设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1833|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ; u7 h6 O: Q7 }# p6 Q( i4 u& |5 @( j7 ^- p( y, O$ s
    解释的不错/ }5 [" x% _  C. i
    $ L2 C3 j4 K' p2 G$ W4 k/ @
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 g2 m' ^. W( c" Q. z- @5 T# Z4 ^( L0 C7 Q9 ^% ]
    关键要素
    * C7 c$ t0 p) j2 _1 s- x* d5 n1. **基线条件(Base Case)**
    1 @7 E3 Z$ W9 b7 E% Z  X8 `   - 递归终止的条件,防止无限循环' D( w" y3 F, L  M
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1# a1 V+ A2 A4 T$ x0 t
    1 {/ @2 O& ^% B- Y+ @
    2. **递归条件(Recursive Case)**
    0 y, `" P( z$ f6 p6 Q   - 将原问题分解为更小的子问题) P. f; \3 a8 W2 ^; O
       - 例如:n! = n × (n-1)!( Q& u, v1 ~8 k
    + I+ z2 W- H6 ^
    经典示例:计算阶乘
    $ r4 n" Q' Q+ S5 r" |) Hpython4 O& C0 H% U4 j8 r$ g8 U
    def factorial(n):
    ) I- o$ V$ D' ]' H4 X4 _    if n == 0:        # 基线条件
    & R9 u+ |+ B, d        return 1
    . Q3 m5 C/ z- M7 ^    else:             # 递归条件
    ! _" g. R. R' Y( `& a4 F        return n * factorial(n-1)
    ) Y9 M+ v( S" }' R5 l6 m$ a6 O0 H执行过程(以计算 3! 为例):
    / P4 ~! R8 c3 f6 wfactorial(3)+ x" e( \6 l; \. l
    3 * factorial(2)
      p4 n4 A! F1 @) `3 * (2 * factorial(1))
    ' N6 h; N3 P" e* k' y3 * (2 * (1 * factorial(0)))* N; l6 u. C/ U5 u' G
    3 * (2 * (1 * 1)) = 6
    ' _2 r+ G0 ^7 [6 k* ^
    2 \5 @5 {0 X+ z9 } 递归思维要点6 _* e* d7 |# L
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    % _/ a) A- g5 y: r& o2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : T) E& J0 F: h. f, b5 [8 T3. **递推过程**:不断向下分解问题(递). Z2 _& g9 C4 ^0 R3 F) n
    4. **回溯过程**:组合子问题结果返回(归)
    , k9 @! \2 g3 p3 p9 ]( |4 U; W7 ]1 X# W) g2 f
    注意事项- o( ?: h/ F8 v
    必须要有终止条件
    3 ?0 F& u* E- Q9 R% f递归深度过大可能导致栈溢出(Python默认递归深度约1000层)0 G! y8 ^, }% k( |0 v6 n
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    $ Q7 A+ J! K- A& x$ @8 c5 w" W; @尾递归优化可以提升效率(但Python不支持)
    # T7 I9 I7 D5 ?9 r( s( w
    ! Y; {: `$ W3 {0 t 递归 vs 迭代
    2 x& @$ `1 I; I0 o. Z& r|          | 递归                          | 迭代               |0 s- D% P! k6 Y$ F5 B& m! ]
    |----------|-----------------------------|------------------|4 h( o: x  i6 f  r
    | 实现方式    | 函数自调用                        | 循环结构            |$ ?, }5 b3 x5 \* H) U
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ' g2 O7 u- X- K4 ~| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    * C. u4 q' o9 t( L| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: y- H) C+ K2 e9 d: J! ~

    5 T+ h8 |* I. }2 T( U6 ^: N 经典递归应用场景
    " W  K! c. h) k5 W" A9 p1. 文件系统遍历(目录树结构)
    " h2 G4 r4 U$ r* @# i9 s( c2. 快速排序/归并排序算法  G% W% b: D' e. k9 Y4 M
    3. 汉诺塔问题
    . u- C& J2 v; I% P$ q3 _# [7 h: ?) L+ M4. 二叉树遍历(前序/中序/后序)4 ]; t' l, z2 U2 O; [$ _* f/ J+ g
    5. 生成所有可能的组合(回溯算法)$ Z4 s9 |9 N! A) u9 E# H& I
    . T6 A: J: k; h3 C2 H2 t& z# n7 L3 h
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    16 小时前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! s/ j2 B- I5 V- y; }' ~
    我推理机的核心算法应该是二叉树遍历的变种。) |' z1 F+ {0 e8 b$ T/ u; C
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    + H$ ^3 G' c  P( pKey Idea of Recursion
    + `+ @: o  ]- Q' ]& ]. {0 \# y& \1 z
    A recursive function solves a problem by:
    , J6 y; p" j: P7 q0 o9 e9 ]
      C7 b% r. n; k  E    Breaking the problem into smaller instances of the same problem.
    7 s; C; T6 d& v5 l& g4 o* X) H5 i. R
        Solving the smallest instance directly (base case).
    & G& r+ m: p- t) F5 Y, a* i1 B, j" \# c2 t, L
        Combining the results of smaller instances to solve the larger problem.
    % I) D0 L6 J( {5 P3 K5 C$ q6 {- M/ }' |( c" C
    Components of a Recursive Function
    - o' {  M6 ?5 p% G" K( N' Y% q) c8 \
        Base Case:" g1 v# Y6 a; b/ {, P; F
    4 K6 @- Y" K9 }* _8 z  |! z! _
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    1 p. r) }0 b- G' W; [7 |9 d
    : `/ K$ q5 |. \2 {3 P' R( Z3 U        It acts as the stopping condition to prevent infinite recursion.
    ; q0 f) Y1 D$ n, W- u' ^( p6 K( j5 J  p8 b
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1., P6 s' O: W% X! I  b% _9 g2 n1 E

    4 L2 h7 v, c9 j8 T3 g4 {$ @: Q    Recursive Case:) J( v& }; o, L' }' ~

    , B( B5 o4 D0 o) N) c        This is where the function calls itself with a smaller or simpler version of the problem.. Q5 b$ m$ V3 H6 D
    4 ]( z1 R. ], ?! E3 f& w, c/ _
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).2 b, U6 H( Y# A( a( R4 a

    , p  R6 \% `# Y% Q. g; d/ ?! |Example: Factorial Calculation3 \6 C2 W( Q0 R: w6 V- g0 I& r1 N

    9 E% [5 n& K: I1 P2 p: K1 rThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ; w9 ~( r3 L* e8 p2 P) `8 M7 R3 S% Z
    # T) |: |" J, V, l    Base case: 0! = 11 [+ m- D' s9 t0 f5 [# V6 G- ^
    + @5 L  M" e5 D2 S/ ^
        Recursive case: n! = n * (n-1)!
    $ A4 z; b. B. O6 u7 y) v, A; B  Q2 J' {$ s+ U% f
    Here’s how it looks in code (Python):
    4 r; O  W" v8 l% J2 {4 N/ U; L# p; spython+ z, U9 B$ |* `1 ^( n5 l
    ' B4 g7 \* V$ Y1 h- @) n
    ( I3 z5 a2 Y: i/ N+ \
    def factorial(n):
    4 j! j) _+ O# @    # Base case
    8 o5 f0 n0 b, x  k! E2 o    if n == 0:
    ' Z. d* d6 c2 e9 b8 L7 D/ C+ U        return 1$ _! }! M; H9 D9 i; Z0 e2 g& S
        # Recursive case
    * L. R% `8 {8 U4 \    else:
    + Q3 r( j  W! B& C# p- |% x        return n * factorial(n - 1)
    + H" ?5 ~) b9 T% G, M# b% L& J
    ' G) u* a; h! x2 J7 @$ {) O& o5 ]  U# Example usage
      S. t, f! u2 Nprint(factorial(5))  # Output: 120/ c% E0 b8 A$ |( i7 K( v3 _& Z4 @
    - e. G' c2 S, e
    How Recursion Works
    ' r/ f2 \/ V& d# E$ t
      y$ [, M7 b9 i: S! {8 ~% T    The function keeps calling itself with smaller inputs until it reaches the base case.# {" u0 o2 s8 I6 L1 {

    6 @# A7 N  b! ~' ~. y    Once the base case is reached, the function starts returning values back up the call stack.
    . C8 I* |7 ^7 c. ?0 d2 y
    " S, J; K1 ?% d1 ?8 V% l' p    These returned values are combined to produce the final result.
    " o4 B9 n$ a; K% o( `3 |+ {
    : G/ h0 q* m! r3 ~* cFor factorial(5):, T# F7 y. C+ L. P
    / R" u) G5 V. Q* ?% F# {2 c1 ?  W

      ]5 U6 c3 x* R1 wfactorial(5) = 5 * factorial(4)) m* K- v% L9 n! K, r
    factorial(4) = 4 * factorial(3)
    * r+ k$ {, a$ f0 v0 Nfactorial(3) = 3 * factorial(2)
    - q- z. l' r6 c5 |factorial(2) = 2 * factorial(1)
    ! _% S5 a* i7 U# ~8 Q( I4 w  pfactorial(1) = 1 * factorial(0), I  t7 ?: ~8 `% V; T
    factorial(0) = 1  # Base case
    ; C) Z$ d7 P3 e7 m1 U- }7 O" R$ X5 i# E; u# u2 w: t7 c4 _
    Then, the results are combined:
    % C# c# l( r/ W2 |& x. E1 p2 P
    ' ~4 o# n8 ?6 u8 V6 S
      e2 T. a  z" Kfactorial(1) = 1 * 1 = 1
    8 @2 Q0 d% [) V  W' ~factorial(2) = 2 * 1 = 2
    " J7 e% o" K3 i. w$ mfactorial(3) = 3 * 2 = 6
    ) q/ W- t/ ~1 q2 V3 N! |3 ffactorial(4) = 4 * 6 = 24
    : g# j3 i0 z9 e* Y0 Cfactorial(5) = 5 * 24 = 120
    5 Z) b! t9 t* n. A5 ~# Q- i9 W2 A
      _  y* I& r# \9 D0 O6 UAdvantages of Recursion) }  X' t+ S3 Z+ G( ^# y* N/ O# Z

    8 p; C4 G" H' e/ Z' K5 l+ }    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).& C0 W! j  `' |. b. R

    " w5 h, l* c/ a/ p( m' j5 q    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    2 k! s  r/ }* P% j' O. A. T* y# N8 Q( f) u
    Disadvantages of Recursion1 b( W- m0 M. Z2 a; d
    0 f0 w0 p7 [/ N1 a
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.- C: `6 ^' d0 y2 F

    6 p; g1 S, z) W3 ]    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).2 B- ]0 m1 x! {  z0 Q# x
    " c3 k. T) ~/ T# F/ G
    When to Use Recursion
    3 x" ?4 d4 N2 G3 S7 t1 g9 S" |/ N+ V- F$ y6 q
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    % P- f/ A' L: {3 g/ Z! I' Z1 M5 q
        Problems with a clear base case and recursive case.
    2 j4 a1 [; K- a8 v6 p' \) B
    0 T: D. A* K$ {" }, aExample: Fibonacci Sequence5 r: [& X( j' U- P2 B$ _

    : f" t" H! [0 q* j& h+ VThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) C' N( s/ N6 T, w' i) ~
    $ F! d$ {1 P( ?. n; a5 e8 h3 O    Base case: fib(0) = 0, fib(1) = 1
    , v# y  C% l# w$ w( E
    - n* O& y0 D8 W: ^    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    8 l! t( C1 F$ z' V- P7 x5 @$ S$ ?! V& ^/ W2 y; w
    python( i4 R5 \7 j& t8 l+ |
    0 n/ v# Z7 z7 H+ h" }- D# G7 G

    - W: w! R' W0 Z" ~" Y- ?( a$ |def fibonacci(n):+ _$ D0 ~4 q( f8 B* e& N, y
        # Base cases# E9 W! ^- w" u4 f, i
        if n == 0:
    9 ~6 }  m( y1 d+ h        return 07 K7 |, N1 v' [5 S
        elif n == 1:
    8 I6 R2 ^3 Y, T2 O' l' ~6 S3 N: e5 p# H0 P        return 1
    7 k; Q  {7 K* U# }, j6 K# j( Z1 U1 f    # Recursive case
    1 B. y, p* ?) c; X    else:6 f7 K3 k1 X/ J- {2 \2 W
            return fibonacci(n - 1) + fibonacci(n - 2)
    ( ]6 }' [! N: n) [
    : t8 x5 o; h3 S" E# Example usage
    & {; Q1 ~8 j1 S7 lprint(fibonacci(6))  # Output: 86 e# z& }$ G1 q$ o' }& K' q

    ) Q) q3 p" z0 d3 [( I. O0 Y: eTail Recursion
    1 T) H& m3 X6 P9 t: z
    ) {1 R- F9 z: YTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).2 M( d% p  H  l
    7 [0 I. g' Y) s$ ~3 {+ w9 Y: W
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-14 22:51 , Processed in 0.031918 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表