设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1006|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : r5 @  l2 }- }; W8 I) k

    ( S; t2 Y% p8 |& e! ?解释的不错; |# o1 {" n: \% ]+ m

    & O, A9 l% c$ Y$ F! R- @2 C递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 c. Y: D$ F1 m! z
    / ]) q" e- S0 F 关键要素
    / g7 Y) u5 q' h9 s7 J4 B* d. O1. **基线条件(Base Case)**: P' E0 l/ H$ n4 B. A
       - 递归终止的条件,防止无限循环
    ' n+ m6 h9 J4 m   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    1 @7 N/ C! Z& c9 R# `; S+ p' _7 t+ {5 c2 ^: k# Q* r+ T4 u# g
    2. **递归条件(Recursive Case)**
    5 j8 p. I+ k  H7 l  e9 M( F   - 将原问题分解为更小的子问题. j, d8 R4 i* S" j( Q
       - 例如:n! = n × (n-1)!6 M( O4 }: @/ J1 D/ W/ x. L
    + }8 Y2 b, G% p. [* @1 b
    经典示例:计算阶乘
    / E9 o3 ?4 T+ J9 q' J0 M3 Zpython
    6 A$ h: n; F, n% U$ K7 k9 g8 Vdef factorial(n):
    ) ?+ Y4 C6 m6 r  ^7 A0 o$ |    if n == 0:        # 基线条件
    ) o. {! k3 z' k' `, A        return 1' X; J5 m5 V/ M2 ^$ s. d: k
        else:             # 递归条件
    2 f  L4 r$ l, W5 x" ]        return n * factorial(n-1)
    ! J% b, C% ?1 Y7 g执行过程(以计算 3! 为例):
    " L( w- r  c) B$ _, R  U, Jfactorial(3)
    ! y4 P& z  I! \% l3 * factorial(2)0 i; c8 E) X5 |8 ~" H9 E
    3 * (2 * factorial(1))( p# S4 p: c6 |2 }/ L& p. D
    3 * (2 * (1 * factorial(0)))
    6 N% M: N3 Q6 x! B2 U/ [8 D2 N3 * (2 * (1 * 1)) = 6' Z) [' P0 q) u

    4 L. O$ Q7 x6 c3 t$ G; p 递归思维要点1 I; g- E! y! X
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    - S7 i5 U8 C: O* ?" O% J2. **栈结构**:每次调用都会创建新的栈帧(内存空间)( D) u' y5 z; B
    3. **递推过程**:不断向下分解问题(递)
    0 `8 v! V% ~; a# J4. **回溯过程**:组合子问题结果返回(归)
    3 k, R0 l7 l; g/ |9 A# d0 _. _' }5 X" N3 A
    注意事项; q" q/ B' @* ~
    必须要有终止条件% a1 N$ C0 l' n+ c7 g% K9 G
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ v$ n5 y" @( }
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    1 A- S; p" x8 h尾递归优化可以提升效率(但Python不支持)
    - x# \$ g1 G9 P, k6 W) v3 ~: q0 p
    " V$ e( F$ e7 U2 v& i- Y0 q; H 递归 vs 迭代2 f3 M+ b1 u* X# O' Y" ?0 x4 X  _
    |          | 递归                          | 迭代               |
    2 I/ X' ~! L: @3 ?% i$ ]|----------|-----------------------------|------------------|1 \0 C0 K/ o8 E1 P! W
    | 实现方式    | 函数自调用                        | 循环结构            |3 f9 j% p6 {1 ]5 i* T9 V( \
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    " L% J/ \( V0 C1 \- j1 P| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    # T, p* C7 x/ r4 E$ I) n: ~, {7 q* I| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    0 R) g/ F; J$ N& e9 K) e% Y  H  _: V2 d  r9 S" H8 w
    经典递归应用场景
    ; c: F% j$ y) m0 f# _* q1. 文件系统遍历(目录树结构)
    & D' g+ ]& X# G) v; c) Z0 ]; v2. 快速排序/归并排序算法6 f1 w, v( k! m
    3. 汉诺塔问题
    % z- q! q+ m4 \( I* V5 F1 @4. 二叉树遍历(前序/中序/后序)% G' D' P/ u( B
    5. 生成所有可能的组合(回溯算法)
    # Q9 W0 C) R; K- s1 V
    2 E1 ~( b2 ^0 c8 }试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    16 小时前
  • 签到天数: 3067 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    * ]. l- E( J. B; K5 J我推理机的核心算法应该是二叉树遍历的变种。
    , |1 T% r# J, }1 T% y另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 C* `2 v, A" V) x/ P; J  Q( X; z7 [( }Key Idea of Recursion3 P9 g: U# W8 I1 N& j% e
    % V# \6 g1 O; ]; L9 u
    A recursive function solves a problem by:
    + y4 H  U$ p; B: ^! o+ i( l# U/ v* q( d9 B# \* p
        Breaking the problem into smaller instances of the same problem., F, `. }, T5 W4 x" X
    % s4 y' [( k5 ?4 [; W! V
        Solving the smallest instance directly (base case).3 `( B( ?3 C# [; R4 m. H

    ; @# E0 |( j; ~3 l. [) H    Combining the results of smaller instances to solve the larger problem.
    0 y1 G1 v6 x6 V5 X! @8 x( {9 N* S) Y3 j; c! U
    Components of a Recursive Function
    ! D- S/ O0 n3 W* b; q" h. Y" P# f) ^3 t! o
        Base Case:
    4 K( n7 O* M; \, F2 ]
    ) m; w4 W. P- f( @        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ' y( ~( f5 q; y0 S; {! e  W0 ^; J! K7 P' N' s) p3 l& N
            It acts as the stopping condition to prevent infinite recursion., X2 `' F3 F8 @4 n4 B

      f# N0 l1 h$ C4 ~' M        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.3 [+ `2 ^# V9 m5 i

    / q" r3 H- \& ?    Recursive Case:
    ' S4 U6 I# A  l
    + b; C0 {4 _4 a        This is where the function calls itself with a smaller or simpler version of the problem.# r" c- m2 Z0 v  q0 I1 H* z) S% X. C
    6 m" b) M  X9 k1 `
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ' |; J4 D5 q. z2 R0 P: d' `( G1 e3 f0 I" I
    4 [$ m* L6 t( M) UExample: Factorial Calculation
    # x9 Q9 i6 Z1 K) @$ ?4 Y3 G: p. _9 I1 d
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 W, d) A1 \7 `2 N! [
      e9 t* ^3 `) V. W0 A; r    Base case: 0! = 13 B5 i8 P4 b2 I0 J( R8 f

      P, U. P( }; B# x. c    Recursive case: n! = n * (n-1)!- ^' o2 X* h7 n) h- g
    , |7 Z! M  i3 q+ A$ C% C
    Here’s how it looks in code (Python):+ e0 \& O* q- g/ a) P8 ]" }& }
    python- m! B- i/ x; A

    # L2 Z; X0 Y7 ?/ Z2 V4 G; ~$ m4 E6 p
    def factorial(n):+ S" L. h! S  `( k' U
        # Base case5 e$ c! Z1 T  |/ p+ p/ |
        if n == 0:
    : `9 w  N: U! s: }" W        return 1
    % ^" v4 e+ s- G! {# Q    # Recursive case" y% [# Q; U0 `8 Y2 U0 ]
        else:/ n* u4 `; X5 \* }, h
            return n * factorial(n - 1)/ `$ W& A1 `4 F! T5 p( o" z- V4 M" B

    - ~% Y- g" ~. x1 T9 B# Example usage6 p8 H2 N* b2 P
    print(factorial(5))  # Output: 120& T/ c* [/ X  B- `

    ! b2 s6 P# A  W; C. B# k# o. AHow Recursion Works
      t' [# h1 l- s* L5 K$ M( f" W' N2 i) g8 _" O% p  R' U* M
        The function keeps calling itself with smaller inputs until it reaches the base case.
    * T4 f, H. ?6 z4 |& [) N8 T: ^2 Q+ f5 J; k# \9 ^; y- v
        Once the base case is reached, the function starts returning values back up the call stack.
    - V$ u  g2 ]1 M. J6 K4 Z3 D1 b8 j  a7 W' [0 N; w; L4 p- _# c/ s
        These returned values are combined to produce the final result.
    9 p" P- P  i: T. W1 ]8 p" y+ t6 z, E  P$ y. U% x! [% G" X: n
    For factorial(5):# Z9 b  Z0 N% t( ?) D
    / f; T/ P+ G& O2 H' S# E8 h
    ' o! u. j5 J: p: c# d# d  s' t# I
    factorial(5) = 5 * factorial(4)) H- w- F  H3 y: ]7 g% w/ w
    factorial(4) = 4 * factorial(3)
    ) K7 F) Q5 z! W1 d: efactorial(3) = 3 * factorial(2)
    1 u4 H  V  g. N! ^factorial(2) = 2 * factorial(1)
    : b7 x5 c# D3 i3 A5 Afactorial(1) = 1 * factorial(0)9 D. E6 R7 f, `- j5 d9 P! n
    factorial(0) = 1  # Base case
    " K( C; ~( s3 D# s/ ]1 F8 E4 G2 I1 x
    / f" `  W1 m3 L5 d9 ?Then, the results are combined:8 Y7 C  w2 k* l1 ?
    $ r. N  L6 N% U: ^6 L( F

    3 g) x) v: U2 y6 O/ X" B1 L8 z& ^' ?factorial(1) = 1 * 1 = 1
    " V% l, f" R5 i( ?factorial(2) = 2 * 1 = 2; W# O. w  c% b
    factorial(3) = 3 * 2 = 6
    5 u6 h2 {! A+ L' M: Afactorial(4) = 4 * 6 = 24
    # X  a' ?8 J1 Z) afactorial(5) = 5 * 24 = 120: \  u+ x+ z! M' |
    0 z1 K! j7 y# M
    Advantages of Recursion
    / c% f* T7 R8 E# `5 H" q2 h7 ^$ Y3 T/ i7 _( h( U' x. O
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 S+ y( O" I3 |) z
    6 S5 r9 A8 k) S; K4 K, L( x    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    . U; k2 `0 r5 B- n3 ^
    ) w  d, E9 u6 a5 zDisadvantages of Recursion& I! v; z3 i% Z) ?9 u' ?
    % P. y% d! M3 x+ \$ f; r. W
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.6 s$ U5 d! M9 w1 `

    ; O: p9 O1 s% Z/ |    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).3 ]8 U( w$ H1 Y7 f8 ?

    % h9 B) x* \* o  X/ [/ `* i$ wWhen to Use Recursion
    & p; A( H' R' _( X5 n$ c7 m1 \1 m+ Y$ j6 R. J8 a3 A' w# C
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).$ ?; o/ U4 U3 }* A8 j0 |

    2 T6 W0 X) H9 C' s+ V    Problems with a clear base case and recursive case.
    : E! F' m! J1 T( z8 B, u+ k0 g# F; W
    Example: Fibonacci Sequence
    9 h) B. |" B! A" H3 _" I1 a* X
    3 B: v; A+ D, g2 o# j8 o2 L/ ?The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " H5 e' N+ g0 @. n/ w% m6 _8 u- s' \! |
        Base case: fib(0) = 0, fib(1) = 1
    3 v+ v: Y8 ?5 q% N7 p" D
    4 c, C) e& t2 N' K8 J    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    & q: p7 `, }9 c% D- f
    " j; S) p/ q2 y! j$ w' @; K# C% Zpython
    2 w& g8 Z. t' p7 u  t+ {5 d/ l: f) E/ b; K- A6 C

    % U) I4 g9 }  J: |% Q% \def fibonacci(n):% o" O' q5 r" w, g
        # Base cases
    ! T& K* F/ V) g' \; V    if n == 0:- v/ N: X: [# o! v! I  P2 N
            return 0
    4 k; ^- o8 \8 u# }' ^$ P    elif n == 1:0 F, @4 K0 p1 v: y1 q* R" C
            return 17 k; n2 W) j# Z3 W6 ^
        # Recursive case1 R5 k* k# s% u+ W
        else:
    ) y" N6 b. K( [4 C! {        return fibonacci(n - 1) + fibonacci(n - 2)
      x0 V# U3 Q) m1 `1 j" H" t7 \$ c3 T9 f% L* s7 ~
    # Example usage- t1 O8 z3 q9 M0 o" I$ ]( m
    print(fibonacci(6))  # Output: 8
      p- v9 D9 ~- V- e6 J, P$ z  I5 C1 P, Y& m& k
    Tail Recursion5 e1 P2 ~! A* @7 I
    $ m7 ^  \  \2 s& J* j. x! l
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 w/ m* ^3 ?: P; I2 V( s
    % g+ g( n8 [$ X7 |2 b9 `
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-10-15 23:30 , Processed in 0.033390 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表