设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1844|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' K! F' O% o$ {3 X
    ) W- h: v- o! z( x9 L& ]7 @2 N- E解释的不错
    , u% W0 i, v+ ~& D8 B) h- |. y3 X, m" m/ j; n. \1 t7 [
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    # K) Q# W. V0 s/ l& N0 R
    ! ~% z) d9 y. v; Y" p+ J 关键要素
    " U! L3 {0 k* m1 g" i% ]( s# W1. **基线条件(Base Case)**
    5 g7 V! o5 ~) m# A5 S   - 递归终止的条件,防止无限循环8 V( S; ?% w9 y, |0 _; ]6 ^
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1: X# ^0 x! ?+ V- t" w  r
    : `6 F) i+ ]. }8 ^* {3 \( Z
    2. **递归条件(Recursive Case)**4 }. q( p/ f+ f9 j" R( z2 H/ W( K9 k
       - 将原问题分解为更小的子问题9 {, T; f/ @  O! |3 l, r
       - 例如:n! = n × (n-1)!
    ) T# U* @/ Z' f; p
    * Q. V4 M- z) Z0 i5 x 经典示例:计算阶乘
    / l3 g; J- p% _. R' x. ipython1 x1 [) S$ f8 T' g
    def factorial(n):
    4 O5 I% F+ g5 |# {- n3 u. d    if n == 0:        # 基线条件
    4 l: }" [3 U3 A" z; Q5 z        return 1
    " C  _4 {3 h$ w& g+ E8 V6 R4 j    else:             # 递归条件! s! c2 X; Z' N- n7 @7 \9 o; o) Q
            return n * factorial(n-1)6 {/ G3 \+ q' v7 O
    执行过程(以计算 3! 为例):- E; W! N$ r2 ^' c3 k& ]- d
    factorial(3)! r2 t1 f6 Y* u- @7 t
    3 * factorial(2)
    ( y5 C2 y7 }) Q' K6 w9 a6 ^2 ~3 * (2 * factorial(1))! x4 {1 n5 H  A) K& A
    3 * (2 * (1 * factorial(0)))
    5 L5 {: Z5 U" m/ r: Y( J% I7 l7 V; F3 * (2 * (1 * 1)) = 69 a6 o" d1 v& i! D" S, S2 n

    2 s& I3 D% g" o2 Y8 Z 递归思维要点
    1 i' b1 L) _- N4 _0 V' A: B1. **信任递归**:假设子问题已经解决,专注当前层逻辑, J& x8 B4 N. E) \3 a- O$ Y2 j" @
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)1 a  C2 J" q, z1 ~; C
    3. **递推过程**:不断向下分解问题(递)
    " N: x5 L  q: V0 Z- v4. **回溯过程**:组合子问题结果返回(归)+ G( V" Y! u0 f1 I% b

    0 F: p: Q" C& x0 K2 F, U& [; } 注意事项9 u4 e) c/ {5 O6 Y) T
    必须要有终止条件
    7 |' x- M. W. D9 ^2 U3 Q! B递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ' h- ~: H# O, a某些问题用递归更直观(如树遍历),但效率可能不如迭代( Y: p) I# y' E2 a* J+ Z9 O) j
    尾递归优化可以提升效率(但Python不支持). s, k' s. B) t; L. l

    # j/ m3 V2 ]5 } 递归 vs 迭代
    ' X$ p8 x$ D. J6 z0 E& k  k|          | 递归                          | 迭代               |" {" O; |2 b) Z6 u2 r& g$ l
    |----------|-----------------------------|------------------|
    - f4 v) k+ R& \" i& q| 实现方式    | 函数自调用                        | 循环结构            |+ C1 b/ T, T) `0 u* K8 [" [
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 x# t& z- T6 Y5 \5 k; h/ L
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |7 t% ]# W  l  n* A; o' {: B. \! o
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |$ {6 T, o. C+ `0 q) @

    2 `9 y; N' g$ M; E  X! F( F 经典递归应用场景$ R  b8 \- G+ ?( v5 l4 I& t
    1. 文件系统遍历(目录树结构)+ n$ C: V$ Y+ V: S! X6 H
    2. 快速排序/归并排序算法
    - _& z% Z) v1 Z6 f3. 汉诺塔问题
    ( L2 c# [( K. I0 o; v( b" H5 d/ m4. 二叉树遍历(前序/中序/后序): |! w% Z0 [% T* ]% V# |# z$ Q+ c* G
    5. 生成所有可能的组合(回溯算法)
    $ {( w) @. \7 ~' w' l3 U- ?" Z. J9 V- o+ y% z. M* D8 L
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    前天 06:31
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,5 O9 a8 t+ F. t- k
    我推理机的核心算法应该是二叉树遍历的变种。
    # j& B2 K5 R8 L$ ^7 ?7 M2 k- @另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    - ^! ?  z7 c( W  E5 |Key Idea of Recursion
    1 i7 P# W: |+ Y& _% Y2 Z- m- P9 Q1 r0 Z2 ^7 g# W
    A recursive function solves a problem by:3 e/ b" |# v/ V. G) p* z
    - s6 L8 z4 r" W$ c
        Breaking the problem into smaller instances of the same problem.8 _1 M" S9 S& i9 H: K1 ~/ J9 M
    4 y- U4 @4 I6 B# T  u! H- g+ a
        Solving the smallest instance directly (base case).
    7 S- D& A  @; Y1 _4 ]( j, ?6 [
        Combining the results of smaller instances to solve the larger problem.- Z2 S, R  X. S4 q( |
    + ~; u% y+ |  }# q
    Components of a Recursive Function
    . a/ }% S4 `& N+ i! m# g- H2 o# R+ [$ M
        Base Case:' y: E% n, k  v  s: I8 _4 z

    , G! F, d$ W' p: b3 w; S8 {" B        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.6 Y9 A- U4 I& z* ^; I6 j; u' W/ U

    3 \; @8 Q; v+ p* K- X4 l' N        It acts as the stopping condition to prevent infinite recursion.3 W+ @1 P) h: u. I7 t! d
    8 Z1 P& \1 f1 h5 w8 j
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    5 h) D9 ^+ S7 w5 n. d' p
    , [+ A6 f0 n. G, V    Recursive Case:8 q! \4 T6 g8 [. `. }: y* q( o
    + P( v' J: N6 G# L  u
            This is where the function calls itself with a smaller or simpler version of the problem.
    ; D  z1 U6 u3 k9 |7 S" `3 t% r9 z
    2 K0 P% E" f% ^5 N$ `        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    $ i1 ^7 |  Q6 T4 B: v( E; T
    3 a- ?3 C. x9 u# ~2 ^5 O; zExample: Factorial Calculation
    - Z( v9 M* e1 l4 [- i" a
    3 a4 D+ k$ K. _* M/ eThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    2 o! T, N' a0 y. {  F0 s* @% b; [# }6 c% @
        Base case: 0! = 1
    $ a1 |1 X2 P& e1 G& n- K1 M$ \, G8 c" ]% l% i5 l$ A% m
        Recursive case: n! = n * (n-1)!
    ) k0 ]0 t% B! h! ]: \
    / `4 [% I  M& m5 {Here’s how it looks in code (Python):$ L/ l5 d6 `/ w0 L6 L8 y& Y; x
    python
      |( C. w7 w& r  a" B7 b+ N- P% C
    / j% S! }9 i5 Y+ b2 k8 N8 h
    1 t5 p7 y% i; W( j8 g; D; T! Ydef factorial(n):
    4 H% r! n4 h: g    # Base case5 U* a- T/ G9 N
        if n == 0:
    * J$ L8 r' b2 E. `" @* z        return 1
    # y* d# ?, F; k3 o0 Y    # Recursive case; \. a% P& o4 A9 x9 T# @/ }  `# ?
        else:
    7 M# D% J0 ^3 M& K8 B+ s        return n * factorial(n - 1)
    + S+ [1 _9 q5 c7 N
    1 G0 l8 e( ~' R2 L, E# Example usage" X5 I& e8 Y( Q4 R: z
    print(factorial(5))  # Output: 120* l! Y! d+ W0 C+ o7 l. I! y# r
    * ^1 B  J) j% J: K: \
    How Recursion Works
    0 d* R# }3 n, ~4 l
    7 Y2 v# j& j* @    The function keeps calling itself with smaller inputs until it reaches the base case.  K' ~1 T( v& U- ~0 ]; y/ ^
    : N5 w% O$ u$ y9 B& o0 d- g  K) N0 f
        Once the base case is reached, the function starts returning values back up the call stack.! s7 ?* m* v2 w
    " R. C* {- |( K0 b
        These returned values are combined to produce the final result.
    / \+ Y& \5 \) k
    : ~0 h* M1 T% Y- FFor factorial(5):1 h! {( p* |2 z. m
    2 U6 K9 B, O) ^+ [3 |, G
    % h7 b3 Q6 ?8 f) [7 ?
    factorial(5) = 5 * factorial(4)
    + j: W1 w& V' d" |, o7 u' @% G( f' X  {factorial(4) = 4 * factorial(3)
    2 R+ U" H  A' ]( y3 Q. a  v+ {& yfactorial(3) = 3 * factorial(2)# s' p/ Z; i8 x
    factorial(2) = 2 * factorial(1)/ |' c9 a7 Z: {* ^5 q& @, }
    factorial(1) = 1 * factorial(0)
    ' x; V' C/ I# d; P2 Q. Y, kfactorial(0) = 1  # Base case8 X' @6 Y* D* i* N6 _

    ' e: ?4 \7 p9 E9 \* U$ N/ |8 OThen, the results are combined:
    4 o% T) B' B5 O3 P/ N  c/ q+ F( ]1 ?) r: b
    0 x2 @. M- y3 g9 ]4 d) d; i8 I
    factorial(1) = 1 * 1 = 1
    7 T* X, T" V: i' s& `* ~factorial(2) = 2 * 1 = 2* E5 q4 d2 o" a' U8 v
    factorial(3) = 3 * 2 = 6
    ! X& X6 J/ ^  x& ^7 x/ y2 ]factorial(4) = 4 * 6 = 244 d5 C" V) E' ]' R' s6 a
    factorial(5) = 5 * 24 = 120
      `  d! B; A4 z! u& J/ h% `" B! Y% X
    Advantages of Recursion
    : v6 c0 m* G4 Q3 F* `' f" ?; s9 H& I
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)." |4 h) k% H; q$ N7 r

    8 f8 c3 q$ b( G  W    Readability: Recursive code can be more readable and concise compared to iterative solutions.* u+ ^3 I3 p. L% J% Q( [

    $ Z& b. N1 P. X! x3 P% }Disadvantages of Recursion5 @3 @& c8 W+ Y. y7 J$ ]3 x/ s
    : b, Q# F  P+ I! E, b8 a! R) B7 O4 x
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ' Q; d( \8 l3 G6 K! o& t0 N7 m/ }6 T7 S2 S" P4 W; H
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    & f7 s& _" Q4 B) V2 |
    0 M8 k) P3 e9 c1 h2 eWhen to Use Recursion
    + U3 r3 n7 k/ ?2 a9 t! L, Z; Z- j& @% h* k8 {$ |# o- s  Q8 q
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).  A1 ~! D2 {- V/ L8 l. J8 g4 w. `- o  N

    ; a9 V3 K$ s% b& M9 r5 [% {7 A    Problems with a clear base case and recursive case.
    : M* r. f) h8 X5 S6 t  n9 ~: y# {/ A0 b8 o, O9 T
    Example: Fibonacci Sequence* p# V  G3 W% Q, |+ J
    % g6 H2 H# ^$ c- ~
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " o4 T& I* \1 `9 p* c, A6 _, r6 ?" I
        Base case: fib(0) = 0, fib(1) = 1% J) Y' ~* g# ]" K* X" r

    1 m6 ~! L5 @4 F" {' B" `& b    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    & p& h# ^# I2 X
    8 D( s4 w9 q: w* y: ^) [8 {python
    # s- k4 ?4 s. c
    1 F7 [9 Y, X+ K. G
    - V  Q/ S: z; U& c" L) Q+ p) Gdef fibonacci(n):
    8 ~6 N! m: @% b5 j    # Base cases
    2 {- G, N$ R6 z+ s    if n == 0:
    4 ?, ^* N  c& |        return 0
    0 _# N7 p. k" F% B! V2 O    elif n == 1:
    7 B% K9 P2 f. Z8 L4 m# Z9 U        return 1
    # w3 B: {( i8 G; N8 a( c) b6 P    # Recursive case
    5 X0 a$ e# t4 w9 ?! E4 o6 V    else:# r5 {+ |, V& ]. q) L
            return fibonacci(n - 1) + fibonacci(n - 2)2 m8 [+ V8 [) D: m9 ^

    , ?/ K# e) L& b9 l2 ~# Example usage+ j' [3 y+ o7 R$ c& ?
    print(fibonacci(6))  # Output: 8& j0 }/ [, n. {/ Y  y8 S& D
    ! h6 }" [% H" K
    Tail Recursion( M" }9 C- {/ F7 s* \$ i# X6 T

    1 Y7 g/ n: r8 D% STail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # n0 e! }* ]" I2 \
    7 k# }( i, w. \: [5 CIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-16 05:34 , Processed in 0.033959 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表