设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1701|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    , ?5 ^' D5 x9 s& Q3 A- V, X# E8 Z3 `) ]2 e' q" b6 `4 s* V
    解释的不错  K! x# E$ h/ S8 P; N( [& g

    - v/ ^6 ^* ~0 w. b0 t递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    + P% T# M8 H4 r! B; t
    0 S& _0 A( G: E 关键要素
    & \6 E; [+ r  @8 R1. **基线条件(Base Case)**& R, t  ], h. D0 O
       - 递归终止的条件,防止无限循环
    ; y! A3 R9 Q' F# t% t' p   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1. S/ ~" O- k* B% K" o* Y+ [% `

    * G+ _7 L; e0 |/ u. ~# M2. **递归条件(Recursive Case)**
    ! p, g. x" w+ P" s8 N- o5 I   - 将原问题分解为更小的子问题
    4 n/ n0 [, Z2 ?   - 例如:n! = n × (n-1)!
    : }: w& w& s) W- R8 j4 Z" c* ^' s+ Q/ k. j
    经典示例:计算阶乘2 Z1 v- @! b  k* t8 z3 k
    python! ^, W4 s1 ~+ B, d8 Y! F0 l0 g) E
    def factorial(n):
    ! I: I* ]% g; h' R* [0 {1 d% a    if n == 0:        # 基线条件# g3 I9 U% q8 c- w/ _+ w
            return 1- M6 [# g6 F$ [# w
        else:             # 递归条件4 [( @5 o' t" l6 A/ d1 ]
            return n * factorial(n-1)
      s3 l) z; E+ e6 J2 x- f+ z执行过程(以计算 3! 为例):+ V7 G* |" m; |  Q0 e9 N- j9 C
    factorial(3)1 J6 ~0 f' l' B: A6 j9 L/ `
    3 * factorial(2)3 A+ l' y3 P* \7 f2 r+ i
    3 * (2 * factorial(1))
    + L$ V) n/ E& [6 c9 ~3 * (2 * (1 * factorial(0)))  O, E- ^- E: k6 }8 ^9 |: D
    3 * (2 * (1 * 1)) = 6) ^6 t; h$ T& u. f  P/ {
    . w. D% E3 E( ^3 O: L" G0 A0 `
    递归思维要点
    . ^+ H( H  K7 I" J# ~9 m1. **信任递归**:假设子问题已经解决,专注当前层逻辑) _* w* P9 W# z1 H6 v
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" ^$ k; Q; L0 s. W( ?3 ~- {$ \5 s
    3. **递推过程**:不断向下分解问题(递)
    . B" E5 H+ {/ P, j0 K. k/ y# r4. **回溯过程**:组合子问题结果返回(归): E8 J. Q4 L7 Z' H8 w; |) \
    5 @2 I. d4 {) a8 u* |
    注意事项  w( @' x  ~: ~; V$ q8 q
    必须要有终止条件
    7 ^5 q" A$ h$ E1 o递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ) F+ y7 \  A# h1 \某些问题用递归更直观(如树遍历),但效率可能不如迭代9 [2 s, \) A6 @8 |
    尾递归优化可以提升效率(但Python不支持)
    # {7 B! B0 s* k! o& w2 ~9 `
    & u) J/ D0 j; _* G9 B$ q/ q 递归 vs 迭代9 h0 [: S2 [6 W7 S9 o) {" S
    |          | 递归                          | 迭代               |
    % i, q& O! c  D8 D|----------|-----------------------------|------------------|5 N: X5 s& v; e0 r
    | 实现方式    | 函数自调用                        | 循环结构            |
    5 s0 Z, X: n) d% @| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |. Z& r& [) ?  u. g
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    9 t5 s) r, G0 y9 }% {2 X4 Z' ^| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    0 m+ F2 n; d5 |% w8 o, O4 n" Q% c3 P% l7 ^0 k
    经典递归应用场景1 l) o- u& E5 g6 r3 D0 x) Q. h+ x
    1. 文件系统遍历(目录树结构)8 [; [, V, D: Y+ m  i7 z: N% t! N
    2. 快速排序/归并排序算法9 ^* t# Z3 M5 ~2 ]1 z
    3. 汉诺塔问题8 V% F$ s. O8 ?0 t, J3 V& Y
    4. 二叉树遍历(前序/中序/后序)
    - C" y9 N" F" n! `- D, |5. 生成所有可能的组合(回溯算法)
    3 x* b3 M; d& }; [6 ^: b/ K
    ) a' Y( M" s2 Y1 o; x试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    8 小时前
  • 签到天数: 3132 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,9 k, i/ K% Y8 L
    我推理机的核心算法应该是二叉树遍历的变种。
    - _, ^5 ~& x. x" _/ I另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:! W- L) Z6 z- T- N) F
    Key Idea of Recursion
    0 {: a( p/ \' Y4 U6 T; H
    % I# G: N8 l+ b" NA recursive function solves a problem by:3 N5 d: S, k: A
    9 {, a# F8 U% |- W$ |6 R% E. F
        Breaking the problem into smaller instances of the same problem.
    % \/ |. h3 @. v( k. d) |: [( L" u0 h; z. n' g4 T
        Solving the smallest instance directly (base case).9 [& B* L) q' Z% p# V; R# u* M
    $ I+ C4 ?2 B' i
        Combining the results of smaller instances to solve the larger problem.
      U6 B! G/ \0 m: Q" M0 \4 {
    5 j" \( F3 V8 oComponents of a Recursive Function
    ( B; _0 v0 u: Y& l4 h1 w$ z" ~* O
    # a8 _% Y- z* ?    Base Case:
    $ F% C/ F  A/ ?3 u, ^
    & z: i5 b' ~7 u/ Q8 I+ A! s! S        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ) E  u. }$ o- i' |, ^" Z6 i7 r6 A$ C+ j
            It acts as the stopping condition to prevent infinite recursion." d& f( Z5 i. X) H* m. c3 e# l
    1 ?( G' t! Z) d& n9 a' r6 q2 A
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' z, Z  K) A; F: I
    # M; T, D& e& n7 ~    Recursive Case:
    1 d* p' C( [5 b- @; r' M
    ' K! p# X, g6 |9 i3 ]% t        This is where the function calls itself with a smaller or simpler version of the problem.
    6 H! b2 V; U! \  d- `( k5 b- B1 p6 c  @! B
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ l4 o& _0 a% T& \: T/ W% x2 C

    - {1 i* n. a; gExample: Factorial Calculation
    + v: A7 S2 G% B- j; l9 f
    4 l8 W- g$ U5 mThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:7 d5 T7 c8 K1 x" q: a+ |- A( j

    6 F# V5 o4 I$ c. b    Base case: 0! = 1
    ' K9 m5 f2 i0 [7 M8 X
    5 F- }+ H' \5 q& y, J3 a7 g    Recursive case: n! = n * (n-1)!
    , T. s9 j* q* p; ?: {
    ! j! @! |' E! L3 e8 D6 {! ]Here’s how it looks in code (Python):+ ~9 g5 _! k; x  V: M
    python6 Z4 @# w- f4 j% n, i
    4 n- ?/ \4 _/ M" Y( y* H" U
    : c2 K# O3 e+ D3 V1 o$ M: w
    def factorial(n):+ i5 u/ @+ j/ W) O3 W7 ?
        # Base case8 c, Z- x0 }9 M& \
        if n == 0:% U1 r1 `2 [* w, _5 q* i# H
            return 1
    2 I$ }! e* _1 E# r9 ]    # Recursive case
    & ~$ o# O5 T2 j6 @    else:  k& r0 D! t5 y0 n; q% ]
            return n * factorial(n - 1). n: i) ]6 Z) O9 z+ C" Y* w
    4 e# c4 r2 b2 _. R5 p9 n7 f! }
    # Example usage' {8 x  \. e  m) z: ?9 ]5 B
    print(factorial(5))  # Output: 120
    - f/ j. i+ \2 p' w* S  T
    ! V5 {* c5 E! V- z4 uHow Recursion Works5 x' R( i6 I! `9 n: {. J  _% o
    ) @0 v, ^% R; a( X5 N* H
        The function keeps calling itself with smaller inputs until it reaches the base case.: V8 [# R, H! r
    ; P0 c' b  l3 B7 K  ]
        Once the base case is reached, the function starts returning values back up the call stack.4 G- M# I  W1 O0 t7 ~3 k

    8 n/ J8 g+ Y: V5 w2 E    These returned values are combined to produce the final result.
    - O# m2 F% \( e# |! f3 K) t: t2 C* T& v; K8 i
    For factorial(5):% V+ S/ e& ?( ?% Y

    % p6 F# y* j# b% e( u  C/ s* K
    ( _9 A2 I; z0 H7 yfactorial(5) = 5 * factorial(4)9 y9 ^6 L3 p6 i" t
    factorial(4) = 4 * factorial(3)$ V. V, d! q  y- `; i
    factorial(3) = 3 * factorial(2)9 X+ g/ P0 g( ^% N6 A
    factorial(2) = 2 * factorial(1)2 i# ?- y# P: o7 i, ^) U7 L
    factorial(1) = 1 * factorial(0)- e3 k( I/ ]2 g8 f. @
    factorial(0) = 1  # Base case( e- p. ]! J+ o) I; q: A& m  g
    : e7 F( ]' e- b
    Then, the results are combined:" X0 ~" ^9 \, ?% I, R  v0 {
      I* h; S4 _* \1 I: g4 F) Q  N
    7 q, M0 W. u" \: d) L
    factorial(1) = 1 * 1 = 17 a, D5 L1 J/ f0 ]5 s
    factorial(2) = 2 * 1 = 2
      K% E: g( r5 P( e/ a4 Wfactorial(3) = 3 * 2 = 6( f' K. e, F) h* O
    factorial(4) = 4 * 6 = 24$ @+ y% f/ U& |( Y1 Z. h
    factorial(5) = 5 * 24 = 120  i+ {0 A! G: {$ `$ m9 ^  Q

    ' S* q# r- x. K5 x) W! ?( _Advantages of Recursion
    5 G* b" g8 D% ]- n+ a9 m
    4 ]% w! }9 P5 [5 f    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    3 j) Q; ]4 L: v6 g) W: L" ^) C% c$ R/ U" @" h
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 T; Z5 w* f; s! C3 T6 y  U2 r0 J7 J
    Disadvantages of Recursion4 ~" u5 P8 ~! B' l% j3 F
    . v( f5 L( ?% F* I1 I4 @2 h
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.6 r& B1 z7 y" G2 E# K0 T

    : I& O, }8 f! h8 U3 f% K' ~    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. s3 t, s+ P( R4 }7 j

    2 g4 Y5 |9 p$ k" RWhen to Use Recursion0 g, }& u; b$ i+ @. s
    + l, ?* p: z' K/ \# K
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)., v, F$ l& E% J$ ^
    2 e8 w8 x; M% }8 I$ S- d$ I4 ]# w
        Problems with a clear base case and recursive case.+ x7 _) t& j; u) P) H' j
    1 q/ J+ Z8 S0 z
    Example: Fibonacci Sequence. X1 Q4 f8 y! o# T

    + l" [8 c7 b  `& Q4 X, O# bThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) w  W: B4 j# l+ i

    , ]5 s; Z: P5 T# c  t* T1 _. r    Base case: fib(0) = 0, fib(1) = 1* X2 G4 `- G) E1 U; a& ?' V# u6 e
    7 @0 G( n' G; f- s. G3 h. V9 N4 }
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 I6 y/ E& ?& `  b7 W
    6 ~& u  H- ~' d- H" Jpython
    # T! y6 D/ U- {/ s5 L/ V
    3 G. p% S% o; z3 \% {, ^4 l, h
    ' r3 m* O! q  D$ V0 X$ j* Gdef fibonacci(n):
    $ S# c, [0 E+ D& F' [# f/ _    # Base cases+ M6 {9 M' W% U  j
        if n == 0:6 r9 K( h. `- z# Q/ @( c! f
            return 0: o/ ~" I$ |. l9 v$ H  P
        elif n == 1:
    & z+ V; E5 T; N        return 1
    9 |6 d  g5 g- f! \( o    # Recursive case
    + a4 a& S, p2 R, O, j5 C+ |$ ^) C! M    else:
    $ a' J$ B  e0 i2 g$ d- O2 n) B        return fibonacci(n - 1) + fibonacci(n - 2)2 [! f0 g0 {6 G+ m# p* N

    , g+ }5 E  |$ N2 S2 h/ J# Example usage
    3 [1 C5 C7 v# \2 G% ]) nprint(fibonacci(6))  # Output: 86 w6 p8 ]: e5 F3 O$ K( U8 B
      Q& t! f$ r- Z# a
    Tail Recursion
    . O# w: s, q7 |0 ?6 r/ M) S
    4 p- s+ T4 `8 P% i9 G9 w& f/ lTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ' i7 b% v* ?  v, U  y1 U! c
    4 M& O* V+ `+ `: e8 N- NIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-31 22:41 , Processed in 0.030195 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表