设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2021|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 1 E) w: `6 y$ e" c( W

    / J* A. [* U! d5 _' b+ J8 n解释的不错
    ' K4 _- d( M* _5 P# }- ]
    & l& G( K) b2 U, x1 W7 c* H9 C递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    % c, q  g6 V& L* r7 e& m/ z2 W: E
    关键要素
    ) z( U+ k; D% t9 \5 X1. **基线条件(Base Case)**4 z+ h0 Y8 _; G: A* X0 A
       - 递归终止的条件,防止无限循环2 r$ l4 a. p( N
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; l" @+ ~. i3 g$ p* g* L) Y/ B/ O" V8 R" c
    2. **递归条件(Recursive Case)**! l# m% `. p: V
       - 将原问题分解为更小的子问题
    7 `1 w) ]: Y2 r* T4 B' t  D   - 例如:n! = n × (n-1)!9 ~# [% m) j- @
    + W! e/ D/ H, m+ F. r
    经典示例:计算阶乘7 z' |+ {+ y# K  L3 V) H
    python5 d$ u" T+ ^! U$ ?& Z- c; I% d
    def factorial(n):' J+ m7 Q5 i! M* J; i. C& Z8 Z- |7 h) ?
        if n == 0:        # 基线条件! Z4 A( [4 W) o! `$ g. |4 K+ @
            return 1
    + j( a) `) ~  q- w5 A  X    else:             # 递归条件
    # |9 r7 @% Z$ Q5 k* d# C; A( m" `        return n * factorial(n-1)
    0 m6 p* D& ?: n' t( ~) X+ m执行过程(以计算 3! 为例):  ~3 K% p7 C' B. H
    factorial(3)
    $ c8 E0 M9 F0 O7 D$ R3 * factorial(2)! q. K9 M+ i/ f' K$ e' K
    3 * (2 * factorial(1))" {( T  L: U' t* v9 t' X
    3 * (2 * (1 * factorial(0)))
    ( O/ B8 X3 v# d- N' N3 * (2 * (1 * 1)) = 6
    . p$ A/ N+ I! _3 s' u
    0 O9 ?5 U  E# ^1 g 递归思维要点
    $ s1 r: _9 H3 Y6 Z3 F1. **信任递归**:假设子问题已经解决,专注当前层逻辑* g3 `% {" D1 e3 D+ V; K
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 n% [& d6 X2 v7 }6 @* ?" a. P
    3. **递推过程**:不断向下分解问题(递)
    7 N1 ]; N" I; x& e4. **回溯过程**:组合子问题结果返回(归)
    * S# @' f) c- _+ R3 R$ s; S/ C. X7 s# r* r5 L
    注意事项
    4 P, a: a  T* h必须要有终止条件# s! w" s5 T+ ~# m% Z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层): z% J2 z5 ?  o1 {' \# y9 M; s$ X
    某些问题用递归更直观(如树遍历),但效率可能不如迭代' r, L4 B# M. G% W
    尾递归优化可以提升效率(但Python不支持)5 D3 h/ w% S. q( e
    3 T% Q+ F& }; F/ `! \4 t
    递归 vs 迭代+ C4 R; d3 g1 V, m% |5 `
    |          | 递归                          | 迭代               |
    3 h2 ?/ T, |( G- y0 `- }* ]0 z3 N  L|----------|-----------------------------|------------------|
    + S' S& J9 o) o/ H2 Z1 u| 实现方式    | 函数自调用                        | 循环结构            |) H3 w8 @! F% \4 R+ z4 }/ M9 ]) @1 ~9 F
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    : l  k6 J: |7 m+ L& e, i+ g| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    7 _$ K' B2 A8 K$ V- x0 _2 k8 S' Z| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |8 I" U. j$ H1 L% i

    3 [/ t# V2 V* B, r( A2 u: \; a 经典递归应用场景
    ) {% M$ N" F; M; M* x1. 文件系统遍历(目录树结构)
    3 W6 C4 I; Z$ s# F4 d  B* h2. 快速排序/归并排序算法1 z& @; N5 \; b
    3. 汉诺塔问题9 b0 W) G& P+ g' {8 r; i  r$ t
    4. 二叉树遍历(前序/中序/后序)8 T8 Z6 d  E# _
    5. 生成所有可能的组合(回溯算法)
    ! Z- W5 m% {" a- a6 l
    : I+ G# F9 h& x0 M& [试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    10 小时前
  • 签到天数: 3165 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    + [0 O" {$ g  b! B我推理机的核心算法应该是二叉树遍历的变种。# r2 L' `' g( M4 R8 V
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:# Y5 O4 X4 W% s0 }) x( D# V  e9 ]
    Key Idea of Recursion) Q0 ]/ [" i$ p- e. h6 _2 h+ C. `3 m( h
    8 k0 W0 \. X6 B7 D& Q6 B0 h
    A recursive function solves a problem by:6 T" v  N5 c" O9 X$ C2 Z
    & I6 N7 ]* n+ S- {: {; n
        Breaking the problem into smaller instances of the same problem.
    ' T# h4 x; f; e" ?- e# z0 V
    - t. G4 k$ R9 ]% K2 @    Solving the smallest instance directly (base case).4 s5 \- `2 |8 x
    9 {( F4 W. i$ d% {( J
        Combining the results of smaller instances to solve the larger problem.
    0 c! u9 x  G1 u0 U+ P: O' B2 H. Z7 o+ {8 i- O) a( W3 D
    Components of a Recursive Function( f2 J* V" S' u5 p- S

    7 e0 l+ t+ ]& s/ O6 f. [    Base Case:
    5 c3 [1 ]: F9 [( z" D! [
    3 w: {/ G& M" Z5 {        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.* Q5 P. l4 i; V, C4 `9 U% @
      U* \! {& F5 N3 T2 T- e
            It acts as the stopping condition to prevent infinite recursion.
    8 `  V' D# I% X3 H9 l
    3 {4 v# m& L& W7 f4 j$ f        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    5 f7 X4 ~, ]3 M( l, m8 |$ \$ C& P9 E5 W5 O0 Z6 |' b& }3 z0 G9 o
        Recursive Case:
    . Y7 F7 X7 ^" v2 z$ _, a0 ~; b& ^7 h* r6 ]9 I* m- L- }. L3 F; \
            This is where the function calls itself with a smaller or simpler version of the problem.
    / G( I% g) W0 e3 O1 i, H9 s$ k9 d/ N' ]* r: l8 {$ O
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ) I, S) J3 u" x3 [6 I- c0 \5 [. C! _5 m
    Example: Factorial Calculation6 D3 v/ r! |9 P% |
    : A  l) F8 @! |& E
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 W# N# o  `& _
    , H+ r, L  {3 n( \    Base case: 0! = 1. u- G5 I, s7 c, b1 p

    3 j2 v2 I. ]" T- s. F1 ]: N    Recursive case: n! = n * (n-1)!, q" ~* e/ D6 s. D5 C* o- C

    $ r! e7 @4 K2 V. @( M1 {Here’s how it looks in code (Python):
    0 w* E8 e2 @! i7 H# ^/ [python0 i+ i. r; n  @- K* _+ ?) [

    8 g# U5 C# f  e4 Y, |
    4 {2 @- Y* ^) v" |( J& \# fdef factorial(n):1 u% V5 F& T  R5 c$ U0 U
        # Base case
    9 O9 h" w4 _( e    if n == 0:
    1 u6 c8 W2 A! R7 _        return 1
    # p: W- A6 |" |3 P    # Recursive case
    " e* a2 j+ i4 U* o    else:
    2 h/ s- K+ M: g  G: b4 J% x6 ^        return n * factorial(n - 1)
    9 _0 ]! A7 W+ m% i2 V5 t2 Q) k' G' J' |
    # Example usage( E1 ~7 r! n2 D4 h) ^+ q
    print(factorial(5))  # Output: 120
    + {  S/ N. ~( `0 j% ]9 T4 {/ U6 S: Y1 A& g0 |
    How Recursion Works4 |1 {+ R, m1 L1 s5 \3 W5 D

    1 H, ]! ~* z3 N3 K/ h    The function keeps calling itself with smaller inputs until it reaches the base case.
    1 j7 T0 k7 {/ E% w' P( x5 Q
    ' o$ E7 |3 s9 I$ R7 i+ v0 i. O( j    Once the base case is reached, the function starts returning values back up the call stack.' [* z  _1 F' y& Y2 \& W1 H

    - o# T5 I5 V  _" Y    These returned values are combined to produce the final result.
    3 a. H) \/ T2 H& Y9 t
    2 j( n3 k" a1 q4 n- G+ v: Y/ Q8 E9 ^For factorial(5):
    $ e8 b0 \# e9 i6 Q, f, ]: S6 q* k3 Z
    : a7 O" N0 U5 d3 @8 d
    factorial(5) = 5 * factorial(4)
    ' y8 g$ ?; |: a& Efactorial(4) = 4 * factorial(3)/ j" h  m) E6 g' C( ]8 {8 q. g7 w
    factorial(3) = 3 * factorial(2)& r+ R- M" f  g# I# w! X. M& R
    factorial(2) = 2 * factorial(1)
    % g0 R% x+ y% R, e. g( B7 hfactorial(1) = 1 * factorial(0)7 O2 c+ g7 I! s: p) f
    factorial(0) = 1  # Base case
    $ k& C) C) @* [& F5 T
    8 p5 l3 Z& P" p$ a7 rThen, the results are combined:
    # e# e  z" o) U- h% C; D: R2 M, S3 g/ b2 x
    2 z& r! D5 X+ ?) o! l4 v
    factorial(1) = 1 * 1 = 1) S0 }, _1 [( L2 _% v. B# k
    factorial(2) = 2 * 1 = 2$ e8 ]8 F1 G% K
    factorial(3) = 3 * 2 = 60 h9 }* p( B" U7 {: i+ r/ G0 L
    factorial(4) = 4 * 6 = 24
    0 T# C8 t; L& H& bfactorial(5) = 5 * 24 = 120
    $ K$ g) K$ d+ m  T$ z7 a( p7 j( t; C3 ~1 _5 [$ g* ~( {
    Advantages of Recursion9 @3 i- F4 s. v. B& i" T

    ( N: ]: v7 B" Z5 t3 K0 K2 F1 x/ F' q    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    $ k2 S5 @  H3 u3 M  _1 F9 a# U6 `, k& k9 O9 N6 ?
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 }' C/ }: h2 u( R& E8 Q
    6 z+ \  f9 w5 ~3 U& C5 [/ pDisadvantages of Recursion, ]$ |4 Q2 {4 x. {3 J0 `, ]( P% |
    ! S% N% s* l3 Q$ b( j
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    6 n* X' O6 i% O/ w8 Z2 c6 z% d  l4 q6 Z. N9 k. c. M
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).& v; |' f- ?: X# @- \' Z/ ^, t
      Y5 G  B* W- ~, n
    When to Use Recursion
    * ^& @: F" h+ X$ y! e( e2 b6 ], _+ b+ Y  B4 X; n7 S9 p
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).- K5 a2 a9 O! H
    1 @4 h) c! M" B, @% m
        Problems with a clear base case and recursive case./ l5 y: X5 C, [5 n# e8 X
    0 s+ V6 ?& x( E3 r: f3 y' G
    Example: Fibonacci Sequence
    ' {7 X- t: L+ o8 n  d0 H1 }! g$ D( r1 z8 q$ v) l
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:  B) W: U! T  F* N! B4 h- L

    " z7 A3 e6 L4 \4 t1 n3 J5 \9 T    Base case: fib(0) = 0, fib(1) = 1
    ) [/ P# s) ?1 ^& T
    - S" D/ O6 I# `! o  j$ P    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ; q- e8 h! I- \+ P% ], Y" b9 ^: M( |7 c# _  G3 Q
    python3 `, }2 b- o% r

    : N0 n/ T7 R4 A" h
    7 ^$ O) v; l$ e3 Vdef fibonacci(n):8 G2 l5 I! J6 G7 c! c
        # Base cases$ E) {9 W  l, u
        if n == 0:
    # T/ |# w* h/ ~/ _: w( A; c  L        return 0
    * ^0 x2 L& X7 z    elif n == 1:2 f, Z: S0 \! z1 F/ C! ]
            return 18 F1 q5 J8 p6 c
        # Recursive case0 q7 y3 T8 L: z% w
        else:
    ( b1 ~/ W  I2 {, W2 K        return fibonacci(n - 1) + fibonacci(n - 2)& C: s6 V& Y1 x! q; ?

    6 ^7 r0 A& x" M+ Q* `5 Q+ K# Example usage
      `5 n7 h* h1 P" M  C- J. C) eprint(fibonacci(6))  # Output: 8$ x4 P) C, U  C) D* O2 ]
    ! t3 g" A$ K5 b  h# [0 `
    Tail Recursion$ {* W. M" Q6 v4 X% A, s: r
    8 Y! @( c5 r3 m' L/ Z; R' U8 a
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    % V% e3 ^; k1 e+ [/ Q( i8 K# }+ s7 [% i7 |: i
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-6 16:22 , Processed in 0.059527 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表