设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1765|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 % V" ~7 u' \1 a! x+ N2 T9 n. ~

    ; V# e0 l9 T' E. u, O解释的不错
    1 L& o) j/ b9 M5 o( d+ J) g  T: B
      S  T% g: Q0 r) D递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    2 Q( ]/ c1 L7 M, v0 {6 G+ M
    ! `+ Z6 p/ C+ [9 c8 F 关键要素. ]$ v. c5 ~) v8 r
    1. **基线条件(Base Case)**5 e/ ^, k! s4 _0 J9 ~. l' }
       - 递归终止的条件,防止无限循环
    ' r( A/ c7 d9 B   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 15 M# D9 r6 }2 E# _

    8 H# b1 H3 L9 q2 X/ g% J9 r' N2. **递归条件(Recursive Case)**+ T; x, s3 S) L2 i  r
       - 将原问题分解为更小的子问题
    8 p5 a0 u& K  V9 O7 h  C   - 例如:n! = n × (n-1)!
    1 [1 M: C9 @" y
    $ q  d% a7 w- [. g 经典示例:计算阶乘0 ^0 g5 v& [( t! V' I0 |
    python" P6 z( f9 C$ k( Z  \
    def factorial(n):( S/ R) U% f. D. Y, |, x
        if n == 0:        # 基线条件2 {. |9 j- L* S. ^6 y: G2 n
            return 1
    ) B! }. K) ~7 n2 \    else:             # 递归条件* `# I: X9 G& V! @2 N5 a
            return n * factorial(n-1)
    , J( F" ^0 k2 f; u( H执行过程(以计算 3! 为例):
    7 O2 ?6 V# b* f7 M2 ifactorial(3)
    0 S& P, {7 m/ r$ T* z4 \3 * factorial(2)
    & Y9 i* U  q, H% g6 ?3 * (2 * factorial(1))3 n" H. M: F' p) S8 U, k, o
    3 * (2 * (1 * factorial(0)))
    4 c! N6 G$ o: q9 y0 z3 * (2 * (1 * 1)) = 6
    & ?( \1 W3 I. s9 }9 I5 G
    1 y) s/ a2 Q$ j$ [ 递归思维要点& d; o' U/ e  e
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑7 e7 x) d( }7 I- {9 L  V" A# d& i) @
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    / V3 m* s6 ~: _2 v( u3. **递推过程**:不断向下分解问题(递)
    # A; I8 o2 Y% P8 ]4. **回溯过程**:组合子问题结果返回(归)
    7 p8 V: @' F1 f$ \* r
    5 d& E1 `3 l$ J) @- j* k/ E. ?1 ^ 注意事项
    4 B# C" m+ T4 l; j6 Z/ |) t必须要有终止条件1 w( H" ^! t1 g" |% g  R; r
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    " V& O1 d1 }8 i) l7 B某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ; C/ ?. b# ]4 `尾递归优化可以提升效率(但Python不支持)3 }, L) _5 q- r7 v. {6 U' W5 P

    , F) ^8 e8 J' t( U8 @ 递归 vs 迭代+ I3 V# N+ \$ }8 |9 \: F
    |          | 递归                          | 迭代               |
    7 s0 K. }* ~1 s3 C! @|----------|-----------------------------|------------------|
    ! _' t6 Y1 n3 O' S2 _3 V5 x3 E| 实现方式    | 函数自调用                        | 循环结构            |
    9 r8 M* g- ~4 m5 C+ ~: E7 S- J| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |% W! k% G( v5 t* z2 K
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    1 E0 P! x9 V; N+ H) d4 H| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |$ E3 Y% E+ R$ l
    $ ~3 ~" m2 e# J
    经典递归应用场景
    5 [: N; \* y& h/ y1. 文件系统遍历(目录树结构)
    8 p' N) `/ Q2 O9 ]# R3 k8 X2. 快速排序/归并排序算法+ ~3 _4 b1 o4 j" V+ |
    3. 汉诺塔问题
    : g8 D4 ~" e4 S, i4 f4 ]4. 二叉树遍历(前序/中序/后序)3 \* q6 P( n, N4 G7 T$ r$ m+ O
    5. 生成所有可能的组合(回溯算法)! m$ F# O# `+ O4 y8 x

    4 Z2 f' ?, v. g试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    3 小时前
  • 签到天数: 3141 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,; B- w3 D  Y3 G2 j5 O- V
    我推理机的核心算法应该是二叉树遍历的变种。
    ' n4 ?3 x: H2 {# e另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:$ F$ s0 T/ i6 \7 ^- K9 Z$ g
    Key Idea of Recursion1 h. t* {4 g5 X
    1 H7 M9 t& W+ i2 \; d
    A recursive function solves a problem by:6 x9 g4 I% m! L7 i
    1 O& }9 ^) i, a' @" N5 k  @
        Breaking the problem into smaller instances of the same problem.8 W+ q. t1 e& J2 l/ ^4 S
    . v# ?2 j% i. @, s: O
        Solving the smallest instance directly (base case).
    0 Y, U& E& X; \4 l# y4 k) g& e0 J, ~, X% _! U. e' W- W
        Combining the results of smaller instances to solve the larger problem.& b5 L2 u: |8 T6 h: m

    ( C* Z6 G. K9 c, j" rComponents of a Recursive Function3 y( e3 Z: l0 o& _8 i4 R
    " v/ j3 I) M2 B- U6 D1 ?" z
        Base Case:- y4 O1 r' y/ h  H+ q$ \
    9 y; m% }- C1 v/ T( \; S* P
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    9 @( X) d2 L+ j: E1 S0 I
    " I* f* I9 d# N6 Y4 Q$ k7 Y0 u% z        It acts as the stopping condition to prevent infinite recursion.0 h6 _6 x& m4 |4 C

    ( U% B+ N! \9 y2 s8 E- l        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    - u) ]" }; B$ i5 O- e% G( A6 {7 d6 e9 S1 K
        Recursive Case:9 b6 e& ]2 B' o2 Y# E

    . u8 l2 n2 i8 q9 r        This is where the function calls itself with a smaller or simpler version of the problem., g" i% m3 p/ a8 O7 p: v
    " |, k2 }5 l! ?! o
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% F+ U/ g+ Y0 e, M( j1 B8 @

    ( j2 C  I% {1 R# P* z. SExample: Factorial Calculation
    3 @% Q+ u/ z& @9 z% r, h! k- n' {
    % q2 `5 X. A# l2 i" PThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:) E0 ~% M8 a  {% r
    2 f4 j: u, R6 m2 Q1 h
        Base case: 0! = 1
    : T7 v+ G' s! ^4 E) N
    " g# }* b1 |/ N, |9 o' a    Recursive case: n! = n * (n-1)!0 ^8 Q0 h- `" Q1 v' `6 ?) y
    3 W) ]& N9 Z& T5 I8 N. V( V# P4 d
    Here’s how it looks in code (Python):+ N. Z# y+ ^- r* D( R5 _
    python
    8 e) K3 ]7 R5 {- A7 x* v$ t/ |" V" A1 u7 t9 @; [$ M
    / Q' h$ d% `" v
    def factorial(n):3 Z$ y1 _( [) t, M
        # Base case
    1 d9 J% w4 h" i    if n == 0:0 M" w" t' p# P8 u* j3 f
            return 16 @! q0 n" F1 y3 n
        # Recursive case
    7 C& }, \! j( h  F% P' u    else:6 M" S* |9 ~, U7 P
            return n * factorial(n - 1)2 T2 w: `: `' i/ F  b3 m+ L
    1 B/ ^2 y5 A, F! Q$ V
    # Example usage% ~& O$ x2 Z4 c" f! h5 m5 q( `9 V
    print(factorial(5))  # Output: 1201 S% I7 Z* g+ a6 p, E

    / N2 S7 \+ o: {: N9 pHow Recursion Works
    8 G/ X- v) ]( Y2 L/ [6 \
    . G/ B8 G) ^- P9 T7 C* Z    The function keeps calling itself with smaller inputs until it reaches the base case.
    : S8 u5 @2 r* S9 N( |) o& c1 S# Y- F7 i+ d8 n' e) E
        Once the base case is reached, the function starts returning values back up the call stack.
    % |- ]  i& h/ S/ D0 W5 n
    : g! b+ E, {1 x; B    These returned values are combined to produce the final result.) y8 e2 }6 [. Y, M: O( Y

    + u) W- Z; Q$ J1 s& QFor factorial(5):
      Q. w% \/ J; n# N3 B! u; e8 M/ o7 x1 V4 F4 d; U
    / P; i- o$ ]* g; A
    factorial(5) = 5 * factorial(4)
    : ?+ O$ q3 _9 b% @. B( q' jfactorial(4) = 4 * factorial(3)
    $ a* |# \. `* v( t) ]6 R, @factorial(3) = 3 * factorial(2)* Z6 _, ^3 n* y$ T$ N6 D0 Y' E
    factorial(2) = 2 * factorial(1)
    % O" t7 i& H" ~- \5 `- G+ ^" Yfactorial(1) = 1 * factorial(0)' g" c5 P' K9 Y  b8 Y1 D, ?7 v5 V" Z' [
    factorial(0) = 1  # Base case3 O4 C4 S) S( N8 B
    1 `* G  [* \$ }, U
    Then, the results are combined:
    ! M4 W7 E% v( B  i! |
    0 O" x) z: M" _. y4 k2 i8 g0 F% [( _* Q$ K
    factorial(1) = 1 * 1 = 1
    " \$ |; a& }4 z1 h# d( _# r# {, b$ `factorial(2) = 2 * 1 = 2% D. A7 z2 u$ h2 k! [! }/ B5 T( A7 w
    factorial(3) = 3 * 2 = 6
    6 {2 E- x' A" Jfactorial(4) = 4 * 6 = 24
    5 u# @0 r' ^; l5 s# P& mfactorial(5) = 5 * 24 = 120
    ! }, d2 h, B( \+ I4 P0 e6 W6 F" @7 h! o) |) {
    Advantages of Recursion; ]/ H- q: q- R

    $ J# v8 ?6 K# x+ S8 q' z' M    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    1 T+ g6 L$ [+ q  K; i! i, `7 y5 R- q0 c4 T7 S
        Readability: Recursive code can be more readable and concise compared to iterative solutions.8 D* b6 d0 N) B; s; X

    1 R1 s$ {) x' Q+ X4 L6 DDisadvantages of Recursion: G) D  _, w5 N& Y( o8 p, y

    ) w$ t4 B5 F/ H0 K3 a: L% ^    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ) B1 B+ ^/ k- r/ ?! y' c
    - n- p& \  d# h& J3 q+ e- T    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. D  l; c" G3 t: Q; A6 p5 E" _
    0 X# m6 B# e' h- R
    When to Use Recursion0 c! l% k/ X6 w) c8 i/ O9 t
    # g  m& H1 B; y& v. W: u
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ j7 o, H: K( B+ m
    1 j7 n9 t' }& ~, }5 A# o9 ^" E
        Problems with a clear base case and recursive case.1 r6 C8 Q$ T! e9 k

      `, h& s5 `$ R* p; n( gExample: Fibonacci Sequence, K: q7 Q% z6 `

    # o: B2 y! |5 H: UThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    5 |% t) U% T7 `+ \& q5 k0 W* c/ \- Y1 O: c
        Base case: fib(0) = 0, fib(1) = 1
    ' t# U2 s, R+ K9 T" g: _$ J* U% m$ A/ ^0 Q9 z
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    5 V6 K" _. T! v
    ; p4 X- ^, R# U) I. o* Cpython( q6 r* h* V+ A$ @6 |; _$ @1 t. g
    # D# D/ ]. k) s, @" _

    # M( `- a2 f/ {# z( I  f7 Udef fibonacci(n):
    . u1 }) T6 T8 p# X* U    # Base cases
    5 w0 W% k+ d! C7 v0 T% F: v# p1 }# _8 N    if n == 0:! W9 [$ a3 C0 }" H' a
            return 0& t# B* P, H5 D8 S
        elif n == 1:# V% s; N+ h# E: Z' ^$ t  U
            return 1
    1 A2 ~& _/ t+ b5 ]2 w) k    # Recursive case
    - Y" p% N2 u+ R5 L    else:4 I8 U' I7 x+ ~3 q; \4 c
            return fibonacci(n - 1) + fibonacci(n - 2)
    $ r' g3 J; S- C; w* F# g; |* Q/ T1 g2 u. B
    # Example usage, L& y7 W; z# Z
    print(fibonacci(6))  # Output: 8& _+ A( C  L% `5 x$ N7 g0 Q
    6 R( s, e' i& ~8 u
    Tail Recursion
    / |& `: m) i/ S: [' B) L4 o
    . n4 Z" ^1 A2 @& T% l: f, Z2 O0 hTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    " J6 s; @6 r+ q2 g' ^- y9 c! @2 g$ r, u6 \. k
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-9 10:03 , Processed in 0.033422 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表