设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1462|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 , p: L' Z0 R3 Q+ L

    ' ~; S7 B+ S. D0 o+ }8 i解释的不错; W' N7 U+ S% o- p) d- z: ]7 Y  [

    4 r+ M% T+ ~6 }2 {  B* W3 h3 O, i3 a递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 Z5 Q0 ]. f& g; @- L& W) M2 ~6 m, d/ U* {
    关键要素9 g1 Z. t2 d# A; \
    1. **基线条件(Base Case)**  r" j2 w9 Z9 A0 ^; o( k
       - 递归终止的条件,防止无限循环
    + K1 c2 g5 P- y: |0 n   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& u. w6 M* V- V+ |. g

    2 F8 y( g1 p9 l* e' x, X2. **递归条件(Recursive Case)**
    ( N9 R6 Y/ Q, R- Z# h9 m4 k   - 将原问题分解为更小的子问题2 e3 q0 _- r0 {  A# M2 c7 h  Z
       - 例如:n! = n × (n-1)!
    / ]9 A( Z) V7 Z9 M; K7 T/ r- l; U% F9 l5 M6 A/ f3 k
    经典示例:计算阶乘
    ' a+ h0 a. x$ U5 {9 Opython
    - S3 U1 L8 M4 K; K; ~8 Xdef factorial(n):
    9 r) X/ L4 e! {' V# V; Y# F    if n == 0:        # 基线条件
    9 d: P* c8 n' f6 l3 ?! X2 V6 D, a* \        return 1
    " f' {1 \1 Y/ u, `+ ]2 u( l    else:             # 递归条件
    8 K: O( @3 y; |* V        return n * factorial(n-1)
    4 F# i6 M1 a6 }! |# m' C# V执行过程(以计算 3! 为例):
    7 T' e+ d, f4 V+ |$ S' Mfactorial(3)- ?( N. A- e& T" E/ v7 N, F
    3 * factorial(2), }+ A2 X1 }) m4 j. Y" k
    3 * (2 * factorial(1))$ G* ?6 E: Z8 C+ \; L
    3 * (2 * (1 * factorial(0)))
    2 u# _0 I1 _$ w4 X2 L8 N5 M. e9 ]; J7 l3 * (2 * (1 * 1)) = 6. a5 n( d2 l; ~- q

    + v3 |$ y" U' U& f, P4 E" w9 Q 递归思维要点* `- l+ l$ Q1 S% F
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑/ r% z6 R/ a/ n
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    * k( k4 {4 x9 L3 l3. **递推过程**:不断向下分解问题(递)- @; _3 h  Y) E' x* H. C( Z
    4. **回溯过程**:组合子问题结果返回(归)
    & J4 c5 |; u# R; U! {
    & P$ C* Z& Y3 d( e5 { 注意事项1 X6 q( s* s0 r) d9 x$ H
    必须要有终止条件
    ' j' R) H3 B8 x递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # m; s1 ]% p! \% P$ {( y, Q7 h! c: u某些问题用递归更直观(如树遍历),但效率可能不如迭代2 U' i/ f! b5 |- r1 U
    尾递归优化可以提升效率(但Python不支持)
    ; r9 g( v0 `4 ^3 B( j( w9 t/ f$ J
    递归 vs 迭代
    ) r8 s& F3 s- e* g- G( ]|          | 递归                          | 迭代               |1 Q: |+ G, I- C2 R
    |----------|-----------------------------|------------------|
    7 S6 ]' `* Y: O; w) X( ^| 实现方式    | 函数自调用                        | 循环结构            |
    3 J) n( \1 ^" U4 S: }| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    . w- i. k% s: f1 q( w* l1 || 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |6 ?7 S6 O) a! N! W9 n% ]! Y
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |5 T- ]7 ^6 m$ H' n" O0 m

    9 o* ?- j* T. y% v 经典递归应用场景! I! ~4 Y, _3 p( t% d% Z
    1. 文件系统遍历(目录树结构)
    0 p4 d2 Q' I4 _) u) y& f, M2. 快速排序/归并排序算法0 H0 `! n1 D$ V. j- W' `9 z0 D* C5 x
    3. 汉诺塔问题
    # f. I! H& T+ V, Z; D4. 二叉树遍历(前序/中序/后序)4 |' R- l& h' i4 r" X4 y2 k
    5. 生成所有可能的组合(回溯算法): q  H  V. e9 M. ^% y
    / u! Y. ^& Y$ \# A& [
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    5 小时前
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    - d: H. P( k: B( p! |4 q我推理机的核心算法应该是二叉树遍历的变种。
    6 Q: A' |6 H0 w, o; z  r% v' g! n, w另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:; l' `- b; }+ z: H
    Key Idea of Recursion4 {7 F1 o7 t+ x

    ! `4 D+ i$ m+ JA recursive function solves a problem by:
    ( |8 s9 |9 D/ W9 V/ d) ~2 O; W) C1 n& q
        Breaking the problem into smaller instances of the same problem.
    + r. V) }! d/ t  X& G+ ?* S/ x  i. U, U0 v9 V! T4 Z0 V
        Solving the smallest instance directly (base case).. T$ a9 l) L: u
    ( p# f. y8 o% ?$ v: G
        Combining the results of smaller instances to solve the larger problem.
    6 s( L1 N8 V; W+ }: B( a  _0 R! ]1 a: {3 A3 p
    Components of a Recursive Function
    ' T/ w* |5 p# }0 q8 H
    / M4 y' d$ @" y1 q& C    Base Case:
    # Y5 v$ E9 ?' r0 H; g4 I  J/ C
    " c6 e% t1 V" l4 l        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.) R, Z  v) {4 _

    + {2 F5 d( y' ^8 b6 O- L        It acts as the stopping condition to prevent infinite recursion.
    : n: d/ Q+ M; N7 q" x' q
    + A6 b8 \( g* _, ?: S- c' A$ D        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ; ]% c! I& u3 O' M! N; [9 h( ~% u) l5 p
        Recursive Case:
    * Z1 c. }  u# `* t! t
    ( e/ V7 J: @( s6 q0 E        This is where the function calls itself with a smaller or simpler version of the problem.
    4 d" v: V$ o# E8 {4 E' c( L/ ?" b& |
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    0 a7 r/ {% b- U# U9 L
    & l+ z' R* \2 o/ l* L4 v. L$ XExample: Factorial Calculation: X6 Z# R9 N' K1 T& t0 L
    4 g3 D5 K8 V+ D, c; N$ [. R, }3 h9 S
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    + S: b2 s$ e& a6 }
    % ]9 ~& a$ y: U$ J. j    Base case: 0! = 1
    4 C8 Y; D* z( Z3 [( q# i+ h6 X. ]1 y; ]& B1 Q; `8 u/ e2 Z2 @$ O
        Recursive case: n! = n * (n-1)!
    + \0 H" {, l: S' L# S- X7 H1 G# e4 n9 ^8 m4 ^- f( u: V5 U7 Y8 e3 I
    Here’s how it looks in code (Python):! p+ w6 S9 @$ J- B: e
    python; R% ]! N. m8 F" {

    % h9 g4 x) d, q- R6 `6 G" y+ N3 D" u7 x, B0 P
    def factorial(n):
    " S4 Q8 S; A1 f$ r- J7 e: f    # Base case, i- Q# b8 h0 G9 p3 P
        if n == 0:$ \0 e8 t2 ]# a& `. J6 U& S7 f, p
            return 1% B7 i9 I/ [4 E& C- ?5 c! p! `
        # Recursive case
    2 V. }( ~2 ?% }2 |& ?' O    else:( A. Z. h) F# @: a, n) I
            return n * factorial(n - 1)% T3 l' O' K" K# D" b
    : x" N" o3 d  [
    # Example usage
    2 n4 a" `" _- rprint(factorial(5))  # Output: 120
    1 X9 n1 z* R( q1 z1 B) k! C/ r3 H/ J7 a" o, \, l
    How Recursion Works
    3 B4 Z9 r0 K. C& Q+ H9 a  ]$ A( Y. B; w% A
        The function keeps calling itself with smaller inputs until it reaches the base case.
    0 q4 s2 G: y/ j# J4 M  Z$ |* C) _. k: E  `
        Once the base case is reached, the function starts returning values back up the call stack.4 J6 f) a3 t: G: f9 @! }( H8 M

    ( p$ F( U& x9 ~6 X6 h6 `    These returned values are combined to produce the final result.
    # K. }& w7 s* V3 S8 g
    2 A1 e2 h; g2 a9 U% R" aFor factorial(5):: b5 D' B* x! f5 e0 {. U" V4 b: f! K1 R0 y* _

    4 `  u% O9 y( _, M. @4 y. T
    & g! J- T) G6 h# Tfactorial(5) = 5 * factorial(4); ]3 q3 X) f& u9 r
    factorial(4) = 4 * factorial(3)9 q( j9 _# Y. q% X  p0 n/ }9 A
    factorial(3) = 3 * factorial(2)
    ( B0 @$ {) D+ ?/ H5 ^! ]factorial(2) = 2 * factorial(1)
    4 G5 j# ^5 A: u' q  m' H$ K8 jfactorial(1) = 1 * factorial(0)
    2 t! D) f( Y) ]" n) G3 y4 q7 Pfactorial(0) = 1  # Base case1 j4 X0 z/ i- \* U& m; ]9 S

    7 Q) y5 _+ N! r  d+ t8 {8 pThen, the results are combined:
    # \: ?, E$ W5 @5 b
    / Q3 ]- S7 x, V- w9 ?
    4 [% ?7 i% n: B* V0 M! k& }1 W* Cfactorial(1) = 1 * 1 = 1& h- H" r* R) Z9 B' A' N1 t
    factorial(2) = 2 * 1 = 2! G6 X6 j" t$ V5 J
    factorial(3) = 3 * 2 = 6! |" I9 h# b  _' \2 ?$ S
    factorial(4) = 4 * 6 = 24
    ( h' u' N: j4 C7 rfactorial(5) = 5 * 24 = 120
    4 _9 h9 s! ^- ?5 g' D+ X$ ~/ p4 R7 O. u
    6 y' U7 i5 K) U/ pAdvantages of Recursion
    : E; e3 j$ n" k/ x4 x( t, Y! c7 R# t/ w
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).; Y- I; P. s5 R  v3 s( \, H
    , P/ y7 F9 C! `* k5 u% O5 r+ D- `
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    & ], N8 Z2 x: s! U5 J7 Z+ t3 F2 x- b' K$ k
    Disadvantages of Recursion
    1 s$ b/ E3 C4 j$ I& t
    % C: b4 J0 e' R. O- \    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 P4 P! b/ @4 y/ L4 ?* ~. j3 K* E2 B+ N3 s8 K
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    1 v3 G* C7 s  [3 K$ M. R" R+ U: b; E' I
    When to Use Recursion
    8 X3 n; R3 u# ?2 h; u; @+ c% A# j( B* K8 ?+ |" O" Q
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    + S9 p2 [+ z) I3 y! {( s6 h& E. E( A# W$ j
        Problems with a clear base case and recursive case.
    / ^2 R1 U+ A7 D  X
    % F" S% D% }  G( fExample: Fibonacci Sequence5 j& G( K$ G' E' d
    , g3 f0 h& E; U3 W% x7 ~: i2 h9 }- i3 ~
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    , X3 D" V6 i+ L& P! L: X
    % ], \( Z2 M9 w2 H    Base case: fib(0) = 0, fib(1) = 1
    1 z3 b# _  K6 G5 A1 b( T
    / F* I4 s) N, v1 E, r* f' o2 E    Recursive case: fib(n) = fib(n-1) + fib(n-2), U' ~# p" A9 e3 n5 C' f$ \

    4 U5 I0 |* L6 N) tpython$ x  `' j4 V2 {# B0 K+ f
    ! Y7 H' N) h# W. L2 N) A

    , D3 G3 {6 @0 g& {# d3 I. l/ Y! Q" cdef fibonacci(n):
    4 H: W/ q( Y: J& _$ ^- p7 u    # Base cases3 [, @# l$ q2 ?) I5 J/ D
        if n == 0:* }$ h% D  d2 b" E( I
            return 04 @$ u5 j' r2 h0 _) X/ G9 m
        elif n == 1:; C% H3 W( V- ~' k- V- B
            return 1  ]2 h: f9 s5 e7 y0 Q
        # Recursive case
    % ?+ l: Q3 U6 S) k  n- |    else:
    9 `1 Y5 G: U' V3 k, }        return fibonacci(n - 1) + fibonacci(n - 2)
    $ b9 P. ]/ c- A0 Z- `% M- L6 ^# V: w8 q# o" V
    # Example usage
      v, V. N! [: s' q" o4 S( zprint(fibonacci(6))  # Output: 8! M* l& l2 A  ^- @8 u2 p0 I& {+ F2 U

    ) M$ f: r) a! w" m- k; t. z3 pTail Recursion/ ?9 m9 a5 r2 j
    ; `3 z4 X6 y( u' a4 w
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    - O7 a6 r0 Q3 Z$ z( Z2 \. V
    8 D$ i% L" k8 U! i" w% T$ T# |In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-11 06:40 , Processed in 0.035746 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表