设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2077|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / K4 [6 V( \; b1 g. ~- X4 @) }2 M
    解释的不错
    4 T+ ~# g- Q! A% O5 R& s- z7 _/ y6 _5 Z5 s0 J
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。$ P( e6 q: _3 t: v/ F
      J  r  W( W# C( d" }
    关键要素
    / p+ \* f2 j! Z/ i; m) A1 q1. **基线条件(Base Case)**( A9 H+ o3 g' G4 S( @9 Q+ C" n7 A
       - 递归终止的条件,防止无限循环  ~& X# b1 ]' ]& v) i5 }3 m" `/ n
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 }: ^5 K. d  Z* r! ?
    & w; f9 V0 {$ K+ f4 k4 q
    2. **递归条件(Recursive Case)**
    : Q9 ^' P. G4 V( U5 ?   - 将原问题分解为更小的子问题5 x6 w* b- M, M9 j) y9 ^4 d8 F
       - 例如:n! = n × (n-1)!
    % n: _0 E, Y5 U) K/ I8 A& a# _: a, O- u3 e! Z" n/ t6 U  K  F( o
    经典示例:计算阶乘
    1 v0 b7 T5 C$ F- Qpython% S  X1 Z7 N& i5 `) d& T; a
    def factorial(n):1 Q2 A( f  ^& v  M
        if n == 0:        # 基线条件7 W, w4 ~! X2 ]8 t) g5 N
            return 13 u$ a& F9 `; ^& d+ Y9 w9 C
        else:             # 递归条件
    2 k0 Y+ y+ \, S' I5 q7 k        return n * factorial(n-1)
    5 X3 c8 q% l! `执行过程(以计算 3! 为例):4 w# X4 g& }; B1 J  Y4 i% Q: T/ K
    factorial(3)
    8 l& j& I; L/ O6 \* p# z3 * factorial(2)
    $ [1 E4 b& M2 M* W5 l3 * (2 * factorial(1))
    ; v, U- ^( E6 P5 K3 * (2 * (1 * factorial(0)))
    ( U; j* j+ Z2 I% o+ Z6 h3 * (2 * (1 * 1)) = 6
    " h: R% |2 {7 o
    7 s- n  R% e% S9 b/ v) W2 q- a 递归思维要点
    2 X$ T, c0 X" x) m6 |7 n1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ( R! S* e- z$ M( _) C2. **栈结构**:每次调用都会创建新的栈帧(内存空间)% u! v/ Z) Z! f( y" L; a
    3. **递推过程**:不断向下分解问题(递); G7 @* D6 s0 V/ i1 i# l
    4. **回溯过程**:组合子问题结果返回(归)* ]; O8 j+ t% w# u- s8 I
    , Z; f- j; P, w3 I
    注意事项* D" O9 K) ^: C/ W  C- }; I0 e
    必须要有终止条件8 `; g) P0 N+ P* y( _0 F8 S! o
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层), r) U  v' u, F0 j5 U
    某些问题用递归更直观(如树遍历),但效率可能不如迭代5 f1 e9 A( Z! O1 u1 z- f$ J
    尾递归优化可以提升效率(但Python不支持)
    & K8 a5 u* |' H* M/ r+ L, G' M6 C; ^7 D4 r, K
    递归 vs 迭代
    . B6 d3 `4 L. N0 K, ^8 p4 {|          | 递归                          | 迭代               |
    - f; E8 F0 ?3 E1 k1 T, Z|----------|-----------------------------|------------------|5 K: w8 w4 D: x+ g% l9 P
    | 实现方式    | 函数自调用                        | 循环结构            |+ n! p% K2 N# w, O( V
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    $ ?, }/ Q: K: [4 Y| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ( Q3 z5 b% w, n4 |# n| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |0 \5 `$ [$ X: y, e3 a- I! C1 l6 w1 \6 Y

    ; }; z$ |# I3 S4 B# X7 S 经典递归应用场景
    5 x5 g8 J/ k5 B3 v- l! Y/ K/ z1. 文件系统遍历(目录树结构)
    ) b9 M6 g* B. F7 J* ]2. 快速排序/归并排序算法! N1 i! b9 |$ e
    3. 汉诺塔问题
    7 n6 N% o4 N. q: T6 j6 H3 ]) |- S4. 二叉树遍历(前序/中序/后序)
    1 ^, h1 p3 R( i  _: j2 M2 @3 L, m5. 生成所有可能的组合(回溯算法)( I7 x5 C+ ?& R6 D2 Z9 l
    - o% o7 U6 F! H: w6 o
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    1 小时前
  • 签到天数: 3172 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 m4 V- J- X, }" _我推理机的核心算法应该是二叉树遍历的变种。8 i  r/ h( T& v" v" Z$ \0 O* F6 f
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:5 Y- e8 J' [/ e2 U
    Key Idea of Recursion( ]2 O2 c6 s7 f8 q! y
    ) ^: N* o, N2 |0 Z! w8 K" b
    A recursive function solves a problem by:  c$ W0 n( j, I3 F' B

    # Q8 p  Q/ ?9 z2 L3 Y# r    Breaking the problem into smaller instances of the same problem.
    $ }. x4 O' y/ `8 b7 G7 c# k* L/ i" T( m) x
        Solving the smallest instance directly (base case).
    $ ]  [3 j: @5 j  A
    $ O4 N* q* v7 t+ d, b- h0 R9 v8 X: j4 x    Combining the results of smaller instances to solve the larger problem.' P& `6 R; K" W  A. l

    + ~# w' i8 ?( y% O) Q6 jComponents of a Recursive Function
    5 h7 @- v2 _4 j
      n- I. n# ^6 m: X4 M4 |) H  m    Base Case:5 y  _3 o/ V8 f
    0 y, V+ \9 h2 s7 i0 x0 g# ?8 a: n$ X
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. B5 }3 [0 ?: ^+ a

    7 X; u- k0 m' v" Q  y, R        It acts as the stopping condition to prevent infinite recursion.7 W! k0 r: `/ x6 F

    - L- U( u* o8 Y& K; J, l        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ! E, n- R4 a( d+ Z# y6 b' W( U& q7 F* s% m
        Recursive Case:
    0 Q+ |! ^  o5 @. Y8 s7 N5 q) i( B/ [2 m% h$ H: \0 {* e
            This is where the function calls itself with a smaller or simpler version of the problem.! t: A7 p) U9 y- J
    5 R. b' Q% O1 P: B
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% y% W  \! r9 n' x. y/ W

    / p' L! Z* n4 o1 T  WExample: Factorial Calculation
    + s+ U, R, \2 X) l4 x: }4 k  ]& S5 o/ H
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:. s& V1 e3 ^& @
    ( w% Z/ [2 p# D4 d
        Base case: 0! = 1/ e/ y; ]9 d5 D2 ?  Q3 b% k* O
    : d0 ]8 r6 B, f$ A- |$ S
        Recursive case: n! = n * (n-1)!3 H6 B3 P; X, Q! |  y3 \
    " D! s7 |: R3 F
    Here’s how it looks in code (Python):+ b! W" [. @9 U1 Y: J
    python
    & \4 z. i" C" M( l: v6 d+ C, Z( t+ c
      L# y9 O( L' ]1 a2 n! b
    def factorial(n):
    5 y  |$ G% O- `( Z7 R; \    # Base case- {6 u. E' ]7 I) D& p$ x; x# u/ B* \
        if n == 0:
    ! ]' L8 k1 {# Y+ f0 Y4 }# o2 L        return 17 c( \. d3 s% x* g
        # Recursive case
    8 Z( s* o, L/ Z6 E5 h& }    else:
    4 [3 h9 E& G; D1 K7 I) k        return n * factorial(n - 1)
    " S2 m/ z0 g2 r1 C2 `4 n
    ' w/ R8 E; u- B/ i2 i3 W# Example usage2 R  `; \! e3 {" {, T
    print(factorial(5))  # Output: 120
    - ]% t) v8 U, z$ E' g" |3 @: G
    ! `( S+ e  W+ I9 lHow Recursion Works) K5 d( a) W( z( V
    * x0 w% n  r) ?4 C+ D: O6 ~4 Q$ H
        The function keeps calling itself with smaller inputs until it reaches the base case.
    9 V9 \8 d) ~0 V+ \& S# k2 j% Z6 e. P% _8 f$ k1 b
        Once the base case is reached, the function starts returning values back up the call stack./ j/ u  o+ F# j* c; v

    $ a, P' B% h- q5 S. K& D# {& V& I    These returned values are combined to produce the final result.
    ' L4 k8 j9 }9 |4 n0 E5 W: N# B* {  Y$ x' }
    For factorial(5):9 P% n# e3 c: e. P) `
    3 F9 M7 {: y4 \2 O$ K( q/ r
    . V& R# y; O# X" V, X0 _  ]4 U
    factorial(5) = 5 * factorial(4)8 F" f, m' m8 U1 ^
    factorial(4) = 4 * factorial(3)7 g! J7 H- b- O3 p4 O
    factorial(3) = 3 * factorial(2)9 ~/ I5 U) D) q
    factorial(2) = 2 * factorial(1)  u5 ]. M0 u* T: e# q
    factorial(1) = 1 * factorial(0)4 N4 D' h* M& v) B) ]$ i$ x/ j0 K* @
    factorial(0) = 1  # Base case
    + e8 e7 X4 `4 l9 H$ u8 j; i2 B) u/ w; z* r8 z1 B& j1 O- O$ R
    Then, the results are combined:
    6 H" A! ^( w+ O" ]2 F
    * ?2 X8 \, [+ E0 `8 t$ k5 [+ L& r0 Q# d' Q; n$ V: n
    factorial(1) = 1 * 1 = 1
    7 ^7 o& ]3 h0 x- d' r+ T# f/ hfactorial(2) = 2 * 1 = 2+ C1 s1 q0 r  @
    factorial(3) = 3 * 2 = 6
    ( v7 _6 T6 E9 Y5 x+ F* |7 efactorial(4) = 4 * 6 = 243 \- d" E" g0 a: p5 T
    factorial(5) = 5 * 24 = 120  }. D3 O" w* k% \- u, x+ t+ ^, E2 ^
    6 P  t6 F" U# P8 [7 ~
    Advantages of Recursion
    8 l. Q6 q2 o7 ?3 y- A9 p8 b" V7 R% _9 h% F; o3 D  W& z
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ( i( j. g' R/ [" M
    . c/ @5 X. g& O% c" o2 ~- z5 ^    Readability: Recursive code can be more readable and concise compared to iterative solutions.+ \+ e7 s! @; @# j
    ; U, }2 ]6 u: y9 m+ V
    Disadvantages of Recursion
    $ T3 Q2 k3 R3 r( s4 z
    9 z9 b  m, Y" B6 k/ d: I    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    - d2 S" n& `+ Z! k  D
    ! ~: R1 A& k! }) E4 M1 H    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).) x1 z% B- T. k- o4 a  L6 o
    8 C7 s+ O. P1 S' }0 [0 f7 k
    When to Use Recursion' T7 k: M. M$ Z5 ]2 l
    3 L7 z2 B, I  c+ N5 b
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    5 o1 C& o; C; q1 \  S
    # g6 I3 ?6 n9 Z/ ~. d' h& f. ^* M    Problems with a clear base case and recursive case.8 {- b* M) J4 E
    7 K8 l( I3 T! \4 Q4 R  {
    Example: Fibonacci Sequence! l1 x% v0 s* S

    9 T6 M# o' I+ XThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" v8 G! R/ f# B& b: F2 N" S& S6 E9 P8 v

    0 p* t0 F8 n& N  e# J    Base case: fib(0) = 0, fib(1) = 17 G) @# U6 ]" s( h% M
    , S0 S1 a, C/ @8 w( v3 p2 d
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 E0 l! ^+ h( ^  A: E/ T7 U/ X; L# v- S+ L' u: S$ P' Z+ u, `6 u
    python- J/ C5 w" w- o! x2 r$ o2 X

    , K/ x# d  l3 l
    ' |1 q& |/ T7 G: Odef fibonacci(n):- X+ `3 }) d$ W: R
        # Base cases
    * N% f& v4 |, T4 n& R$ w8 W    if n == 0:
    " C3 \5 @1 B4 x" {1 L* l( R        return 03 I) G1 |4 D9 p2 Z8 K/ R0 z
        elif n == 1:& ^# z3 M; H  V; X4 _) `
            return 13 H% ~5 ^" f1 ^' t
        # Recursive case
    1 T# p5 Q3 X; s, R2 d7 l    else:
    * ]2 t' Y, E. y% H8 B        return fibonacci(n - 1) + fibonacci(n - 2)
    + M0 y1 }4 n# s  ]  e: `: B. {8 q
    # Example usage$ ^) L3 D7 w: E: _8 ~" y( ^
    print(fibonacci(6))  # Output: 8) q- V* S' {% b! C& q1 v' t& h/ D

    7 n: w4 ?8 G) h5 q. ?Tail Recursion* Z) d8 d/ L, Q: }" m! c
    - F' w' h8 z2 Z7 i1 ?: k
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).' K. q; R! G7 M6 S# ~

      H+ k8 u% E& f1 ?6 kIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-13 09:20 , Processed in 0.059292 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表