题4 o) P5 V( [1 s0 \7 L5 a
       - 例如:n! = n × (n-1)!0 r6 ?9 Q! s. u, E1 b5 J7 `. f$ O! Q
    / c1 f1 Q1 ~6 G* v
    经典示例:计算阶乘
    0 @# L5 k* E- }4 O! A( k6 H. apython
    . z, H5 e. h: W+ L8 K1 ^2 ldef factorial(n):: g+ Y6 z* V, S4 I* E! P5 Y
        if n == 0:        # 基线条件; M( W! M$ a! B4 g
            return 1$ b* o; |7 g- g; S
        else:             # 递归条件! O1 P; x% g6 X# M1 @+ v3 \
            return n * factorial(n-1)* @' x9 u$ G9 U/ Q- o" `
    执行过程(以计算 3! 为例):" Z7 {) F0 V, K& I" Y5 W- w5 i( C6 z
    factorial(3)) c! L3 r8 o! ]2 m2 w) j
    3 * factorial(2)& S9 k. c# [/ W& F
    3 * (2 * factorial(1))& Z( ?8 E+ W, P4 W/ e+ t
    3 * (2 * (1 * factorial(0))). ?* F1 l/ Q0 m  {: f% g. J
    3 * (2 * (1 * 1)) = 6  T; e3 |9 v- l0 t  W. G+ ^

    9 |1 J3 u& J" K9 h3 Y: ] 递归思维要点
    ! }7 p, T) z" u4 j' M: O0 A1. **信任递归**:假设子问题已经解决,专注当前层逻辑( E) o' T% V/ D6 r. r5 B% L
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" p7 B) h, g+ P
    3. **递推过程**:不断向下分解问题(递)& D' q, ?1 Y7 [) ?) U" l) V: {
    4. **回溯过程**:组合子问题结果返回(归)
      j6 l$ p7 E6 K8 F
    ( U4 b; ?# b! j5 T: s 注意事项9 y7 H( `) l; ~8 O. v* [& {
    必须要有终止条件
    ' X+ \% q7 f7 N; e递归深度过大可能导致栈溢出(Python默认递归深度约1000层)% v) x. n5 x1 K
    某些问题用递归更直观(如树遍历),但效率可能不如迭代: X* r" _5 e. R, s  }( [
    尾递归优化可以提升效率(但Python不支持)8 S- ?: `$ U  U0 Y9 I4 E

    , u% V; ]4 P% T* ]9 O$ S: A 递归 vs 迭代; i9 @, r$ ~( N2 v' O- f% r" r
    |          | 递归                          | 迭代               |2 n/ S  L/ o/ _# B: P
    |----------|-----------------------------|------------------|
    6 R9 p0 ]0 n0 T$ l9 Z, }| 实现方式    | 函数自调用                        | 循环结构            |: w& M. C( V. ~/ u; T; u1 v
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    " W9 y# Q4 D! Q' ^3 W6 o' N+ U* _| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    # e. N# S2 S# t4 p. b| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
      q7 u( u8 c* Q/ B! g( J
    ; s5 u4 y  t8 g! N, g' o3 { 经典递归应用场景; j+ d& }. L+ _. l
    1. 文件系统遍历(目录树结构)
    : M0 b# I: x1 Y0 O2. 快速排序/归并排序算法
    % J( r6 [3 \9 c! P: ~0 k3. 汉诺塔问题
    7 `2 H$ ~4 Q. {! I& X& S9 t4. 二叉树遍历(前序/中序/后序)
    " [  e  e8 W7 \5. 生成所有可能的组合(回溯算法)2 o% u7 p0 z2 n1 v7 ~' l* b
    8 M( J9 L2 ~0 y3 X/ J, v0 T7 ]
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    2 小时前
  • 签到天数: 3128 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) Z! B1 f; h/ h. i7 R) n
    我推理机的核心算法应该是二叉树遍历的变种。1 M* f* u7 U* ?9 [' i' W% w+ O& P
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:; ]: ^3 l1 T# c4 P" p
    Key Idea of Recursion! E  X  b* f$ z( |" \
    / e8 G2 [# }- y8 X& G4 Q
    A recursive function solves a problem by:
    4 k9 X; F( G5 r7 L5 ?
    2 G5 h6 Y- u) t. S  l9 F/ L    Breaking the problem into smaller instances of the same problem.! O# l7 T4 u! |! w+ }& h

    ; F/ k% E' s" `2 |2 {    Solving the smallest instance directly (base case).  }. O+ N1 Q/ `# V; h
    * w& F6 ]5 L- |& w
        Combining the results of smaller instances to solve the larger problem.
    * L  a! K/ a9 \7 c6 H1 ?1 e& `! E3 N
    " }( x3 z, F# w) R& yComponents of a Recursive Function0 K0 J/ E' N! l9 f5 [
    ; k/ j  d, L4 a
        Base Case:/ \4 X, Q+ |( S  h+ u7 G9 V

    ( Y  J8 E! I( d7 W5 |( S2 ^        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    9 m% o2 g$ U8 f" Z, R" _4 w
    * J) \! K% }, `% M1 F2 Z        It acts as the stopping condition to prevent infinite recursion.
    0 |( ~$ \, Y0 T, n. e# d" c+ r/ {
    : P8 v  b$ G+ u/ i. j        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & f0 b# W1 D+ a! {* v5 a2 S% A
    9 W; b4 _" Q" F4 Q    Recursive Case:3 k9 Y) a5 M! c; q" o  L& ~
    ! w2 T: \7 A! R, z
            This is where the function calls itself with a smaller or simpler version of the problem.! A0 k- M; ]# G7 Y
    / l4 D6 X7 i4 E# ?% W
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ K# z1 f4 Y% R) \
    # T* j/ [3 D  o
    Example: Factorial Calculation3 c" i+ M. b1 z1 W4 W* ?* o. b2 V# Q( _

    & `/ I8 Q; ]3 {# {. N# {The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 W! ~% c/ j2 V7 Q
    4 `0 n, `  x3 N( w. J3 ?
        Base case: 0! = 1
    0 y  i/ n& Q" ^' O' H; o( X
    0 Y6 B, K; P% q2 V    Recursive case: n! = n * (n-1)!& g% x# v, \- Y9 o  a

    / X0 x. l% a5 `$ y, B: a1 f. w& a) v& _Here’s how it looks in code (Python):
    ) A) a$ ~# V0 I& P/ j6 c1 T% }; N  Apython
    + |  e- p9 X, o- o- u& [, Q) f2 ?1 b9 l

    0 a* V2 n7 O( y; j/ p- Ydef factorial(n):# h/ w, Q% L% u6 c5 y: H' x; o- C
        # Base case) i* ]- U2 B/ v: s" ^
        if n == 0:
    1 m) b6 Q( l& Z% _: n. t        return 1' N1 t# c9 V* f. _
        # Recursive case
    - Z$ e& O7 Y/ i* n    else:6 U3 @& K+ M  L9 d) U& V# R
            return n * factorial(n - 1)
    + V1 K# k7 \" w- Y- s( Z+ \0 r2 w$ A4 P/ r3 Z; B) ?6 Y
    # Example usage3 p/ r; p8 j$ r7 e
    print(factorial(5))  # Output: 120  m0 w) C: E9 ?: B
    & r* t; c. u! r9 x0 |
    How Recursion Works
    ; W! }; u! z) q, |/ R
    2 @/ L" v1 l! w( \1 d* J& r5 q    The function keeps calling itself with smaller inputs until it reaches the base case.
    ; H, z( Z% E- E7 O! m8 y( ^; z3 x4 i2 ~& F' |
        Once the base case is reached, the function starts returning values back up the call stack.
    ( l) e5 h) [, Q# f' G3 c: d/ `/ j4 T! P1 r1 b0 b
        These returned values are combined to produce the final result.
    0 k: k8 U6 z+ B# D
    $ T/ s( ^+ W4 OFor factorial(5):+ C, \7 O2 H4 m7 j) {  `

    . I- R; Y/ I+ e8 Y( F9 f# r
    ' l2 W8 M: z* h4 \  ffactorial(5) = 5 * factorial(4)# u$ F! q$ H. Y4 H1 N
    factorial(4) = 4 * factorial(3)
    % A0 u+ N# Q! xfactorial(3) = 3 * factorial(2)
    : k9 t% B2 h# \% h+ E! Pfactorial(2) = 2 * factorial(1)7 t, d  v% b' ~+ j( i7 b
    factorial(1) = 1 * factorial(0)
    2 Y1 P" a4 N4 n  j; m4 B) gfactorial(0) = 1  # Base case
    : L" |5 p7 B4 Z) w2 |- A; V7 p. ~0 P' k# {% r
    Then, the results are combined:1 u7 Q/ R; h: y: I) r+ g# E: H) r$ @

    5 y- @4 u: _/ s' {! S, T3 D
    . Y( ?1 m9 ]# yfactorial(1) = 1 * 1 = 1
    2 K/ L/ ^1 a5 ]factorial(2) = 2 * 1 = 2
    ( P4 m. d# |8 I" b# T, U/ B4 Afactorial(3) = 3 * 2 = 6* K6 J: [4 v1 e, D/ F7 R
    factorial(4) = 4 * 6 = 24
    - k" E! U1 k2 Z+ A/ _2 Tfactorial(5) = 5 * 24 = 120
    + i! U5 |3 j' _6 ]5 R/ D1 Q+ a% Q1 o. h
    Advantages of Recursion
    & l  D4 c$ T/ r/ q* @6 f) A. X8 j2 W* {
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ! m7 }# t! k: Z" ?+ Q8 G! ]* G& ^% Y* R; M% d0 Y
        Readability: Recursive code can be more readable and concise compared to iterative solutions.# G1 F0 m. K; S, J. Q8 P
    ' q6 T! |8 R2 q5 ?
    Disadvantages of Recursion5 H- j5 h, }. R! M2 ^* o

    6 h4 t4 l" n3 ^: x+ w    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# F2 q* c( Q) V7 J

    " _2 g3 P1 D* f. f7 q& K+ {  @    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    5 F/ M+ p; U* k) y5 R/ b
    & J8 Y- O+ M7 R/ i6 o) ZWhen to Use Recursion
    3 y  P7 T5 l- V- Y/ J, Q1 z; Q* H$ x) {1 Y# [3 \9 ^3 T) u8 Q
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    9 z% p8 o/ ~7 V6 j) |
    ' |0 Z. d& B4 x. Y    Problems with a clear base case and recursive case.5 ?) N4 ~; w: ?' i  W* t

    # {5 x. X4 ~2 ?" ~& o/ IExample: Fibonacci Sequence
    , H$ b: m" S2 L# L
    ) S, _% Y4 l0 a+ lThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    1 f: `+ d: t' ^2 ]
    # Y: }  f0 Q  V1 _    Base case: fib(0) = 0, fib(1) = 1- ]0 t" \8 _8 x
    ( r7 h) |* E  N' T, s
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 B4 G/ ]' e% B8 I6 i9 L- J6 H( C6 q6 t! d, B& A- }
    python- o/ L& S  N4 t. X, F: b( p4 e# E
    ) G/ Q3 [0 b# {: K

    " N  h' Y# R, Y; j) Qdef fibonacci(n):
    # x; B. t  r, K4 b7 r' J4 L; R    # Base cases2 _, Z  j% o; E; F
        if n == 0:7 a! B) p: b2 o) a; L7 }$ @; q- m
            return 01 V2 g8 v* d1 x
        elif n == 1:* L3 d% w% g& k0 R# m
            return 1* m( s/ m' q2 t
        # Recursive case
    2 }! N! f' O4 r6 T2 B, r/ r8 ]3 ~, q* ^    else:! ^$ R% U" }  z
            return fibonacci(n - 1) + fibonacci(n - 2)
    ; E; a7 N/ E1 R  `1 R
    # L6 }+ q  R  p6 i" H# Example usage
    ; q7 Z5 c% f% C. e2 w5 e; Iprint(fibonacci(6))  # Output: 8
    5 _" j, E, @2 N
    " @4 v$ n7 A' N* Q. n+ F2 V" CTail Recursion$ x) b# D! _7 z+ A0 k
    + t+ Y* B/ K% n9 {
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).+ N$ h% ]1 h% _' j9 u, P: z' Z
    8 Z$ e: L/ g1 I" N3 J
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-26 09:16 , Processed in 0.030055 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表