设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1503|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' T0 |$ o6 t( C, e9 w% I

    ; K  e9 \: r  ~- D, J& q2 P6 y解释的不错1 B3 ]' O/ b/ m# i

    + N1 z% s! U( r9 s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 H0 J3 U# O6 h- d* X$ ?
    ( u' Q; V( j% O! }$ n 关键要素4 _' K0 S! L5 n9 T8 r$ b
    1. **基线条件(Base Case)**5 {6 ^2 h' z0 ]; t  Y0 Y
       - 递归终止的条件,防止无限循环
    4 P3 f( x3 C, W, |; G! h   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 14 y" c0 l" F! ]# n+ b4 @9 W( c  t

    - S. \: h, j9 f! t' m; y2. **递归条件(Recursive Case)**
    ; W3 c( Z5 L' T: q   - 将原问题分解为更小的子问题1 M& V* r. T( T& v4 c( I7 y
       - 例如:n! = n × (n-1)!
    # Z1 ]4 d. f1 I0 c, R( L
    ; y) U5 X' M" ^/ `& ?9 Q 经典示例:计算阶乘
    5 m8 L- f- l9 z/ P' Q$ Kpython" ^6 g# J% q( n7 B& f
    def factorial(n):7 F. j$ y! e/ r, g
        if n == 0:        # 基线条件" c" j' o  u$ k4 B/ a9 b) v
            return 1$ z2 M  D2 Q) h- P% M
        else:             # 递归条件
    & i9 p7 R( [* ]$ m% X7 w6 I        return n * factorial(n-1)! A- r  w) Y; ]- n# p
    执行过程(以计算 3! 为例):  e1 Q. f0 J2 I$ u. r. z
    factorial(3)& b" t3 z  T/ W" W$ K0 M
    3 * factorial(2)
    ' n: O% p3 m& Q! |1 |" ?" [' ^5 D. L3 * (2 * factorial(1))
    & r( p! W2 m7 {7 h, v' v3 * (2 * (1 * factorial(0))): Y! Y: x( K6 U% `0 L! d
    3 * (2 * (1 * 1)) = 6
    7 Y/ F9 _1 s0 N, y9 m* H- [
    4 u% \; j) b' H3 q. r 递归思维要点  v7 }' ^2 g3 r7 |% p
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ; N* W8 M# ^- e% e3 b# P2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 O/ {1 @2 ~5 h; f' B
    3. **递推过程**:不断向下分解问题(递)) c) |+ W/ T; e! |
    4. **回溯过程**:组合子问题结果返回(归)
    2 H, o8 k& V' r% i; K5 d2 b' l3 I0 R$ t  v$ f; v
    注意事项) N; j$ w' M2 L) {; V
    必须要有终止条件) X; U" ?% L! I+ a3 [1 ?
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层); g: Y; l$ j  _9 v
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ( j4 E! ^0 W- u  B% D尾递归优化可以提升效率(但Python不支持)
    ! u" B# |0 c6 j( Q/ s2 y$ E# U
      @- ~, s  I2 d 递归 vs 迭代
    $ y) R1 N+ x( V, C: ~8 A5 l0 S|          | 递归                          | 迭代               |. T5 S' z' U) s
    |----------|-----------------------------|------------------|3 E( t  b+ E) L( B$ q" Z, N- i
    | 实现方式    | 函数自调用                        | 循环结构            |& V5 u$ S& |% s; m9 z
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    $ h" u, u& e* b+ n2 X) N7 e! L/ F! }| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    / F! r! Y+ o4 ~+ E% r* t' T| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    % s6 V( E2 R5 M+ n4 |. b
    : X! U" t& t# _5 b: j! u. s 经典递归应用场景
    % Z. b3 T) i( U; f8 P; }1. 文件系统遍历(目录树结构)
    0 S4 d/ h3 Q% u2. 快速排序/归并排序算法
      L8 [' W+ n4 }6 U* }/ a3. 汉诺塔问题
    ( X. [1 u( U" ^4 i7 _4. 二叉树遍历(前序/中序/后序)
    1 S9 U2 n! P$ R5. 生成所有可能的组合(回溯算法)1 _% R" W7 K5 e$ `; X. U3 u

    6 x1 G' V( x5 h1 f0 T; x1 j, N试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    昨天 13:27
  • 签到天数: 3116 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,1 H  n1 S3 T4 I5 A6 p$ _# V8 r
    我推理机的核心算法应该是二叉树遍历的变种。
    + \* u4 Z7 X2 W, B/ W) X另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    , t7 }; @2 A$ ]Key Idea of Recursion. l9 C$ U5 v5 d
    * u; X5 x' ?+ ?- b. a
    A recursive function solves a problem by:) {- B- m9 i+ s9 r7 u& L) G

    * E! ^: l. C, R& h; h% H* e" {    Breaking the problem into smaller instances of the same problem.# x9 I. ~5 r: z$ ?
    . e( U9 V; b4 u1 Y# X
        Solving the smallest instance directly (base case).- N0 x, D: M9 k$ o: Y" {; q
    / z" [# ]6 `6 |
        Combining the results of smaller instances to solve the larger problem., N7 u, f7 i6 z9 F. n7 X/ c' W* _
    * ]* R7 r$ P  Z  @
    Components of a Recursive Function1 ?) _$ ?/ p& a# W0 ^/ H9 ]

    9 A1 m" p# q& v& D# K! s    Base Case:! p6 Q; D" V0 J3 Z4 Q2 p
    $ {# L; ]7 Z8 Q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion." G" o1 v; M( K; [, E; p

    + X3 G3 \0 G6 T8 d( x) }; i/ H) f        It acts as the stopping condition to prevent infinite recursion.
    ; d0 e4 ^( y: z" m5 R/ K; M6 E- j* X' H/ h( O2 W( `: L: G. u
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' c9 J" M4 {6 c& w
    : m, y3 A5 ?2 R2 D4 Q8 }$ A: `    Recursive Case:$ C# m* c/ }  V% g( e! t5 K

    2 z* G$ L% N. x% n% L2 W& o' V        This is where the function calls itself with a smaller or simpler version of the problem.
    4 C% r1 @5 ^- X! M  N# ]* \" t
    ( ~% x: }2 b1 u  |, t  c4 [; x        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).0 B1 M1 M6 e7 @$ Y

    5 r( C% {6 \4 b; {Example: Factorial Calculation0 e) \& w8 U7 e! j! Z
    # ?/ F% X( d( v, V! J, Q: a
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    : k2 s9 n4 i' U4 s: J. b2 V" h5 J$ }/ U, y9 `
        Base case: 0! = 1
    ( g6 d% A/ E: }6 K3 ^' l3 C4 A* Q/ ]1 ?# _
        Recursive case: n! = n * (n-1)!4 |; M5 G( ]$ J/ E: F1 p

    : S, \2 u# Q  C! LHere’s how it looks in code (Python):
    6 Z2 {+ W1 d' Y3 P& Z: ?- D1 [python
    3 a+ T' y/ O5 l: l" D( c& d5 u1 ]& }6 z
    " c; n9 g+ Y9 y+ U  c* c9 i5 X3 e
    def factorial(n):
    ! W* L8 g3 U2 b+ A  ?    # Base case
    % i: @; R7 `- v" v  m5 b    if n == 0:
    4 k) P* e: }8 p- Q5 }4 g% Y) l/ W        return 1
    ! i5 P3 g6 N9 X7 U    # Recursive case
    0 _! p- Q" _7 ?+ ^* Z+ n0 m0 j    else:
    ( q6 M/ e' t% H6 x8 J" c2 M3 ~        return n * factorial(n - 1): u" B4 M9 |- _3 H

    1 K  }+ B/ C/ M, B8 n. Y: c. `3 {# Example usage
    8 r+ d: H' M/ r3 D. I$ R+ Dprint(factorial(5))  # Output: 120' b9 j* `1 t& C

    0 r' y' N% \6 V( l7 H" p4 `. LHow Recursion Works
    + @8 r, t# a' `- C1 I
    3 Y3 p. z& \, t    The function keeps calling itself with smaller inputs until it reaches the base case.2 C& C! Z" y$ W! Q7 F2 `3 k
    ' X0 y$ g( r3 Q  o! A* a7 ?% l
        Once the base case is reached, the function starts returning values back up the call stack.
    7 m* ]/ x2 ~  w- M) m  Z) D& H7 d3 \+ J5 j8 I, j7 ~
        These returned values are combined to produce the final result.4 t4 u4 J; \5 z/ e) @# q
    2 i  C) A7 z& y- B* y9 }5 ?
    For factorial(5):2 H$ P  m0 R' @
    9 x+ l* L$ o: S/ ^' T4 ]6 w; _

    ' n* S/ J( [3 |# t$ M4 U. w6 y( _7 `factorial(5) = 5 * factorial(4)) ~7 R. e. n& e1 x
    factorial(4) = 4 * factorial(3)8 H- \1 Q; E8 @6 y/ B
    factorial(3) = 3 * factorial(2)
    , a6 s" `4 q6 F; @factorial(2) = 2 * factorial(1)4 P9 U! R0 {4 k, k& w; l* k, Y7 [
    factorial(1) = 1 * factorial(0)
    + a/ Y5 R0 n. {  M9 Xfactorial(0) = 1  # Base case
    4 H# _* z  F1 J4 G$ R9 E5 \% f
    Then, the results are combined:4 L3 m: d3 w9 P9 Z& G9 u' o6 p- T

    7 W, l6 y0 f5 t8 F! [  I- R
    ! Z* a( J$ f; i: C. K4 n/ m; jfactorial(1) = 1 * 1 = 1# v' i9 j* ?+ c0 c7 W* g* j/ \6 }
    factorial(2) = 2 * 1 = 2
    1 ^% W% g: U$ C* W5 h: Ffactorial(3) = 3 * 2 = 69 ]2 R0 m( L+ k/ G: Y
    factorial(4) = 4 * 6 = 248 L. C, o0 E  m: X; x6 p7 S
    factorial(5) = 5 * 24 = 1204 a5 A; w7 v" o: s; D& `
    % _6 X' G/ t, ^- w
    Advantages of Recursion* T. H7 Q. v6 V% m

    5 f/ k! m6 l8 r) V; a4 Z    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * s2 r! k9 B) i( {1 a/ H2 E
    6 \5 w! M6 v% n& V    Readability: Recursive code can be more readable and concise compared to iterative solutions.5 a7 F+ t3 n$ p, U

    ( {- o' v! V; n; q8 i1 DDisadvantages of Recursion
    * u9 W& @  L" u% K8 Y$ N' P
    0 v2 x: F8 x% K    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ; L( L5 U5 T+ r* ]* h' d  \* Q, x" X
    8 G0 X# f+ I8 G1 ~, U& M  K! E    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).  F: z; T( A' Y7 V
    + s' G/ ?3 e5 e3 |
    When to Use Recursion' }4 }& w+ l' A" r3 R* ^) g
    9 g0 K- m0 U5 [5 ~0 Y6 S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% W9 o6 ~  M2 W- O9 J' f7 f
    ( T5 W, J; _8 l! {; f& Y% v  d
        Problems with a clear base case and recursive case.- h5 m5 D. {7 Z; E7 G+ A
    6 `; X. |/ K: L# e. U5 x5 j
    Example: Fibonacci Sequence, Y1 ^6 i/ `+ f6 Z- z. H

    - j' F4 v) P2 c+ S" ]9 SThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:- }0 R8 C. H2 x( I# ]

    $ Z, i7 I# I/ l/ J, l1 \- [. f6 c    Base case: fib(0) = 0, fib(1) = 1( O* h/ P$ [1 C! h5 h- G/ e/ x" P( b

    ) b+ e/ @- ~% C/ \    Recursive case: fib(n) = fib(n-1) + fib(n-2)4 s$ @& r- \- f7 }! c* b

    ; Q: A# J4 ^" u2 Y# Rpython  B# v) q: @9 S& N

    ; u: o. p/ I5 n/ c9 [5 t% J) W' ~( z& M" b  Z, b
    def fibonacci(n):
    ( ~  X) w$ l/ W" R1 e8 N9 [; F5 ?    # Base cases  m; I+ P# z1 p6 h
        if n == 0:; |5 ?2 `' ~, V& y6 u
            return 00 ~' e% ?1 j: j2 z( H) Q( `/ A
        elif n == 1:
    % W( b3 R5 p+ F$ g' o        return 1
    % c- r5 e. {, O2 R- T+ N( _    # Recursive case
    , I  [6 m- ~+ A7 `: r  G2 R3 {    else:/ W: E$ _5 p, w* I0 c( c1 u0 ~
            return fibonacci(n - 1) + fibonacci(n - 2)4 K) X! M( B/ W8 o1 |3 G
    * m" t7 a7 Y) U' t% C% O; O
    # Example usage
    4 d, G- ~! I3 o6 ]( g0 `print(fibonacci(6))  # Output: 81 Y, R8 K5 s' g; X1 Z. @
    3 _" I6 x9 E& M) h1 [  X
    Tail Recursion
    # R3 I) |8 i# q; q) c
    7 Q- m8 B, A: j* pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).3 y" T4 Y9 ?6 A6 R
    . Z6 j7 A  R# p0 L( v; F# {
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-14 05:02 , Processed in 0.029062 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表