设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1878|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 / C4 ]/ y3 ?6 x
    2 w9 i6 J0 v! p7 H; }
    解释的不错7 z& n. E; y3 S6 ~! g
    3 n5 [8 V& {; i
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 s0 z. Z6 i, I" W
    - H& U+ e4 `! K' L9 Q* E  t# X 关键要素
    ) F( D0 N- g4 v" }. u! A) g+ ]: Z1. **基线条件(Base Case)**
    7 e3 `  o& P% O   - 递归终止的条件,防止无限循环
    & c4 t# \  ?: u6 L6 a+ U   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ( b+ @& U1 ]/ \/ j+ G! X* A
    4 S5 L1 V1 @5 Q) ^4 `1 [2. **递归条件(Recursive Case)**
    6 w, i; S+ ]- n9 c& i0 l   - 将原问题分解为更小的子问题' {' Q  S" w% E4 `
       - 例如:n! = n × (n-1)!: L- y1 \) j* W5 Q
    ! I% p$ V( H1 d8 L; M4 F- v/ L
    经典示例:计算阶乘
    $ v( _% N6 N; x6 hpython
    6 W& `% B/ c; U5 `! rdef factorial(n):' H" T3 T3 H, X* N% E9 {
        if n == 0:        # 基线条件' T6 A' u! B: U% y9 d8 {& u: _
            return 1
    - o& z; o% H1 s- u) S    else:             # 递归条件
    # `7 v* c; c7 q( D        return n * factorial(n-1)5 ?6 L7 b) w6 Z/ [
    执行过程(以计算 3! 为例):8 Q/ M! D  h3 @5 u. Q* x& g
    factorial(3)$ [5 t. \* C" k; D# _1 G% B9 q' y; X
    3 * factorial(2)
    ' ?- ?' M3 c/ _3 * (2 * factorial(1))
    ; y3 Y3 T7 B" O6 {3 * (2 * (1 * factorial(0)))
    & a' y- _7 T% u3 g- l% C" W& s/ J3 * (2 * (1 * 1)) = 6( U7 U# q9 b* d1 t

    9 X% t9 e' S8 Z5 n& Z 递归思维要点
    . R% ?7 v! Q, t" b" A% {1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ' \2 @8 r8 ]! s6 y. V. R" d2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& p! C$ R! i  g1 I' w
    3. **递推过程**:不断向下分解问题(递)
    - `1 m8 j. s& N$ c! _6 w4. **回溯过程**:组合子问题结果返回(归)
    7 [$ p. u9 f0 o
    ) g6 R4 {: H2 ~5 M/ @; W! C2 ~ 注意事项1 q4 S# ^, ^  N; x& g. ^
    必须要有终止条件* H/ ~7 d5 M; q* n$ k- F+ ~
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)! U  Y/ x: c* j; t! S
    某些问题用递归更直观(如树遍历),但效率可能不如迭代8 W2 F7 [7 d0 P( Z1 d* @
    尾递归优化可以提升效率(但Python不支持)
    9 V8 \+ O. e5 G. c0 s( R; }- S3 u) P. m- Y
    递归 vs 迭代% z# E' z; j5 `9 B# G
    |          | 递归                          | 迭代               |
      H: K3 Z) g6 C- t|----------|-----------------------------|------------------|
    % b" G$ ?8 x1 ?: O| 实现方式    | 函数自调用                        | 循环结构            |7 w, l0 ?# P, d' b! v$ ?
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |2 `) v+ V, Z8 v
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |9 r9 O4 B- @! w7 T
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    1 h& \& Y. T* w1 i2 A" c' |* z# d8 k
      @8 x+ R6 D* S; J* b& A 经典递归应用场景
    5 j& w  F& L) e( s% G5 U1. 文件系统遍历(目录树结构)
    5 D3 \3 c0 L8 [2 Z( x) o% y2. 快速排序/归并排序算法
    5 @+ N8 F" H0 B- B1 v) K" m3. 汉诺塔问题# X( p! \6 q3 U: Y
    4. 二叉树遍历(前序/中序/后序)
    & |; b% k) P+ r  Z5. 生成所有可能的组合(回溯算法)
    5 _4 m4 |9 R1 o0 P. D) F
    ) \- F- X( N& D试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    4 小时前
  • 签到天数: 3148 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    / ~7 e1 V9 _( C. h% I/ b& r我推理机的核心算法应该是二叉树遍历的变种。
    3 H/ j9 _( ]3 e另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:) W: {* T/ p. P/ m
    Key Idea of Recursion
    4 v1 m( u1 F/ |. e
    / i# K: [5 @! @! Z, wA recursive function solves a problem by:- U" N2 W, x( @, t

    9 ?6 b2 o, Y+ V3 O0 |8 d    Breaking the problem into smaller instances of the same problem.4 M) \+ ~; e( P2 k3 L; z. q) u
    3 a0 l" @! b1 a% ~5 P
        Solving the smallest instance directly (base case).2 e, d+ r$ O( [9 b* f# `* J
    . w* ?) L$ ?. n7 L1 o9 g
        Combining the results of smaller instances to solve the larger problem.
    6 B! |! R* Z: l( a/ k9 W$ m2 z, u+ l. `- M' b; b8 _* s
    Components of a Recursive Function/ M+ k9 j$ |$ m+ s0 u' r

    5 [. ?/ O) z: x- x    Base Case:
    - s; H& _$ {8 z* d9 r5 W6 V& i& l) L) Z" x. n' t6 F8 e4 r2 o2 l9 Q# A2 g( P
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    # e6 S$ a' ]$ O* ^! Z; K+ G: a; ~
    ! q$ Q* A8 p6 B. H; N- U4 Q+ n. m        It acts as the stopping condition to prevent infinite recursion.+ i2 I: W2 ?! R) T9 f! I" b( b5 v4 @
    - B0 n) _/ E$ [7 S+ }
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    * H) I6 F+ C5 _/ a+ S+ V2 X; l( r# N! a5 |
        Recursive Case:/ T7 `: z) J' \2 u7 {+ o
    2 R7 ^8 C6 Z6 C7 c  k2 P
            This is where the function calls itself with a smaller or simpler version of the problem.1 Q7 x$ j; F5 U( J

    ! `% Q. {/ Z& u. s$ [, B        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).* i  n& @' r: W0 Y" }

    $ A6 G8 B; E+ N: dExample: Factorial Calculation
    + [: C/ a# l0 W+ Q1 l
    ) M: ?% r: {8 i: N5 j2 RThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  t3 U- [/ ^. D8 p) h

    0 j, n* o7 \) O' Y6 w    Base case: 0! = 1- G; E6 o2 `- H

    " ~, Q2 \, L6 `    Recursive case: n! = n * (n-1)!
    1 l- g( m! _& R3 h/ z1 J1 U. @+ @
    Here’s how it looks in code (Python):8 N+ z4 A& q8 R% D
    python, o$ s5 g7 Q9 @+ O! z* G* R2 V

    3 O; T4 S" E5 ]- }; q1 j7 A
    3 r8 J) g1 ?  D* P( x9 J  Qdef factorial(n):
    9 c/ x. T% v# q% @$ \    # Base case
    ) g* |- `# ]& e    if n == 0:
    2 @7 m; p& U' a1 a; g- ?        return 1
    % u7 T# n' x  f    # Recursive case
    ' y( `% l& j- [5 C    else:
    2 T: ?; k% n8 O$ G5 A        return n * factorial(n - 1)
    ! N- p9 V7 |% G, D1 m4 s  y8 j) A, x7 e/ i
    # Example usage
    ! n: X! k' o) Q; g. Z& P2 nprint(factorial(5))  # Output: 1202 _1 L( u' Z- Z: A5 ^

    3 f: {" o$ B8 m; k- v$ gHow Recursion Works
    ( G* }& T% d' A4 j& d( a8 ~/ R- I! J7 |5 v$ W
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ( z* z# y* M* H* @* Y2 M8 C
    1 M9 f0 y! {/ ?! l6 e' Z$ s    Once the base case is reached, the function starts returning values back up the call stack.* X4 {* ~% Z3 s$ `

    ( ]" ]7 Q5 i4 g# ]0 M    These returned values are combined to produce the final result.- q2 m: x6 W9 E) _( x, _

      A( @5 d$ d) c! ~' h4 KFor factorial(5):
    # P! z6 R3 l. ~4 V6 e1 f5 `5 `' {# ^4 w# O+ A- i
    : N6 X; b% e- g
    factorial(5) = 5 * factorial(4); C( ~0 M6 q/ v, T
    factorial(4) = 4 * factorial(3)
    " a% e0 {: k0 r, p6 D" M% T4 gfactorial(3) = 3 * factorial(2)
    + Q3 H! X, J2 |" `* X+ Z3 [factorial(2) = 2 * factorial(1)' J+ ], m# B+ @1 G
    factorial(1) = 1 * factorial(0)
    ) J& A  a& J) x4 g) h9 _7 p% Cfactorial(0) = 1  # Base case$ v7 b1 O+ Y, o

    3 |& O8 q! v/ S4 w+ X4 {/ q  mThen, the results are combined:% [2 c$ O! W) ^( G( e  W4 C

    4 s9 A5 K" n& {$ V8 E) j0 _" P
    " a5 ^) J+ k4 |8 Dfactorial(1) = 1 * 1 = 1
    $ v; I$ {# @- J, M& B" \) O! L" K5 L" ^factorial(2) = 2 * 1 = 2
    0 r3 b% A: Z) K* p) Kfactorial(3) = 3 * 2 = 65 X% Y+ s4 E/ o4 {. q4 y$ L$ B% f+ F
    factorial(4) = 4 * 6 = 240 O' F2 C: {9 E. o; y& O
    factorial(5) = 5 * 24 = 1209 q# a+ m. E! I. R( H! _+ m0 N
    4 l$ l- _" u6 Q5 n# _
    Advantages of Recursion
    $ W7 R! b4 u& S9 g& d8 d( p
    7 J  X' V* D3 E: Z    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 B+ E5 G& f0 R- U8 G: O
    4 S; V% N4 _1 Z1 G6 b. f
        Readability: Recursive code can be more readable and concise compared to iterative solutions.% m* T7 P0 w- d, N' U: i

    " s3 E5 T: @7 d$ l, U8 m- yDisadvantages of Recursion
    3 a( q% W2 N' g
    * G& k8 E- x" f- i: q$ O3 M    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    + n2 M3 _. U+ f: b) ]' T& u8 r/ r3 D: m$ t6 @4 ?
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).6 p+ G9 N* G$ m9 T/ Y5 U$ e! D* d
      H; f0 J- e/ I2 J# U8 d
    When to Use Recursion
    0 ~* @+ ]2 ^6 p$ |, N; F5 l- p; P! p# h+ t
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    # K$ C* s. L' o* f5 U& }9 _, K
    # [7 B' K( A5 h3 k% H    Problems with a clear base case and recursive case.: H) h+ r  h- y( p& P/ x) n

    ' q6 F# G2 V7 d$ Y4 T0 T! SExample: Fibonacci Sequence
    7 H9 [7 Y) b# @4 G5 L% V) `1 r6 Q6 `+ y* e4 }
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) F) G* @! H2 M% r3 ^- c
    * m, R5 v9 r9 ^0 f3 z5 \* }    Base case: fib(0) = 0, fib(1) = 1
    : ^$ r/ v% u5 b& C$ W4 v. B. S1 N9 G! }
        Recursive case: fib(n) = fib(n-1) + fib(n-2)/ `" t/ k0 Z) n

    " }0 S! G$ c) x/ Q1 bpython( y, k  H' K- F* V" @. }1 }
    . f/ w6 [) w! y9 e

    * m" [$ H( t$ B. o# t; Jdef fibonacci(n):+ x( O2 b# }* b2 y4 T. l5 V
        # Base cases6 D* j* [2 u2 d- j% b+ T/ \1 |
        if n == 0:$ @* {6 r. H( u9 b, q0 K
            return 0
    * ]9 v! ^3 e" _. G    elif n == 1:
    " \% Y; @5 F6 N/ {. j  O        return 1
    2 d7 W; O3 @- Q' G    # Recursive case
    , X# u% R* U# ]8 U    else:
    5 q5 P0 @' E/ m0 H: F        return fibonacci(n - 1) + fibonacci(n - 2)$ A5 Q* b4 e- l9 m# `9 {
    1 `3 K$ ?9 S1 W
    # Example usage
    ) i; T9 R9 x- b' \! H6 Z( rprint(fibonacci(6))  # Output: 8
    6 a! I) R2 ]( y
    - Y" e/ Y; _8 ?: s+ f, c* oTail Recursion
      j  f1 d( Z& d5 [' x4 `5 C( |" `: F
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    $ A0 j$ S3 R- l- I
    ; p" V0 e! p+ wIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-18 14:32 , Processed in 0.029299 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表