设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2127|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 " D( @3 `3 F) p( r. r- O
    & @- L* l- M& @  g
    解释的不错0 @8 s" L9 Q, r; O( Z# Q/ \- a6 z( ~

    * O, z8 H$ E9 ~: e2 m- b& J递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。( c6 ?& c! b" C! h

    & Y" q# \' ~5 d8 A$ ^+ R 关键要素* G0 w, d+ Z9 A& d  d/ Y: s* N2 s
    1. **基线条件(Base Case)**+ }5 N8 B8 F% E
       - 递归终止的条件,防止无限循环
    " V# P( g( `. e$ b( |$ X   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ! m' H. D/ `5 h2 g& }- K' Z# p
    1 p$ x/ p: e, u' L$ A; p0 H9 Z( S2. **递归条件(Recursive Case)**
      O' {9 x; F! ]+ V* w   - 将原问题分解为更小的子问题  z0 f4 w5 [; q  Q  e- E# T
       - 例如:n! = n × (n-1)!* F; j8 i( P6 X3 a; V6 s9 o6 `4 c
    : N" W1 D4 }, f7 z, d6 x
    经典示例:计算阶乘
    ; E/ K& O2 o" l# B/ z& Mpython- ~* b9 O2 s+ G* Z1 g- H- ~
    def factorial(n):/ T1 ~3 y$ w: U% c7 u5 L# |
        if n == 0:        # 基线条件' Z, f. g- I- k" y( X& Q
            return 1* T/ L! X! ~8 n( D* ]; s
        else:             # 递归条件
    * v. [- S% [# X* j/ `/ [% E        return n * factorial(n-1)6 P0 w& I4 S% Q1 Y
    执行过程(以计算 3! 为例):0 R% z; ]2 F" R" |% }" x
    factorial(3)
    " L& V; w0 w  K. e8 V! J3 * factorial(2)
    # x  a7 K$ m5 d0 j8 f; a3 * (2 * factorial(1)). S' f' {! c9 I' ]! b5 U# u3 S
    3 * (2 * (1 * factorial(0)))
      i2 L& j6 X! o6 M: Q- d* ^3 * (2 * (1 * 1)) = 61 P* |: {7 o5 I2 b
    / Y/ L4 a4 M" W, E, J3 ~
    递归思维要点
    % v1 G4 S' ^$ ]& ^; a; d1. **信任递归**:假设子问题已经解决,专注当前层逻辑$ |* |$ G1 C$ S8 P( S* N, l
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; V1 R  @. L& ~3. **递推过程**:不断向下分解问题(递)
    - A! l9 ^) k0 R* H6 ^' ]) A4. **回溯过程**:组合子问题结果返回(归)5 _# X, m, o( M# g8 M
    % l9 p6 g; \" P* h# J
    注意事项
    . l- B- H- D9 P, o7 _4 U  f必须要有终止条件
    * i% `. p: n, l  v递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' Y9 ^* j* k& L* J  E
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    0 r0 S& ?* e, W0 n) ], j尾递归优化可以提升效率(但Python不支持)1 s) q7 T" v' \3 L3 ~; X; y

    " J, d9 C( x. m 递归 vs 迭代
    1 n! ^( P5 R' ?/ m! I|          | 递归                          | 迭代               |
    * T# ]9 \: z* Z! w0 r% d, n|----------|-----------------------------|------------------|
    ) e% ]) [" P& Q; ~| 实现方式    | 函数自调用                        | 循环结构            |3 F7 e3 z! X  \2 ^3 ]
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    . d1 t& P8 t( U* a2 _0 x| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |- I; @7 @1 \: c" x0 ?4 T: @+ F
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    - ~2 N% A* \8 V
    1 v  L3 x% x1 q" S/ a+ ^ 经典递归应用场景+ V9 E1 ^4 D: @4 {+ n
    1. 文件系统遍历(目录树结构)
    ' h5 m' c5 j- G+ x9 ~$ b2. 快速排序/归并排序算法# K+ o. r6 h: S2 X- S, g3 m! Q6 [, [
    3. 汉诺塔问题+ }+ H0 X, Y/ i1 F8 Q2 Q# a$ t3 {  ^
    4. 二叉树遍历(前序/中序/后序): k6 [( _& x$ m( g" t0 z+ r
    5. 生成所有可能的组合(回溯算法)
    1 }* o. L; [& o! r; f. s+ z. L& ?" ~0 o( X* J9 h) q
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    1 小时前
  • 签到天数: 3181 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,2 F5 k6 E+ _% {
    我推理机的核心算法应该是二叉树遍历的变种。. M9 x+ Z5 Q9 w6 X% V. {5 h
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:+ c, q( }$ W0 s
    Key Idea of Recursion# O8 C1 ]1 `0 a

    6 q* L! v& b! ?9 e$ y) vA recursive function solves a problem by:
    2 Z9 z& I: I! ^: D. P. y
      a, Y0 i! s. H5 R& J+ u    Breaking the problem into smaller instances of the same problem.! k2 B' c& g- E/ t: B3 K5 p
    1 [9 i. ]: [/ q9 a) d4 n
        Solving the smallest instance directly (base case).
    ( f& Z" T+ C% \* m  }7 F( `' _5 a
        Combining the results of smaller instances to solve the larger problem.( I/ _# k1 L3 p* A- y
    , A- e  E- e9 r! W
    Components of a Recursive Function
    # \4 t- s/ x$ L! ~$ d# ^& }6 U
    1 j+ }: Q" T$ u8 D3 f    Base Case:
    , M7 d% S( P1 a- ?! }9 ~
    ! K8 D2 N% K* @        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.2 J4 h8 `. |+ p/ x! l

    + U8 W2 B; h7 m* B        It acts as the stopping condition to prevent infinite recursion.
    ; ^' j% m; [2 S6 s! U0 c( c
    % e- j& \2 K7 k! @# L        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & E: X5 J2 J, {" t
    7 y/ z* K+ L3 c1 \3 O; h6 U$ J) Y: o' C    Recursive Case:
    ; |8 e. H8 r. F2 S9 D
    * B! J' \* d; v& z        This is where the function calls itself with a smaller or simpler version of the problem.% L; |7 c; U5 F& {$ p" W* f* k# W" l

      ~$ d0 i9 e8 I" S5 S        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    % d/ G  I/ V1 \. {3 ?. @9 E! O- [8 L- H
    . Y# g5 J6 m2 [  d" gExample: Factorial Calculation
    1 q& }  Y, k$ i' g' q3 u
    & H9 a' V% i7 _! i  oThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 k. r& @$ |+ i, T
    + b" w& v7 ?$ q% B    Base case: 0! = 1
    * [& d9 ?: ^% y9 _% k4 I* B" V6 i1 q& ], O
        Recursive case: n! = n * (n-1)!
    % U4 U# n0 X' e9 j6 I6 H0 l0 Z, J6 \7 E( r2 a7 l6 f
    Here’s how it looks in code (Python):
    . E( [) S( _, r; y, w6 Z4 p( Y" Bpython9 T2 y3 D* T' C9 f: |+ S
    : X. p+ f3 g2 ?/ u
    ; }! L5 d; j) a+ h5 ?) |! ?# ]
    def factorial(n):
    ' W- ^' P$ b9 d' z7 i" `    # Base case
    0 E- |: p) S) D# E3 _0 c    if n == 0:
    5 [2 I7 E- Y2 ^0 s3 s6 X$ M        return 17 j8 n1 c* U0 C: J# W
        # Recursive case+ s& Q& Y; f0 c1 p, C
        else:
    + h/ Y) U7 \* ~" h7 Y8 Q        return n * factorial(n - 1)
      P7 {0 E. W5 r8 P- k
    : s1 m+ C4 t6 z& F; s: ?( _# Example usage, s7 q9 m9 ^0 i/ [' m' [
    print(factorial(5))  # Output: 120
    7 c( u9 f( A% q/ \
    , e' m+ q+ O! Q: p3 aHow Recursion Works( b7 V) k; S- [

    ; y: S; Z- M; H" z0 O/ O6 |    The function keeps calling itself with smaller inputs until it reaches the base case.
    " b, k% J: ~5 q: I9 b0 D2 h; j- b, X$ x- X: J3 j
        Once the base case is reached, the function starts returning values back up the call stack.
    ' ^" p% B, `; v) O- N3 I& W$ l& f/ a4 v. l, s3 @0 j+ C1 ?3 I
        These returned values are combined to produce the final result.' v& H, Q' r3 `" A! Y9 k4 d; d
    ; h0 j/ h9 N" {/ [& O- b, l
    For factorial(5):1 `5 ~+ S: i7 U" _% {; g( ]! S

    / `: W) C3 N- }  m; r2 ^; P/ N. J' J+ c! K
    factorial(5) = 5 * factorial(4)3 X3 c" m8 b+ b
    factorial(4) = 4 * factorial(3)' N1 e# b: s$ i/ P3 Z% X9 M& ]5 @
    factorial(3) = 3 * factorial(2)
    ' A9 ?4 \7 Z2 z, Rfactorial(2) = 2 * factorial(1). l" t3 P1 D6 f( V9 |, J
    factorial(1) = 1 * factorial(0)
    8 i6 H; o4 {1 P; |4 F) Ifactorial(0) = 1  # Base case& {5 |. c% g; a: A+ A

    ; l- L5 o3 C- H2 CThen, the results are combined:
      L6 m. H) E" I
    * B+ O: d# |6 W( @. w5 Y2 k7 g4 J
    factorial(1) = 1 * 1 = 14 \7 ~2 Z( h: m0 q- t$ c
    factorial(2) = 2 * 1 = 21 J2 a+ O* k6 z) @& V
    factorial(3) = 3 * 2 = 6
    ) N4 u  a$ `! J% O& y% P* T! Dfactorial(4) = 4 * 6 = 24
    . f7 {$ ]7 o( _1 k& f1 Afactorial(5) = 5 * 24 = 1205 h& w# G( i- \( ]; B; ^

    : N8 {  O6 I/ r0 K2 _, u+ ]8 G& jAdvantages of Recursion7 G' k- _8 p! e6 Y, h

    8 _+ P4 [6 ]  a8 T7 @$ a4 d    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ V& R7 A% |9 ]% v$ t% \
    . ?# g, x8 b, U1 Y" r; a
        Readability: Recursive code can be more readable and concise compared to iterative solutions.) W% _! N) Q$ m. a
    ( a6 b& R  ~) |1 L8 G4 W% i
    Disadvantages of Recursion) a& Y) v+ a% n+ P( S
    4 Y- c7 G" r; ~  w3 }7 g, t1 a
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    . N) r% }% |3 M3 x- j" \# {, o' Y+ @8 ~0 i: v/ @) t
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).0 [  A) O8 |+ G3 X

    5 v3 T% i1 h; J  ?) G' ?7 ^When to Use Recursion" N- E6 k* N1 T4 P- n6 L3 ?

    ! I3 r8 a# K5 T' R+ A+ `    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    + u& o4 l$ g2 {# d; f. O' C2 v& b- k8 P$ _! L0 L
        Problems with a clear base case and recursive case.+ x& o- g# p; q6 g
    1 q4 U) I5 p8 ~' S7 Z; e) G# a+ K
    Example: Fibonacci Sequence9 @7 G( T$ k) K* Z; P  s

    " @5 L8 ^9 O0 f4 K( T  GThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    / B0 `! }  ~# s
    # }/ Y8 H+ E' J    Base case: fib(0) = 0, fib(1) = 1# O- Y/ h& b. T. s7 Q
    9 L$ {7 t, w# `* N' q7 {
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    " r" {- |& }5 O/ U, b/ h; v6 H* g# k' }% @8 i9 X) m
    python: F  y, e( o5 z" Q9 w' Z6 S
    4 ?9 g& K" R, I9 [
    * o% M  x/ K3 z% x
    def fibonacci(n):, p  i- j, M- h9 l0 N4 i/ q# m
        # Base cases
    9 f  M3 k! H2 W2 t( H' O8 r    if n == 0:3 s( M! R% t7 e) Z5 K
            return 0
    % q( b0 b) Y2 m" ?. s5 H6 J4 A/ u    elif n == 1:
    ' S; b" s0 f, k+ M        return 1
    ' f% S! k4 t+ n% _- w* Y    # Recursive case- @/ {3 P% s) V! T
        else:
    7 e% y" t& W. p: U        return fibonacci(n - 1) + fibonacci(n - 2)8 E: `! B  E1 Z1 \! R/ Q- W

    ; u" M" J% A& {# Example usage
    ) y4 y/ V6 Z+ p5 Aprint(fibonacci(6))  # Output: 8
    $ k5 |; H5 x& l+ t1 Z$ g2 F' b, p" Q; t9 N- [, z6 O# E& @
    Tail Recursion
    " s3 @2 X  \" t. J$ c+ ]- J! I6 ~3 y
    - X7 |  \& J7 O6 dTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    % @/ y( S; }2 \  f+ h  v: A) _. L% B3 ^. D: V8 I3 @0 F/ H
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-22 07:38 , Processed in 0.066728 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表