设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1729|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 5 I; l* L# R- R& G4 P
    , n  Z' R& K% P1 n/ j
    解释的不错
    ) b: [. I% W, H
    3 \, p0 E9 z) D4 a3 R递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。$ }/ L9 [( q: x" H: _

    " h/ G0 P& D" m  S$ o3 Z 关键要素
    ; K0 E$ d4 f- U1. **基线条件(Base Case)**
    . d9 Z6 l4 P- b8 w6 R/ V   - 递归终止的条件,防止无限循环7 M' }& ]) O! Z% o% ]: n
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 {4 N) K0 I7 q5 Y1 u
    4 I& w' h' S  S0 m! g$ }; Y
    2. **递归条件(Recursive Case)**
    ; X$ q# ~5 V0 ^' O3 {4 E7 e9 @   - 将原问题分解为更小的子问题6 L$ `  ^8 V; \" R4 W( ~
       - 例如:n! = n × (n-1)!3 k3 Q2 q. H. J& T# \3 ]

    5 D) a0 @  i+ v! Z7 y( L! D 经典示例:计算阶乘
    8 k# ^& W- D5 ~& `9 b. _python
    6 N& w0 D' k6 j- Z: T6 M8 ndef factorial(n):
    4 Y/ @3 H9 L8 o% l8 B7 v    if n == 0:        # 基线条件
    5 B6 f2 t5 q# L4 `. n        return 1" B/ }" V. i  u0 V
        else:             # 递归条件8 ?, S9 L% J$ z9 V* S) t
            return n * factorial(n-1)
    ' `+ c5 p' G% k2 v; R执行过程(以计算 3! 为例):& q" n1 ]7 Q( Z  G! R7 B3 E
    factorial(3)5 U. [& Q5 w; W7 U' m
    3 * factorial(2)1 z% B4 w9 l0 i( ^" U
    3 * (2 * factorial(1))
    ; D. s6 {* v) w( m# f0 Q3 * (2 * (1 * factorial(0)))) U' B; l2 D* R* M1 P
    3 * (2 * (1 * 1)) = 6/ x1 b2 y; p6 D8 u
    ( X0 ]5 W! g: {8 N  I
    递归思维要点% _* e0 K, N* W* w2 D4 n
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑8 S: _8 P4 g: L+ S$ e
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)* ]% o* r5 W, N% R% T
    3. **递推过程**:不断向下分解问题(递)
    3 j+ Z0 `0 W1 d6 S4. **回溯过程**:组合子问题结果返回(归)* [" C0 G% o$ L% _( f! l9 ^- u
    2 v5 k* X% O8 g, s, s
    注意事项9 H; P/ c/ P! g1 }
    必须要有终止条件4 l9 [* _) {% V: @3 ^9 b8 t, i% G
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ j) d4 D. o+ v& X7 C, ?
    某些问题用递归更直观(如树遍历),但效率可能不如迭代* n6 O2 N0 G9 G: [1 q* K
    尾递归优化可以提升效率(但Python不支持)+ v. N; ?7 P4 Y
    4 I/ w* n% @* n$ }8 V) c+ f
    递归 vs 迭代8 c' w0 k* D) t6 A: x* ~5 f+ A; U( s
    |          | 递归                          | 迭代               |
    ( _( D/ m$ y7 e, a8 z3 @|----------|-----------------------------|------------------|5 V  M2 D( H. C- R6 f& ^2 {. f8 u
    | 实现方式    | 函数自调用                        | 循环结构            |+ q2 I  z9 Q  S9 g- r* ^4 U
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    6 b) J" N7 z# I. L| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |$ S: G' j" F  q3 e
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    6 N% X- {0 D0 }0 `; {; }5 h7 A2 x
    经典递归应用场景
      N; s2 S( N9 B& k( ^7 [7 l1. 文件系统遍历(目录树结构)8 ~: A- i$ _+ J! \/ }) w8 w
    2. 快速排序/归并排序算法1 G$ Q2 ?9 x1 i  a4 ~  @6 Y. f7 v# S
    3. 汉诺塔问题' s4 y( I8 ~5 [6 r
    4. 二叉树遍历(前序/中序/后序)% J3 b8 k. i$ u" @3 l' _! k7 n
    5. 生成所有可能的组合(回溯算法)
    5 H& R  S% L: r; {. E# ^: _5 ?  V, r) J& t
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 14:57
  • 签到天数: 3134 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,: y) u6 [: M" Y8 X, h) t. V% y* e
    我推理机的核心算法应该是二叉树遍历的变种。: g0 @- A+ ]3 _" L
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:! z' o$ T) `" \2 g
    Key Idea of Recursion* D/ d& Q7 K$ x* l) s
    & ^7 |: c! p. G  p0 y0 e7 H
    A recursive function solves a problem by:! X& a, k7 U7 U- n/ _4 D% p

    ' P) E- p7 |0 j, `8 Z/ m! y    Breaking the problem into smaller instances of the same problem.
    ( n: b# e* L9 I' N3 H( u9 C& U( W8 j3 B- f
        Solving the smallest instance directly (base case).
    & W4 f) q% i- K7 a& L- ^) X: I  m
    - E& {/ c2 p; ?( I/ V    Combining the results of smaller instances to solve the larger problem.8 S! g: @1 F9 A5 C% U6 ?9 F3 ~  t8 C( N

    " Z9 a* q+ t; x  w3 nComponents of a Recursive Function1 E" H, o) \) O9 }

    ; Q" I/ n/ @/ B  m; S5 e& L( a  w    Base Case:1 h- T; V' a: _/ B9 @" d
    ! }" Q' v1 d1 x  o7 [0 i
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.3 R& ~, ~* s) w% U

    9 j/ o4 O0 v7 R& D2 p        It acts as the stopping condition to prevent infinite recursion.& I; _7 z3 ^) h; j2 `$ E0 f# A

    - p* j( |/ g$ w# X# Z/ ]        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' ?4 I5 O4 r. m$ o
    3 t: x, x& T% _: U3 r" g7 U    Recursive Case:1 {, J! `  Z& B/ T* R: K2 h4 l

    ' f! j9 E5 k1 u4 V        This is where the function calls itself with a smaller or simpler version of the problem.
    - W+ z8 l, A- O( Y
      B( A; y' @6 F/ T3 U0 M        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    6 n9 f& w, g% v& ?" y( V1 N# S- N: R' T: S2 f% Z
    Example: Factorial Calculation
    0 R, E( F; J: B5 u( J
    % H5 c3 b1 L2 B/ ]- X9 ]8 wThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    # _; A  Y# K0 Z( r& V
    3 g( {9 j" U% g2 v8 k( K; o; V    Base case: 0! = 1# v3 v; S. y0 @. T3 a$ k( L( s

    ( M' s9 o1 A( X8 m" u( k6 G    Recursive case: n! = n * (n-1)!
    # L0 ?  z( N. Y8 F% Z! N* W6 B( u( |# n. |/ x6 ?9 V& |
    Here’s how it looks in code (Python):
    . _! ~3 H+ T, d& ]* {python
    - o) |4 Y  c% |; L) s+ l7 m& p: A2 C8 P$ Z0 p' l7 A* ]; _" n

    # u* F2 N: ]) l: S( L) Tdef factorial(n):
    0 ?7 V& {' i7 ]" Q% {    # Base case9 x" J: c7 P- h; S  s
        if n == 0:: L2 |) P) ~1 r" s$ E1 ^; P
            return 1$ K- m0 e. `/ J6 R% H2 }
        # Recursive case% R; m. b5 I" u5 P5 i: t% L
        else:
    4 Z/ h" X) A' K+ c' [9 \        return n * factorial(n - 1)
    : j+ A6 P& j% g, t* {' K+ ?
    ! E2 T- u) V# z; ~; Y* A# Example usage
    , R/ `! S7 b9 q% G$ ^- C7 w* Iprint(factorial(5))  # Output: 120
    , Y5 S! R9 b) @' B7 L, s
    7 w( V; N& q2 B3 G6 THow Recursion Works0 y9 N$ j% \; Q3 M

    * o/ T5 K. s' M" ?    The function keeps calling itself with smaller inputs until it reaches the base case.9 s- R- j5 Q# ?: G3 C% h- T' O

    ; g$ Q% i- b4 B) D7 @. Q    Once the base case is reached, the function starts returning values back up the call stack.# l  t9 R1 ]3 j- W2 H

    1 Q/ n0 u7 f" n8 u5 f    These returned values are combined to produce the final result.
    ! h+ l9 d0 z$ K" I3 b; q& N2 Y. U, h# Y: S1 G/ z
    For factorial(5):
    0 v9 P% c0 t1 `6 @2 J9 f5 l
    $ j  U% y# ]# e0 e/ ]8 ^+ R7 v8 S( \  W+ ^* e
    factorial(5) = 5 * factorial(4)
    " c+ b" E6 b0 g$ _0 Mfactorial(4) = 4 * factorial(3)
    / a+ P1 l, |% g+ K, j2 Tfactorial(3) = 3 * factorial(2)
    + z/ ^/ l' S: U2 B+ ?, Nfactorial(2) = 2 * factorial(1)" K6 ?* a  H0 m, A
    factorial(1) = 1 * factorial(0)! p. F/ O, o6 J
    factorial(0) = 1  # Base case* @. E9 D/ `6 V$ [, v3 R' V: \
    ' p( v4 ?# z1 D6 [/ G) U+ t, w
    Then, the results are combined:2 ^; t6 H& ?0 O9 T6 Y9 v
    4 [4 p1 D8 f8 S0 Q/ A

    ' L! W! p; `7 A7 m% lfactorial(1) = 1 * 1 = 1  _0 H5 E# a6 b8 M
    factorial(2) = 2 * 1 = 29 M- V5 ]3 P  Z( u) N7 S
    factorial(3) = 3 * 2 = 6
    6 b8 O, z- S# afactorial(4) = 4 * 6 = 24( q2 m8 _1 L% U' C9 O0 j/ n7 H
    factorial(5) = 5 * 24 = 1204 K; ~/ s4 o* P, J: S
    - S) Z3 Z) N6 O( I9 u
    Advantages of Recursion* N/ T0 O  i  P

    $ e$ k" p1 ]5 P5 Q3 G4 B; B5 R* z: C    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).7 n/ n% W$ E* \+ X. A* ]

    , @1 R2 u! ^5 k2 [+ `, t    Readability: Recursive code can be more readable and concise compared to iterative solutions.4 z8 q. m& {) ]

    ! m2 J% ?9 l9 e% a- ZDisadvantages of Recursion' l( L4 Y7 v: b1 \1 a7 o/ z( F6 N
    ; F6 A( M2 m! y9 v
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.- a& X9 s2 L! }% u
    " r/ w0 O. N$ ]2 S) i! h; W. a
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).+ k: |/ [' X9 ^2 z9 `

    $ e' Y/ o$ G1 l4 i& \7 S- hWhen to Use Recursion
    5 r; u/ X1 l' J- z% U
    $ \# ^) y; s# x    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ; M1 V, n7 ^' R0 ~% \! N3 k) v9 R! e$ z
        Problems with a clear base case and recursive case.
    # W8 y% ^" q" N- K
    2 ^+ ?! ~9 U. e7 ?Example: Fibonacci Sequence
    0 A' f4 {$ B3 D# K/ U
    - _" t& k3 T# \( ZThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:4 k1 d' m0 O) W& W/ W4 w
    4 g5 z* J& T3 t) S! g: L* ^
        Base case: fib(0) = 0, fib(1) = 1
    : ^/ @4 e" L) c) M0 C: G% V0 h/ x4 w2 ]8 L
        Recursive case: fib(n) = fib(n-1) + fib(n-2)! s( ~* S& [. y3 y

    , Z! l. x% u% M; a2 Wpython
      d3 ^% O8 C7 _5 t+ f
    5 u. Q  S9 D0 G  A' I7 s9 D/ ]; s; m" M" i4 T' k* C
    def fibonacci(n):! f! e; w7 W- D+ k
        # Base cases
    6 r1 z+ a/ z, b5 @, ^8 P9 [    if n == 0:; K$ T* s- }- g. E
            return 0% D% S6 V. ]6 {2 T4 U4 _" a
        elif n == 1:
    : E  K2 o( n) Z1 v3 R        return 1
    + I& \4 N3 T3 F; V) \+ O    # Recursive case" G- W2 E: R$ F& @" X: L9 i! c  e0 d  N
        else:
    4 S# {" x! R* o5 ?0 O) s- F" d        return fibonacci(n - 1) + fibonacci(n - 2). N* P2 H& Y& \& I/ `- W
    * R4 q/ e) f5 }$ C: O
    # Example usage
    + M( C  f+ q/ [; }$ f% Sprint(fibonacci(6))  # Output: 8
    - Y3 J4 m% M) [" l# g
    0 R* I8 |( G6 i$ l, P1 xTail Recursion) q: \) l9 c" _' h! C
    , @# @! A5 P1 j( `
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    & O  B. G+ m$ i# r
    3 f) k+ [6 `9 F7 e: [In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-3 07:43 , Processed in 0.047674 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表