设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1380|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ( Q0 c: Z; k  u, S/ r
    ! A- o0 f  E2 e: s5 j
    解释的不错, D: p1 Y/ v7 }9 d
    4 C2 v8 F0 Z9 }4 c
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。  t& Y6 i, D5 ?

    0 }4 G1 a$ ^7 d) P. ~# s 关键要素
    & ~! m5 F, u: U, h. L. Q+ s1. **基线条件(Base Case)**
    4 @3 F9 n+ c9 B8 K, ~" x% ?   - 递归终止的条件,防止无限循环0 a. w* I2 C  q! Y& b
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    0 d6 o4 z( B( P: X. e$ }
      s( m, K' N! J, t2. **递归条件(Recursive Case)**: S5 f; A+ V/ F; m: z3 B# I
       - 将原问题分解为更小的子问题
    7 ^8 h) b% f7 M% [1 b   - 例如:n! = n × (n-1)!0 g% Q# f' h" D* ?
    0 @0 N. ~9 o- x3 _; [" _
    经典示例:计算阶乘
    1 N8 d- i' s( I4 I6 p0 N; tpython1 {4 j. R1 v1 s% D4 ~
    def factorial(n):
    ' j3 C- U: x* U- l! [, c    if n == 0:        # 基线条件
    : `( {3 `  [' q+ \1 L        return 18 v+ v/ q$ x8 e2 n/ e8 ~; A7 V1 K4 h
        else:             # 递归条件
    8 w+ X4 P  E  }9 k$ T        return n * factorial(n-1)
    / Q2 J  ^: l( O- Y2 u8 x8 {+ T; b. |9 g4 _执行过程(以计算 3! 为例):7 V4 E& k4 g( h% }- L
    factorial(3)/ `0 K9 `4 @) y7 e" b/ v1 v
    3 * factorial(2)8 _6 ^& d# b: J6 l+ K; Y
    3 * (2 * factorial(1))
    3 n- w3 k- t8 R# B0 q3 u3 * (2 * (1 * factorial(0))), Q9 d  _9 t2 c) M; f/ d6 }9 u
    3 * (2 * (1 * 1)) = 61 x  B! J# F4 D- u, ~' w

    % G( v( N7 n8 n) b 递归思维要点6 `" d! O3 l$ o! w5 `7 t; |
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑* }0 m( g) C( p  n# J1 h/ G1 m
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& h  E' l2 w; Y5 e, ~1 j. r
    3. **递推过程**:不断向下分解问题(递)
    : Q  d  w9 u5 o7 p. w$ g# b9 e  V4. **回溯过程**:组合子问题结果返回(归)
    " F+ a" W% ^5 z- a
    - k. B( |! w9 X* h  H 注意事项+ U1 F) [7 ~4 {9 \# |2 `$ W& o
    必须要有终止条件) L7 U8 _1 G+ l7 A& |
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 w* F6 w! @/ d( J3 g' B3 Y. p; x* O7 T1 }
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    $ l0 c1 q- M. M, d尾递归优化可以提升效率(但Python不支持)
    * ]6 y! k9 B( f+ d) i  i  x
    $ P& p2 m; S# }2 R$ Z  I. o2 K 递归 vs 迭代
    - k  C- H* O0 ]! R|          | 递归                          | 迭代               |4 J$ E7 O7 Q8 b2 a
    |----------|-----------------------------|------------------|. _% a" P/ `  S1 _1 {2 Y
    | 实现方式    | 函数自调用                        | 循环结构            |
    7 w3 R0 e4 H& N6 K: s$ S| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# ]8 y7 d. G% U
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 u6 o( l; z2 J/ u
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 A8 m* s4 q/ o; j" V

    6 l8 Q  b0 w. v* Z 经典递归应用场景: y" k7 R0 b8 G, p; C) ^$ N, F
    1. 文件系统遍历(目录树结构)% X3 n) T, s0 l, F8 G  Z
    2. 快速排序/归并排序算法
    * w# i) x+ h- n% B: I3. 汉诺塔问题9 ^. |1 G: Z1 `3 R1 n
    4. 二叉树遍历(前序/中序/后序)
    % @4 R6 Z9 q* E+ ?5. 生成所有可能的组合(回溯算法)
    4 |4 P1 a1 ~2 j* m
    9 Y, J& z- R8 a& A# ]( K# _- |% I试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    17 分钟前
  • 签到天数: 3111 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ; ?" ]+ j2 i8 A5 u我推理机的核心算法应该是二叉树遍历的变种。
    * q! D/ u) ^0 g5 b另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    % S# d( |/ |# h$ e* r" @- v4 n" eKey Idea of Recursion% P9 B9 k4 E4 S; m
    6 F. v9 w( ^& P
    A recursive function solves a problem by:
    ; u" h" ^8 e# ^* ]" B
    " w; ^# @) O& a) A# B  B7 a8 c    Breaking the problem into smaller instances of the same problem.. J; O8 ~; J! o2 K, \

    5 v% _6 |1 i5 Z$ a" A! U    Solving the smallest instance directly (base case).
    , @2 @7 n7 E1 L7 M( x3 @7 o) H  E, \0 @" {- L' E% t, p- W
        Combining the results of smaller instances to solve the larger problem." E; V4 `. K8 f- I& S. e$ n
    3 \7 H3 L# L; W0 R
    Components of a Recursive Function- v' {7 p; w. h1 k8 M3 o
    : V7 c5 t$ a2 z
        Base Case:3 e8 x  v& a+ t: ~2 ^( W) u
    7 o0 F! g4 z6 T0 g
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.) G2 d' K" `8 C; O# I% w: x

    0 q, l( i2 l: S! g        It acts as the stopping condition to prevent infinite recursion.  A, `2 j# @) o
    4 H& b0 F; q7 T2 f3 X
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1." n6 Q; O4 y; O6 a+ X
    9 K4 g! ]3 }  [3 z1 R7 e
        Recursive Case:5 x& F0 i0 P5 d& i& X+ |8 M

    1 b5 Q8 K- r' j/ L9 J) }2 l        This is where the function calls itself with a smaller or simpler version of the problem.
    , W; v% M7 U# L( C8 f* f% a* H' Y& q; W3 ]
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    6 v* _' p( c" P) A; }
    . F# z5 P- ~8 E6 s, s0 V9 {5 [Example: Factorial Calculation
    5 M3 H7 ?- j( V* u' Q: m
    ' a+ ?' v5 u1 L' W9 e2 M! ]The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    " Y) K' ^3 b; b1 J6 @0 x0 p* }; k  X9 ?
        Base case: 0! = 12 M; b  [+ e9 p$ z$ N
    $ |( I- n0 z% ^+ z9 r
        Recursive case: n! = n * (n-1)!; V# H1 H/ @' N  V( e3 P- T3 ~

    * G$ G8 W2 J) z3 f  H* EHere’s how it looks in code (Python):9 F  a" F7 R  q# N6 [
    python! h( E: a3 g9 @! L# P

    2 o3 i/ Z. w$ r/ {3 d; ?5 H- t. @, i, Y; F7 J6 n9 c4 h
    def factorial(n):. _3 S& i; s; }# p% `) |# ]3 E. ~
        # Base case
    7 p/ i  e& j0 i6 g: b7 ?6 l    if n == 0:, z+ C0 X. U. V8 y8 J" z  \
            return 1+ Y1 Y# L, f5 H# J& W' e
        # Recursive case
    - c0 C. q+ c) _) L4 v5 L+ Y4 n    else:/ B% [- y. Z- u% o  ]% S
            return n * factorial(n - 1)  ?, J: e* Y4 l9 q, V

    7 g4 B/ [; q& |' e% T. s/ d# Example usage
    : f# u1 |! h$ g3 D4 X( f) ~print(factorial(5))  # Output: 120
    ( u# n6 W6 L; e
    : L: c; T. Q; Z2 o7 ?How Recursion Works8 t9 ^, C1 v' S6 O

    $ }/ K  K5 ^8 c- U    The function keeps calling itself with smaller inputs until it reaches the base case.# K9 d1 E. b/ F9 {% K# d

    ' A1 x1 v0 Z/ `4 t/ x" G    Once the base case is reached, the function starts returning values back up the call stack.( _7 b" b, j0 S
    % E/ W/ |& Q) @
        These returned values are combined to produce the final result.
    * _' u$ \8 [: o0 H
    ; X  I8 K+ n7 X. XFor factorial(5):1 `1 V( f. _5 U6 e  s' f- F& e: t
    4 e3 e6 _# w, d9 ]

    $ k3 X+ h' r+ F* g) efactorial(5) = 5 * factorial(4)3 c; g; z: R% N6 i% D; C+ I0 {
    factorial(4) = 4 * factorial(3)
    6 r9 x8 [. k$ g( Z* s7 f4 L9 Dfactorial(3) = 3 * factorial(2)
    ( ~4 }2 d! x# x: N2 Q0 x% v, Ffactorial(2) = 2 * factorial(1)7 r- K) p% Y& D% V/ I
    factorial(1) = 1 * factorial(0)
    5 O; F5 u" ]+ y) \factorial(0) = 1  # Base case
    6 D- k, g; x9 ]: o5 L. l( ]4 L! S! D# _4 U* S  e% X) }# h
    Then, the results are combined:
    , o) l$ w  v9 x9 H/ [* `8 a; ]! ?9 [: }) \+ I4 k/ w

    ) w- O4 u) Y* I: ~% hfactorial(1) = 1 * 1 = 1
    " h4 ], D/ t2 r8 P$ }- qfactorial(2) = 2 * 1 = 22 a% ~) k& Z2 }" X/ y8 M# k
    factorial(3) = 3 * 2 = 6
    + f! k2 T$ q0 _/ k: [factorial(4) = 4 * 6 = 248 H8 I1 v3 o& k' f) f; ~  L8 c
    factorial(5) = 5 * 24 = 120% T: d% Y+ Z; f! T

    : d( c" H. m  m& H1 R, BAdvantages of Recursion9 ^! m8 {  ]! `! _& p2 E# V

    2 y0 A! G, D7 j6 B    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    # Q$ q7 B- G$ X: p6 y$ e' l) a+ {% I9 {# b, a' I4 ?* E7 g
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    " e9 N* z2 @9 P$ @  I0 H) j# ~* D/ o# q: B% \* i( x  v
    Disadvantages of Recursion
    5 L* I! h6 r! H  q, W3 Q8 Y
    : F; M# l. J0 s* r, Q    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 R% @* x$ Z1 @/ _# E) J" Y* s0 w0 m3 r; O
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    0 X, |$ t# f5 i/ h8 m" r4 I9 a7 z9 }
    When to Use Recursion7 @0 y% F+ ?: J. I
    0 `+ X) v( q. W. M6 W
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 ~% d' I) s5 m
    * F% ~- v' b. }; `8 C" ]2 z% y8 R    Problems with a clear base case and recursive case.
    ( g3 k2 C+ g6 h% O. d1 `
      j9 A  S6 I+ tExample: Fibonacci Sequence. J% s- x# r5 d3 Z
      ^# T" L4 U' ]$ |! A9 T& A
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, O! c' {/ k; {5 `$ H) r# j6 R( \

    ) {6 j, f$ L0 w- }! A    Base case: fib(0) = 0, fib(1) = 1
    : h. U  |2 l4 j9 u% y7 Y" E5 b6 L" e0 x, Q6 k9 ]
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ' K, H1 L0 A3 U' o% N/ Y6 V
    0 q2 s' q1 M/ N/ m2 ppython
    - `# F4 J/ i1 ]. F3 \* M/ c6 X3 B3 l2 E; a+ j  ^
    5 d6 X! H. s  z3 A1 M, q6 i
    def fibonacci(n):
    ! ]5 o  h" U; S& c8 b    # Base cases
    4 ]9 r+ {3 M3 `& [7 E7 a  ?: i! H    if n == 0:% O) _" y  ^% k' L- s" R
            return 0% o$ [# w4 J8 j2 b: v1 \
        elif n == 1:" R4 M1 l4 a) {) g. j1 i$ x
            return 14 ]% S( B! o) g5 }; n) @1 v
        # Recursive case
    0 }% E! N; w% \0 O7 b    else:
    ( R/ j& X8 D+ X0 l1 N  v( g        return fibonacci(n - 1) + fibonacci(n - 2)
    2 u& e/ {( ^- Q, x
    / y, m$ F/ \9 T( J: d# Example usage
    / F8 t# v. w1 q4 W) ~7 @0 Z9 Pprint(fibonacci(6))  # Output: 8
    ; M9 w, n5 I4 m- Z
    - ~: D& r7 P0 _9 _, n% z1 KTail Recursion
    $ Y, q; r7 w# d% h& I% a
    # f- n/ N& y( ~: JTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 T! C" O2 E2 X% [& P) @! G1 y
    , s/ o7 o. f+ M. I1 H
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-7 07:11 , Processed in 0.031266 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表