设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1989|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    3 _3 ]- a2 C- C9 p8 }" ^+ b, z. a# r4 o& A/ ?
    解释的不错1 C2 m' ]7 |# c% X' _6 C" e

    # V" v6 k: y! U5 B' T9 h递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。1 Y+ e5 ^% ?% N+ Z2 t& ^

    : n& \7 P+ S: [, Q 关键要素
    9 U( n' Q1 Y  i$ c9 @! W8 B$ c1. **基线条件(Base Case)**  X, F8 ?3 A# i* \5 i
       - 递归终止的条件,防止无限循环9 ?% b3 B- H. [
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1" p1 K. m5 Y8 I7 m  N6 r, G# a& h( r

    1 ]. a% K% L9 O0 A5 s2 _$ ~2. **递归条件(Recursive Case)**' p) r+ g8 I% n+ k8 e; D
       - 将原问题分解为更小的子问题
    & C/ P1 }/ @+ @: M) D  [0 Y   - 例如:n! = n × (n-1)!: Y1 B4 o. U$ Q( V6 w2 j2 f7 w

    , A: l: o8 `# ~: W 经典示例:计算阶乘! l6 f( _) q/ p; J" z0 {. f
    python
    4 ]5 I# J. C& ldef factorial(n):, ^- w/ r6 D% C) K  r$ [* K
        if n == 0:        # 基线条件
    " Z+ Q) F% E" l% r4 [3 F4 z& h# x        return 1# m! D6 I$ v  x& D+ d, s
        else:             # 递归条件: F' t+ T2 w- @+ k/ c" k& W
            return n * factorial(n-1)
    3 M" C5 W: {5 l# C执行过程(以计算 3! 为例):
    1 V, Q5 b- Q- R" ffactorial(3)
    & B' J+ Z- b9 c  B1 n: v3 * factorial(2)2 C& V( t0 M$ ]4 |+ ^9 M, B
    3 * (2 * factorial(1))
    " U3 b8 b7 x& c. @. b% D3 * (2 * (1 * factorial(0)))
    8 ^0 z" T1 b! J8 _- |3 * (2 * (1 * 1)) = 6! [" K& k/ I! \! }. g% H  A

    % L! r" }$ a. k* f9 @" z 递归思维要点/ S- N7 b8 k$ y  k, ^6 a) C
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑' U. m3 k) T- A3 M$ U" R( n
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    2 K# q% X) W) B3. **递推过程**:不断向下分解问题(递)
    6 F$ a$ k  r- |- K! b4. **回溯过程**:组合子问题结果返回(归)6 a0 y+ _' P# @% S, h
    $ K5 f3 R$ Z; r
    注意事项
    6 s2 ?5 N) c1 K+ ^2 z, G# ~7 q必须要有终止条件
    # Y  h+ Y1 d3 P! t. r3 F7 |6 u- Z. ?递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    / G* r' d8 \6 \* n6 Z某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . ?3 v! G6 f1 w1 b9 i尾递归优化可以提升效率(但Python不支持)8 N1 N* Z7 N- t1 l
    $ T- O2 Z+ _* i
    递归 vs 迭代
    $ l% _% ^  @  ~) l7 p* _|          | 递归                          | 迭代               |
    # f0 ~6 Q& S! G1 n8 A1 I|----------|-----------------------------|------------------|- x0 p! j& A! V# d/ n
    | 实现方式    | 函数自调用                        | 循环结构            |7 u* I6 z% R+ r3 R" E$ W! r; j
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    4 u( d) m( n& [4 V$ d$ Y2 k| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" N* ]+ F% D4 {
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    4 B" x' w/ k' R- J9 @
    3 X1 s9 x1 \; ]" k: U+ x8 ~5 s3 F 经典递归应用场景/ v# J) K5 w7 r! I+ p$ X9 u! D+ X& }
    1. 文件系统遍历(目录树结构)
    4 W1 U, Y% p: @- n2. 快速排序/归并排序算法
    ; P# j4 T* f: p# V# ]3. 汉诺塔问题9 X3 p% N  g9 ]* `& J" Q% }/ o  W
    4. 二叉树遍历(前序/中序/后序)+ X1 m& n  c! g9 c: r) N
    5. 生成所有可能的组合(回溯算法): [/ N0 i0 k7 D1 K- t: L! s0 h2 p
    / t4 x/ W1 j' W: ?2 O  ]& c4 D
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    5 小时前
  • 签到天数: 3160 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    6 H, S5 p% t$ \+ b" p* K& F我推理机的核心算法应该是二叉树遍历的变种。
    : o6 F8 x2 [! d9 W/ s, f4 |另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:4 u: C5 p6 t8 H* t
    Key Idea of Recursion) c6 y8 G0 u5 r# U. b  t
    / x3 m4 [) A+ x
    A recursive function solves a problem by:7 @4 h( E0 t% B/ y
    ; k5 K2 ~$ h" W) a( r# y/ Z* [" ]& B1 e
        Breaking the problem into smaller instances of the same problem.
    0 `6 F& M0 \" f+ e2 a; d5 D. d1 [5 d6 F8 s; N
        Solving the smallest instance directly (base case).
    $ q  Z5 C0 i( s$ ?5 [
    , h6 B, ^5 L4 L0 `! u2 w$ w    Combining the results of smaller instances to solve the larger problem.$ S6 v& f* n! t6 I, V  V' h
    " g; }" q7 @; s$ [# A
    Components of a Recursive Function
    ; `6 F3 p! q' c+ C- {; q) n5 r1 l: E' b
        Base Case:
    # C- o: @) R1 L( D% A5 \0 z; Z" L% X% K% j1 p# @5 p+ N
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  r! q; c& V8 C  f9 d" J9 @
    % j7 }* m, s& P$ o3 h3 w( u
            It acts as the stopping condition to prevent infinite recursion.' s! Q! @* _  Y% u2 r
    $ B5 W, s3 f- o- n- a* o
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.% {2 b& \( Y4 O' W5 h2 \

    " o  z. f* |, o3 p4 Y: f    Recursive Case:: Z5 v; `. h( G2 C2 t- l6 m# q

    # L% G1 S# u5 B; E5 m        This is where the function calls itself with a smaller or simpler version of the problem.1 ~# M  u# p4 w4 W# b' U* J
    7 O) {0 C, W4 m
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    + x- X! B& E5 J- {* G; ~; j# o0 S. B9 k5 _
    Example: Factorial Calculation
      S7 u+ S, @' V" w/ E. i& v) `; x& Y' \- x
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" f! S/ s, _% y, B
    1 i/ D6 T1 e% ]0 ~
        Base case: 0! = 1
    9 P+ }' b" J, Y. Z: v) t& A* E! x; w% _+ ?2 m, V7 Z9 @. Z1 |9 T
        Recursive case: n! = n * (n-1)!! d, ]1 b" q( m5 }1 E$ x/ \
    0 ^8 B% ?3 ]6 l3 }& Y
    Here’s how it looks in code (Python):& s& e# o, B8 O# K* D6 ]! ~1 C
    python, G9 ^7 s/ K. I/ P+ J) U$ E, L9 q
    ; k$ U+ R6 p$ N% }, ~

    ( p  ]4 `/ X7 O9 O5 w5 R7 ^def factorial(n):
    ! L4 K) B5 `4 |    # Base case* u/ \6 a, U0 q- T
        if n == 0:
    - C" H9 A, l! m) I6 q0 X0 e        return 1+ U0 l% F2 C1 ]8 R5 B
        # Recursive case
    $ a2 S$ f5 I. H    else:) i  I0 }' ^( e1 G0 W! H5 [) b
            return n * factorial(n - 1)
    * e! k4 m5 i# [2 e* i& \4 o
    ) s: z& U( [8 c- A# Example usage
    : H5 F* b+ ?5 _- Z1 w. P& Cprint(factorial(5))  # Output: 120
      e2 N! p, c2 ?/ I7 }4 ]" n1 a9 C/ Y' m
    How Recursion Works, T$ `: p4 w: Q. p9 ~+ f
    * u' z0 A1 w0 `) C/ W* s
        The function keeps calling itself with smaller inputs until it reaches the base case.# _& ]& E! E/ @. S8 o# Z/ Q# b
    * N" L: i) U3 m& [8 _( n, J' |
        Once the base case is reached, the function starts returning values back up the call stack.+ b; f, w# a# N' G
    : e. T  B3 F4 p  h/ \
        These returned values are combined to produce the final result./ F0 n, X* e( `; a

    9 Y( @' j5 g, d( R4 J/ y4 ~For factorial(5):
    + r& s7 ^& h/ }( V6 }. @
    6 }# u* \5 s2 }8 ?$ Z' I8 T- ]
    1 x5 K. H, g$ s' Wfactorial(5) = 5 * factorial(4)
    3 ~- A- E3 y2 b+ w! u& Qfactorial(4) = 4 * factorial(3)# M+ W  [& k# `% b% j+ U7 \* J
    factorial(3) = 3 * factorial(2)
    6 s) O, y1 z9 a. h, _factorial(2) = 2 * factorial(1)
    " D$ V- o7 \9 T' p' \factorial(1) = 1 * factorial(0)
    $ o: R  Z1 u- Ofactorial(0) = 1  # Base case
    3 E  B1 @: k! L8 T" G9 a! W* q5 L& Z' e
    % p- A8 R& p7 SThen, the results are combined:
    5 v3 y0 u+ @/ k! @
    ( ?6 {, X8 r% I' e. n8 P, g8 J7 m0 M6 f; V( i. H. F
    factorial(1) = 1 * 1 = 1. {% i3 ~% ~+ J6 g4 o8 g/ _
    factorial(2) = 2 * 1 = 24 P1 a; g/ l. T* y
    factorial(3) = 3 * 2 = 6, U6 t( q2 Z/ \) D8 l8 w; t
    factorial(4) = 4 * 6 = 24
    4 a) @/ n5 l3 v' k& ^factorial(5) = 5 * 24 = 120" f6 X4 [1 [5 X$ t! t3 s; j) _

    ' [8 K* O: D; `; Q. J4 OAdvantages of Recursion
    ! M* t3 b/ A4 T6 p* q1 G+ G  C* b: x) ~' k1 B4 E; \
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).& Y+ L3 M3 ?7 g2 z; J
    , y# H9 q5 `, d; _( S  {; f7 ^  `
        Readability: Recursive code can be more readable and concise compared to iterative solutions.0 M: n2 l( r5 q& I) [$ R  A
    1 P: w4 u2 W1 {) w1 S) L3 _% i
    Disadvantages of Recursion
    7 H) E- t! x7 O
    0 |0 F7 W: [. n4 I    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.8 F& |; t- S: b2 g1 {$ X8 m
    $ j  u2 `2 {0 i; q$ D
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 k. f& }; S+ B  x( Z
    . I9 e8 s' G. vWhen to Use Recursion/ j0 Q  ?4 n: g" ^% ?

    0 `( d0 Z( l' p" P; X! N% s    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).( S$ d6 h* E2 o
      l$ [; b+ C9 C4 z
        Problems with a clear base case and recursive case.
    ' X. P0 x* t) ^/ z% W; y- I1 t0 N- F2 {2 d
    Example: Fibonacci Sequence3 d; c. Z+ K+ Q6 S3 U: t) w3 z5 ]6 [

    / l/ w& ~* x8 f1 o! o& c% P  [The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:1 Y1 R2 p% D. Y
    ! k+ m. k9 x; W4 I! [3 ?# W/ J0 Q
        Base case: fib(0) = 0, fib(1) = 1
    $ e7 I  ?$ H4 t! W3 k% s+ A3 B* h" S% T- A7 T- f
        Recursive case: fib(n) = fib(n-1) + fib(n-2)3 {5 Q5 N  h, Q2 O, w; q

    1 r' b" @# I# T. y7 z( q0 apython
    2 I- N* ?: @6 o  W8 ?1 u5 o6 S9 F* f4 O/ m* B: y/ ?6 B
    - t5 m( H( o+ M) S% N: e- ^5 ^3 S  \2 H
    def fibonacci(n):, {6 ~$ R( w0 Q$ o& G
        # Base cases; H) Y8 A0 A! t9 E( ^& U* q
        if n == 0:/ P. O2 C5 S. n5 G$ M- G
            return 0
    5 t" U2 L( Q; V" V- U    elif n == 1:
    8 n$ d: Q5 f) }1 u        return 1
    ; j) f6 W7 C' c9 M    # Recursive case
    7 O( f! E" {! y* k+ z6 V- v    else:
    ) k3 Q! V, K" D0 y) S: y        return fibonacci(n - 1) + fibonacci(n - 2)2 P( A0 r0 _9 c
    # Z% d% J* F. {% t
    # Example usage* N5 @) s# Q! q2 A5 k
    print(fibonacci(6))  # Output: 8
    6 x; i" j$ w/ [: O5 V" Z$ V4 X% g+ h# ^+ Q; e. _
    Tail Recursion1 e. U5 l# n7 }: f6 k; u
    # N! [, |5 J6 ]- v+ V
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    & r. k0 A3 x6 i, t( R6 }3 k# n6 w, H8 B4 J5 M+ Z
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-1 13:36 , Processed in 0.057402 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表