设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2004|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ( D1 J4 i2 z3 \
    % W! f( l+ C3 V2 ]* [# i
    解释的不错
    + h6 Y& h8 L, a+ Y6 t. c; s# P# R1 ^$ ^2 B& X
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* A: w2 h& Y2 K7 q' N

    ( ]9 k. \8 }- ~6 s: } 关键要素9 {5 f1 V( M  `; j0 |
    1. **基线条件(Base Case)**
    6 ^$ h( L6 _* c- @   - 递归终止的条件,防止无限循环
    - I3 u/ e6 s6 v& g( d" C1 i   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    & y; m- q+ N" Q3 a( F$ Q( D+ n
    2 S7 {% \( a/ \" c$ ?6 `4 T6 [2 \2. **递归条件(Recursive Case)**
    : r; y* ~# a9 u+ A   - 将原问题分解为更小的子问题
    ; Z6 o; F$ X: _8 h, D( X   - 例如:n! = n × (n-1)!
    0 X5 F' J+ d1 X: [8 y: N# Z$ X
    4 e9 D* ?. l7 Q, v; b- s( i# a6 k 经典示例:计算阶乘
    : `3 f  x+ M% vpython( d/ X" Y+ @7 l5 f5 \
    def factorial(n):# X8 C3 ~! h6 d' y
        if n == 0:        # 基线条件" F. L2 K2 q# S/ t
            return 1& O6 G  y9 i8 {  ~
        else:             # 递归条件2 I9 e: h# u8 Q/ p
            return n * factorial(n-1)
    ; ~& ~0 ^; L8 x4 p执行过程(以计算 3! 为例):8 J$ @) p4 |8 c
    factorial(3)
    ) O2 ~' c1 W# p3 ]! e3 * factorial(2)
    + F- r2 t5 o2 t- b" g$ p( b! {3 * (2 * factorial(1))8 y( x5 N8 M4 H7 T% y3 F! P: G
    3 * (2 * (1 * factorial(0)))% K! P/ v# e' g4 P3 N! `
    3 * (2 * (1 * 1)) = 6
    * x* i& w% t+ w! H& t" D+ i) ]9 X& q0 F+ a+ l; e' y
    递归思维要点! Q6 V' p  ]( r2 v6 E5 n+ ^  _
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 q8 j, u" Z$ `0 b% }2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    / t$ U$ Q9 F9 `1 ?+ f$ k8 B3. **递推过程**:不断向下分解问题(递)
    : H# d$ Z3 _: y4. **回溯过程**:组合子问题结果返回(归)
    & e2 _  B! _7 n' M# i. Y* Z
    . B9 x0 c8 R. H& [. x) Y$ b' E6 B2 n- S 注意事项/ m0 B6 Q: J* d3 @, x  y) d* o( v
    必须要有终止条件( f4 L7 H; k; O1 X  s/ c5 {
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)0 N# d+ f) f: Z
    某些问题用递归更直观(如树遍历),但效率可能不如迭代1 _2 \9 c5 Y& P  A: v2 a# N' T
    尾递归优化可以提升效率(但Python不支持). x7 a  l6 O# l2 E3 I/ a. T
    ) U5 n; C# ?. Q7 ~# i9 h( w0 o
    递归 vs 迭代
      j$ r, p9 Y5 V0 K0 i|          | 递归                          | 迭代               |5 [' P& [1 [# M, D; @9 }
    |----------|-----------------------------|------------------|
    7 b! i) A  s) p1 x| 实现方式    | 函数自调用                        | 循环结构            |# ^! j, |% A- L6 X- M; T, F* p
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    4 y: F% r  D) B5 b| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |  O: U8 a3 d; ~) k; m6 C# E: ~
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    / f) w$ D; e* a2 q( C1 H5 T' h& M  x+ G( t0 C" n7 `
    经典递归应用场景% ?+ v$ f. Y0 K$ `
    1. 文件系统遍历(目录树结构)) I6 Z! i, O2 s
    2. 快速排序/归并排序算法0 g' _; ^" M: Z
    3. 汉诺塔问题
    9 `9 t5 \9 C+ P/ |1 ~- `8 Q4. 二叉树遍历(前序/中序/后序)9 {& f; z, ]/ q' n+ j
    5. 生成所有可能的组合(回溯算法)
    2 g1 e9 j* S! Y" L8 R& n2 n3 S& y. f( Q5 [6 V
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 07:51
  • 签到天数: 3161 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,2 M/ Y: R. @9 s( ]( I4 l/ e
    我推理机的核心算法应该是二叉树遍历的变种。
    7 _! ?5 c3 M7 ~0 t' O另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    * s  ~' C! I2 R8 n9 R% }Key Idea of Recursion
    - j! Q) a" q) @3 d. q' c9 r0 c. S/ A% ]$ {1 h- l4 U$ R
    A recursive function solves a problem by:
    5 @( p6 M9 y3 `' }0 l$ ]1 \# w$ c3 @* P' n; T: p: g# ?7 ^
        Breaking the problem into smaller instances of the same problem.
    ( ~( `- D* b9 k* u% q  p0 ~+ L! S# H# @& o: S# s
        Solving the smallest instance directly (base case).& a& O: ?" e! E* E  Q
    5 A( u* u( f5 L1 ~9 G, d8 F! Y: ^
        Combining the results of smaller instances to solve the larger problem.
    3 g9 X2 r+ J5 C' ^
    ) R# W3 R; `. o: A' J6 RComponents of a Recursive Function
    # Q3 N5 ^7 C) _+ h6 }& }" ~# e+ P6 |$ o5 \  Z/ Q1 h0 f
        Base Case:
    " t$ j; L$ d  X  t7 K
    8 b  A& n5 }  J. |1 v9 a, D7 I* j        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ' {, l6 k) f8 F% f; m' I( a* _
    ( x2 s& G6 p: ~+ q/ ~- O: K: X) `        It acts as the stopping condition to prevent infinite recursion.3 Q* _" Y  ~0 V2 g0 F
    : _3 |! c3 w+ D8 A
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , `8 n6 }) f1 u! P( n- ^  O" ]
    ; t4 U4 q# I' K! O' v3 f: m# M    Recursive Case:4 q' S% t: ]6 r0 H

    3 T( i+ u1 |# T3 O( K3 V6 \9 U        This is where the function calls itself with a smaller or simpler version of the problem.7 b% {- w+ O! W/ Q) C% @

    * ?7 p7 u: C; H        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).3 g# u3 m% a: B2 C6 D) D! }. _4 v9 m
    ; _& U6 w' I, s" U$ o/ v
    Example: Factorial Calculation
    % l: H  t6 x* ^  g3 X1 D7 I
    - B& |/ A3 D7 |7 G. }The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:% u8 p1 H# s6 h& J# R3 U) i
    - L& Y4 o7 W' r" f# T; {$ F! C
        Base case: 0! = 1& y  T9 `: m  v7 Z1 G: D" D0 U

    . O9 o0 G% J! r7 H; U% }' P, n3 D    Recursive case: n! = n * (n-1)!* f+ v( v5 y1 s, L

    6 G) p4 d( U8 w4 Q7 zHere’s how it looks in code (Python):- [* q- o, _7 p4 f3 t
    python6 T" t! Y! i5 F* S/ g' _
    8 E6 N+ p5 P; I3 G
    7 s% O) l3 f- n, h
    def factorial(n):
    # z/ F3 D& x% H    # Base case8 S) i) M/ y0 `/ I
        if n == 0:
    " Y* D; P+ ?' g1 N: O  M        return 1
    ; v7 R* {! |8 _% b2 y    # Recursive case- K, R0 K% i; ]5 Q3 p$ z1 v' @
        else:) l: V8 r+ c" |5 m* B3 ]+ v
            return n * factorial(n - 1)
    7 j* Q" s$ g0 N8 ]6 ?  q. b4 s( ^% |% e% Q3 g! y
    # Example usage
    : N- l2 z# ~- U2 G% U2 p" Z( uprint(factorial(5))  # Output: 120
    - T, Z1 q# v- L! u  N' G5 d- a4 x
    . @$ {! \9 N6 E* I8 D) ?( VHow Recursion Works
    ; J- z2 ^4 X( e/ b" a6 f$ {; k6 s- Y0 H9 M
        The function keeps calling itself with smaller inputs until it reaches the base case.2 Q6 @; l4 |. J! ?
    ! t  h2 e) E7 w& E7 P
        Once the base case is reached, the function starts returning values back up the call stack.
    1 c( C% d' Z2 `, F9 f) W( e, U3 \7 q
        These returned values are combined to produce the final result.
    / b) _- ]- B1 Z* z* R; ]8 l) P4 l8 ^3 Z, o5 x
    For factorial(5):6 r8 U- O% H6 O# x  Z+ B# _

    + L8 U1 y8 Z$ y" X: ?5 W4 n! H
    / x  A/ T1 E9 ^5 P/ Vfactorial(5) = 5 * factorial(4)
    / E# m7 N( Q6 _' _factorial(4) = 4 * factorial(3)
    $ h* ?% k3 l2 K; C, r/ l& jfactorial(3) = 3 * factorial(2)' h) y# @" P9 c  s
    factorial(2) = 2 * factorial(1)
    5 Q2 e- f, k7 I8 E; ifactorial(1) = 1 * factorial(0)
      ?9 Q! S: ?9 d* L( ~" q1 X# Ifactorial(0) = 1  # Base case' O' w( ?; g( w' r; E% g* n

    6 |9 x2 S: X0 V. \" SThen, the results are combined:; F( T$ [; \, H+ U; w3 f8 J
    4 x# _0 N, b" `2 g8 d* |

    " ~5 t! P& D9 u% w- hfactorial(1) = 1 * 1 = 1
    , h% r; u6 \. z( M* m1 ufactorial(2) = 2 * 1 = 2$ \3 D9 K+ E% Q- T
    factorial(3) = 3 * 2 = 6
    3 g: G$ x% {5 k  L- }factorial(4) = 4 * 6 = 248 {0 p1 S8 o: ^& k# Y* u+ Q* B
    factorial(5) = 5 * 24 = 1206 g5 R+ I# b3 F% i( K' S4 Y/ ]

    " I6 A% \. i' p" bAdvantages of Recursion- D# I& O% l1 x! v) J7 r

    " x8 @/ t* m; n( Q$ z    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 X; n( N! \$ ^1 o5 x& g

    6 P# l0 H* T! n  O: m9 ~    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    . O+ z) e  }+ J! y7 M2 k) t7 G1 z0 G
    & ^8 Z0 G3 q9 l- e3 iDisadvantages of Recursion( m" x" c" |1 i  W4 t2 B9 N# P

    ! R; t9 ^2 T0 b( }) z4 ?3 f7 e    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    % r/ b4 `$ Q, V. _
    " [: N/ k, b, ]+ A6 d9 {    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).( k( l/ z# c" n$ K# W$ C8 G6 S
    * B9 N! a5 e* A5 \+ E; E8 q
    When to Use Recursion0 V* a3 N0 g: L3 m8 }

    3 X* u- Z* o5 [. R    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# `& u5 i# z- c  v

    # E, e( N: l% \3 F- z% q    Problems with a clear base case and recursive case.0 ?( Q+ c/ N) M' e5 A! m" @& X! i" m

    9 u$ y# X: _1 {3 _# F: k! JExample: Fibonacci Sequence' J( F% d' b! k8 n# U/ s- }" c: s+ N

    . v* x0 |% X( a0 O" M( Y' KThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) d' V# S8 w! ]# M) ]5 e4 ^7 p4 E. M" \2 O; _
        Base case: fib(0) = 0, fib(1) = 1
      ?- i- m7 a! L8 n: E7 Z( ^4 F: x  _+ C5 P' |' e# A6 N, i$ G
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    6 m" d' X7 z9 x9 j; C- Q
    + c0 ~7 P/ R! L7 _) j: e: Cpython4 D1 X) z0 y. r/ D

    ; ^' G' E- O7 z  ]' ]
    ' A2 e5 ~! f% J. X* L: adef fibonacci(n):
    2 S! U' R5 l! u7 y) _* Z7 o    # Base cases1 ]- r$ t. m: C; W7 k( c
        if n == 0:
    ( b2 l6 }' U! Y6 ~        return 01 q; H9 p3 d; ~4 t; ~: J) [; d( C
        elif n == 1:
    . E" i1 r- f& C/ c        return 1
    ; T. P7 y0 z* u! H& @( C3 n    # Recursive case. m/ N! C" Z  `+ ?" B3 g
        else:0 Z( G  G' a% K9 Q6 K& J. ?
            return fibonacci(n - 1) + fibonacci(n - 2)# p/ r" o8 ~- p5 O
    / p& w5 d$ t  T) H9 h' n* d
    # Example usage" P" E& r; x- O8 Y* w5 p* v2 l$ ]4 \
    print(fibonacci(6))  # Output: 8
    $ N7 ~4 E+ U2 n) Z0 j
    4 E0 {7 V! q( a& z) y/ K  Z9 oTail Recursion
    ! U/ b, {7 l  V$ a% f
    " F  {1 J: I% ]0 v/ M" iTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 @- [( f* I, e( j0 W$ r. B5 ^5 H
    + L, l3 l1 r8 g( i
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-3 09:51 , Processed in 0.054220 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表