设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1696|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 7 ]& T! F) R) e
    3 z' J! A  G& F/ ?3 K; R
    解释的不错1 v; q4 Y/ W; _: L
    / v5 N6 X$ u  v: L8 I$ Z1 g+ k
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    " t7 k4 f/ Y: M8 F/ {
    ' S. v' z/ r7 c2 t' k/ M 关键要素
    " m, x) `0 A4 x- o1 P1. **基线条件(Base Case)**
    - u/ Y; o  d0 }( H0 e; E1 o   - 递归终止的条件,防止无限循环
    # X- O+ M0 t( h/ p' _   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " z" g' f% v  F* ?8 Q, _9 ?+ I0 |1 I- s" W  P
    2. **递归条件(Recursive Case)**$ h! _- m/ I6 {3 U3 R# P& X' t
       - 将原问题分解为更小的子问题
    3 _7 K2 E$ Q  J6 k" u% g   - 例如:n! = n × (n-1)!
    ; F, S9 d' o4 @* Q: x1 Y
    3 n2 q* {/ h# p6 A 经典示例:计算阶乘
    7 p. M/ X1 B- C4 c; m0 ]4 Ppython
    8 m$ [9 l2 p9 T: P  xdef factorial(n):
    . r" S" r8 ~0 H! B$ a$ D; V    if n == 0:        # 基线条件
    $ x% r( w! Y; q8 T0 u5 K: V9 _        return 1' y  w, k1 H8 n4 V6 H9 E$ |  H
        else:             # 递归条件2 [9 ?7 u- _1 a! F; @; ?8 `* }
            return n * factorial(n-1)3 W4 }9 q7 b9 B7 d( F  |
    执行过程(以计算 3! 为例):- P. i. z. N/ j# X
    factorial(3)
    + I: b% K9 x; q; @) C3 * factorial(2)
    & S/ p; n. H9 G: n  V! ?! ^: U7 |8 A3 * (2 * factorial(1))
    ( z$ O" y+ E. r1 Z. D( r3 * (2 * (1 * factorial(0)))
    5 ?! P9 d% W. i) y* L3 D3 * (2 * (1 * 1)) = 6
    % k3 C: G) ^* @
    7 c) O4 Z+ A+ ?' p 递归思维要点
    % |) l+ r3 s& L- O! F1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . x7 h2 b; f5 r8 a( F, a# t% c8 c2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    7 d: [/ `8 Y7 n, m6 [3. **递推过程**:不断向下分解问题(递)
    : b* Q- y! N. O# m6 b5 c( R: a* k4. **回溯过程**:组合子问题结果返回(归)4 w, T) N+ y/ B/ J

    9 f, P2 M2 X: L 注意事项4 r! E2 b8 m+ o
    必须要有终止条件9 L) c! G5 K! {; m
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层); U5 h- V4 B2 }1 G, G( m6 s7 Y
    某些问题用递归更直观(如树遍历),但效率可能不如迭代: ?& ]) [, ^6 v; f; ]
    尾递归优化可以提升效率(但Python不支持), u, C* E9 e+ d" w- H
    " h9 u& |" h0 t. x7 ^; k
    递归 vs 迭代; i9 e  G$ L  v8 l4 Q" O
    |          | 递归                          | 迭代               |. j2 W! K0 e( o: `
    |----------|-----------------------------|------------------|: @9 @: [5 k  @1 |
    | 实现方式    | 函数自调用                        | 循环结构            |0 E+ J, |4 A4 ]4 [
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |- L" _3 e( M( l
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* u9 ]4 Q5 ^7 `0 n. w
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: h# P5 i1 ^8 X

    + Y8 n. O) c7 S# b- U+ i 经典递归应用场景
    % `4 B: H( }) X1. 文件系统遍历(目录树结构)
    * A5 X* E1 C( w) u2. 快速排序/归并排序算法4 S( I# q( T2 Q
    3. 汉诺塔问题# Z* q$ X' X1 E
    4. 二叉树遍历(前序/中序/后序); j8 J* Z! P+ c5 }# k9 O1 u5 |3 I
    5. 生成所有可能的组合(回溯算法)9 v& E6 O2 q/ C* c
    # d: W0 E3 |8 h( w, c$ ?) L
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    2 小时前
  • 签到天数: 3132 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! z, f# K2 b6 v! ~5 V
    我推理机的核心算法应该是二叉树遍历的变种。
    0 F' b$ c+ y* V另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    8 H" N$ u" \2 V5 N/ N" [Key Idea of Recursion0 x! r/ O8 j* f  z# h3 {$ }

    * d. R6 S* F# }. |A recursive function solves a problem by:
    0 |; C8 a; u5 q/ ^! B
    2 B5 I. I. a4 T: R    Breaking the problem into smaller instances of the same problem.
    3 \' L& B1 }7 w9 n- q7 y6 n" B2 t2 f5 s1 [, M5 v, F- ]' U  I
        Solving the smallest instance directly (base case).2 o' p6 O5 K4 z

    4 d2 J  Q7 n( b8 d( t, \+ `    Combining the results of smaller instances to solve the larger problem.
    ' G* S3 k, K3 @" w
    / o- I- N' h1 R) y* QComponents of a Recursive Function
    9 u. J3 J# f0 k7 ~  h) q( |/ J- ]( J
        Base Case:. p% o: _& a4 @7 l
    . t7 l9 q. |4 K* X
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    7 g8 W( K; s1 v/ T
    + n0 P, L9 L5 {: y6 \' y+ b; N4 E7 F  C        It acts as the stopping condition to prevent infinite recursion.
    2 S( B5 T6 E' k# d- m! s5 A# X# a* B- r( m; Z" p
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* C2 j: F5 n3 O& z0 w. e% ~" u

    , `% ~- U$ G3 s+ ~    Recursive Case:/ i4 D3 W/ Z0 Y

    8 ^, u1 ~9 z2 `0 @        This is where the function calls itself with a smaller or simpler version of the problem.
    9 A4 `% E, s+ q5 n
    + G: p" D0 ^) B: S. q        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    1 Q/ r! W, d% f  }  Q' Z* ]# ^$ e" x8 [$ z4 e7 B+ l+ [
    Example: Factorial Calculation
    6 f% [. d, B& o9 @' z) J  j$ Z  L7 P; t& U5 A
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 _$ o! C& N2 Y
      p4 v* D- q6 `, {3 P! q6 f
        Base case: 0! = 1" Q8 L; C* t; P. N5 Z
    4 Y/ P5 Y+ p0 O# Y5 ]  d
        Recursive case: n! = n * (n-1)!
    * P! u& Z0 U& b
    9 b& r0 d4 }( A& ?( dHere’s how it looks in code (Python):
    # Y" \1 F; W- k5 s3 Y2 F6 ^python& e5 R/ C( z: ~& N/ ~- d
    " K# H& N( I2 I( L" [6 s
    5 a8 w5 b" @7 T. u
    def factorial(n):
    % B. R7 u' f0 P    # Base case
    8 q+ C! C, m+ H2 Y    if n == 0:
    ! T) U- [1 `0 l        return 17 J5 ?. V9 ?/ x  L+ b: Q* g, w3 E
        # Recursive case
    7 ], |+ G8 W9 r/ q/ [+ K$ }    else:) o+ v- w3 `- y/ B" i; j1 p
            return n * factorial(n - 1)4 R7 P% C9 ^, I

    ; ]: _  |$ `' F8 N7 @4 g4 i# Example usage
    " h2 Y. G- i* F( P0 M* t1 v3 {# M" {" @print(factorial(5))  # Output: 120
    3 L) ?- f% a6 e9 j* @& y( G* s' S# t1 C9 Q7 [& L: q4 R
    How Recursion Works  U- {/ T% e2 v+ z- |/ }: O
    , j; \- w! H& x& J$ g% b
        The function keeps calling itself with smaller inputs until it reaches the base case.
    3 D4 U; |5 k3 k& W5 R- p2 N) r) y
    + G! Y! N- ^" M3 r% u2 n. ]    Once the base case is reached, the function starts returning values back up the call stack.
    - o7 ]( q: Q, H5 l, U$ g# {0 T; y: m6 U7 ~$ g4 A
        These returned values are combined to produce the final result.* v  A8 M) S% b  V% j5 C  r
    ; z, T/ F! V/ `# y* p* ]
    For factorial(5):
    + d& u) |% |2 f7 {8 k, O  B
    4 F; M' ^1 n- L) u5 O( c2 m& {
    & `: n! a. ?2 @5 W' U8 v& ifactorial(5) = 5 * factorial(4)
    % U% n# h* o  r8 ?5 X0 `factorial(4) = 4 * factorial(3)
    % t4 d3 @7 o- W3 ?factorial(3) = 3 * factorial(2)
    : f4 f) X( s7 t# U0 j' V8 _factorial(2) = 2 * factorial(1)5 H8 _) W' C  k
    factorial(1) = 1 * factorial(0)! }4 I  Y: t& ~# L; [; |
    factorial(0) = 1  # Base case
    * i5 i, ]: m" h( `! |  y' y$ A- |- J  L7 A* x2 @- U
    Then, the results are combined:3 E; ?+ Y" Z/ i

    $ C2 k7 d0 E4 l& U' v4 m( ^# m8 h* W7 I5 W5 r$ _6 g
    factorial(1) = 1 * 1 = 1
    ( y1 i( i2 s! X1 S8 k( Hfactorial(2) = 2 * 1 = 2
    6 v) C" f- @9 \0 ^# ]7 d5 efactorial(3) = 3 * 2 = 6& _0 b# m6 _$ V( L
    factorial(4) = 4 * 6 = 24) P4 R+ ]8 M$ R
    factorial(5) = 5 * 24 = 120; y; k" a$ i3 u. m. v

    1 n9 h& ^3 L4 @2 MAdvantages of Recursion
    % [) p7 U9 ]* Q( h  T
    : |5 A9 S2 @, @. N    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).( N8 b7 k( G  k/ X
    7 y# a/ T+ `" Z8 G# G
        Readability: Recursive code can be more readable and concise compared to iterative solutions.. N3 y3 K/ O6 E% W% ^% I) ]
    ' g3 g, S0 G  C; _* ]' S) c: }
    Disadvantages of Recursion
    # Q0 W7 T% S$ m- ~, Z4 ?4 [: t- R
    * c! Z0 [- ~$ e6 Y% W    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.) g; ]% C# B4 }( H1 k' r9 R
    1 ?$ ]/ u- N. v5 Y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ) o4 ?% }7 X7 D5 q  ^
    ; \+ e% p" h+ G9 W% K8 t0 I( `9 qWhen to Use Recursion  M+ p) V* H! t% _, J, x

    " t: A/ \2 p0 B4 Q    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    7 W* q) z+ J4 J  N: |6 F6 |
    + N" _9 k7 J4 Q+ I    Problems with a clear base case and recursive case.
    $ ]' e+ G2 A; Y, l# ^
    8 Q5 p2 D* s+ O8 y% P- F+ ~Example: Fibonacci Sequence0 }8 v0 ]1 C1 H; A& e1 m

    3 u8 }# ?" V9 `) g+ LThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" G" \( v+ s( d; G4 r

      _" u' b0 o5 e    Base case: fib(0) = 0, fib(1) = 1
    % n' b$ Z  ~: A" ~! C: p2 O3 S
    & [# M, ]. X* ]3 y5 J+ S    Recursive case: fib(n) = fib(n-1) + fib(n-2)8 l' ~  h% A5 V3 k% Z% Z
    , y& a: v0 a: C! J7 d& f
    python
    + M$ \  v  ^* B
    : d6 }% h$ |0 m
    9 o) a- {3 X# v6 Zdef fibonacci(n):, j# A+ l1 L$ K/ g; }& {. h2 y
        # Base cases
    % S* U$ M0 p/ x  d5 L    if n == 0:
    " g/ |" ^; h& l) ~0 M+ z        return 0
    9 v4 M# j& j& W( {+ `, N/ M% |    elif n == 1:
    9 f& A1 v& Y7 Q: i5 H+ H6 F/ \        return 1
    9 M$ ?; l0 u" `5 {4 |7 m( A2 i* `! x    # Recursive case
    # @" V# B. L9 \1 Z/ J' P0 ~    else:
    / d) M: e8 D2 t) _$ ^2 ?$ m        return fibonacci(n - 1) + fibonacci(n - 2)
    % _2 \: ~8 m' a6 Y
    & B6 \% ?6 k% q+ _# Example usage, S! |% a9 U' R( E5 z; j) _
    print(fibonacci(6))  # Output: 82 h0 V0 E. ?- M( X' q8 T7 f$ ]& a: G5 r

    ; B7 x! ]0 ^5 J5 `% Q1 k& mTail Recursion
    & V8 @$ Y: d) _1 T7 Z
    * G# D- M: A9 o3 k! UTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).  M2 [2 `" O" }4 j) P6 K
    5 ^7 u4 P) o  e3 J$ J8 \. s% n
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-31 16:40 , Processed in 0.031897 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表