设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1989|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    9 {. j# J( e' V1 m6 E8 k" }5 \) [1 \. B2 h6 B
    解释的不错
    ) ]; V% B. d- g( n& @  p. D, A
    1 ]+ N$ e) j! f递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。: K& i$ c9 g% e3 @3 Y4 b9 P+ ?

    # H5 O/ N3 T8 s7 A* S0 W 关键要素
    2 I* p( t2 m, S# K! P- ^0 }1. **基线条件(Base Case)**' A- T* |! W+ N8 e$ E
       - 递归终止的条件,防止无限循环
    ' W# K5 g: K* K* p1 ^+ t   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ( Z3 l$ T- c" x- ^. |% t  C
    ; R4 S4 z  x  z$ l" }$ x3 x2. **递归条件(Recursive Case)**0 s  f) P& Q' N0 b5 R% e
       - 将原问题分解为更小的子问题
    . w0 S4 v5 U5 R+ y+ T( ~   - 例如:n! = n × (n-1)!2 Z1 C8 b) t9 [' f; e8 j8 Q- X0 R, h3 \

    " t8 D, p) P! x0 ]; ?  j1 S 经典示例:计算阶乘
    6 o% O8 O% c2 h; m' J; v) g; j0 epython
    ( S' P; Z% v* f4 E  F2 @5 X9 Rdef factorial(n):
    9 m4 s8 i6 y4 |8 V* \, A& Y/ E    if n == 0:        # 基线条件8 ?  ^0 ]) z/ W* }" \- M# [8 X/ \
            return 1$ d: W4 Z# H+ L7 M* e
        else:             # 递归条件
    ' a$ |' x3 E! u        return n * factorial(n-1)
    ; k5 N* ~4 i$ S/ ^) f! H4 r执行过程(以计算 3! 为例):
    2 F. ?& n0 {) u( L/ Y2 {factorial(3)
    " s' _7 \* l1 h6 L2 Y5 s3 * factorial(2)
    / I. H' C% a0 L; h: H3 * (2 * factorial(1))
    6 B, p3 `; T, c9 o! P9 T$ @9 T3 * (2 * (1 * factorial(0)))/ n. I7 D5 J6 e4 x+ c! i
    3 * (2 * (1 * 1)) = 68 a0 G9 q) _1 v$ z4 q5 H: l. t+ _

    - D, t& k) t. S; w2 d 递归思维要点$ p" R" [  M6 a0 z1 A- N
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 J* j8 A9 y" a0 n2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    9 T6 d% K" v; T+ E2 f3. **递推过程**:不断向下分解问题(递)
    8 V/ ^# z7 s8 @8 `4 f4. **回溯过程**:组合子问题结果返回(归), J- y6 H3 r3 M( y# \, D1 o. ~- G
    7 n: k0 {! P# c4 N6 Q
    注意事项2 }, Z4 i: W3 ]- J
    必须要有终止条件! |2 n5 O( U7 w
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' g0 Z/ T. v7 Y$ a3 F8 i
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    # g" C$ @$ H% W9 F尾递归优化可以提升效率(但Python不支持)' q' k4 p1 O: j' ^. f
    * {) }' T; Q/ i1 \& k5 R. G
    递归 vs 迭代
    7 k( a+ @, G! m" s' b# ^4 ~3 r|          | 递归                          | 迭代               |
    1 D) }9 S3 Q# k& T|----------|-----------------------------|------------------|
    1 O) X, X9 ]* K& [) ]| 实现方式    | 函数自调用                        | 循环结构            |
    / e& g& a  Y% K| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |2 g; {$ W+ d9 ]. E
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    * k& w: Y% c' D! ]8 K| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |/ o4 Y7 U7 g: Z- M2 [6 L
    % G2 E9 H: p- U3 v' q) g
    经典递归应用场景" O# X, B* N  Z0 w
    1. 文件系统遍历(目录树结构)
    - P' f. o9 U. F0 A6 w2. 快速排序/归并排序算法) R1 ?3 I; L1 @& ]$ x: p2 Y9 ~
    3. 汉诺塔问题
    . `$ _( ^: @$ \+ T) L4. 二叉树遍历(前序/中序/后序)9 Z1 e0 f. ^. `/ n! ~! k
    5. 生成所有可能的组合(回溯算法)
    7 T- Y2 O7 l  t/ O6 j6 i5 h
    , d+ S8 y4 d$ F5 f8 l9 C试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    4 小时前
  • 签到天数: 3160 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    3 x5 k0 @4 M% Q& m4 L# L- o我推理机的核心算法应该是二叉树遍历的变种。) o5 t& e4 M. R  ?" s  B4 w9 i
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
      a: U" F- @% LKey Idea of Recursion
    2 R' U" A1 K! A' K! C4 k
    - |2 h4 Q( Q1 Q% p3 P' _2 X" W) YA recursive function solves a problem by:
    5 f" Q# `( |# Y! v6 r5 C$ s
    " `# g" j7 P- d2 ~+ w6 E5 L/ l2 t. H    Breaking the problem into smaller instances of the same problem.
    ' Y' F8 v* D, b3 b/ ]* \# [* r8 s' z
        Solving the smallest instance directly (base case).
    : \% {" e! W$ \7 c3 ^
    0 M4 Z2 t+ G& p, T7 R# y: Z    Combining the results of smaller instances to solve the larger problem.' l2 J1 p2 W& P

      [% c; U) O+ h8 I. X0 J: uComponents of a Recursive Function
    , g' N, {, v5 z& D# x0 h" n1 k# k3 m( s  D
        Base Case:
    5 X# x7 ^: {$ c& ]# m& k) m
    # a! _1 B6 k9 u$ ?0 l        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.- t  ?) b" |7 S1 S3 ]

    $ N: E4 R1 i( d: }        It acts as the stopping condition to prevent infinite recursion.
    & y! P) q: m' n& N1 H/ `
      L6 F, k0 l& l6 G" d        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: u0 x: w: j. F1 |  R
    6 K; B" q7 \1 G
        Recursive Case:
    2 T+ Y* p' j3 I/ K3 z- c) t/ @; v' v- X
            This is where the function calls itself with a smaller or simpler version of the problem.
    1 ^4 J" v: Y: p4 G8 y' {  h, g" d0 `% t( Q$ M% C0 Q
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    9 L/ t7 M$ W8 Q% J, e4 N  _  Q8 D! H+ F" Q" B. F
    Example: Factorial Calculation
    2 O# l6 a1 v% I& `( N( c+ L
    ) t( l8 R3 ~. g: a" f" Y1 P, FThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 _4 u6 D7 `) W& s& O
    * R' L5 Q: U$ d+ C9 T5 k
        Base case: 0! = 1
    3 f/ r; t) f0 d) I6 T
    ! b& J- f6 D9 t) {    Recursive case: n! = n * (n-1)!- T8 c" W0 e+ }9 ]" ]
    0 n$ K. p; Y# h/ w5 Q, `2 Q
    Here’s how it looks in code (Python):
    . u1 q( [" M8 ~& }' Gpython( D9 M& k) |3 u# K  E
    . C$ |8 n- W; `$ }  A; g

    0 }+ D! J/ \% Q# U% L5 W7 Qdef factorial(n):
    : t# b6 U$ [5 L9 S* q5 z! n, x0 W. v/ @    # Base case
    " f9 a, J/ a% `% _* z" H, A    if n == 0:2 j, l( _+ K, V" x! v" j
            return 1
    , R, z1 T; b. `0 U, W    # Recursive case' ?1 o3 e+ X2 a& y6 t: B  O- T' e
        else:
    ) [5 m( H2 D& {        return n * factorial(n - 1), V9 K# Z7 _9 J( K% Q) T: K

    , o6 H* F6 \: @, P# Example usage
    - g4 J. [" @. f/ ?8 @print(factorial(5))  # Output: 120' |, C6 y& m3 }, r: X
    2 i6 m# u  i, j; \2 ?
    How Recursion Works& O7 Q- O+ W* ]5 {9 i/ @, q
    0 E6 ^8 g7 ~9 G5 c2 Q
        The function keeps calling itself with smaller inputs until it reaches the base case.
    5 n3 ?" y1 G* \& v7 n
    ; ]4 H: ~, t; L7 S1 P    Once the base case is reached, the function starts returning values back up the call stack.3 x$ Y1 v( L, V+ F: E4 G8 l" W
    7 X  m2 a% i0 `/ e
        These returned values are combined to produce the final result.  [* I5 o/ U3 e" p8 k! Y" s  U, m3 h
    ' i" Y% C& h$ Y: O/ X/ T' k
    For factorial(5):
    + _. Z: K. b6 i3 c- Y2 s" ]+ P) H: n. m; C& c
    * C; `- s- p9 S) r! S; ?" A; u
    factorial(5) = 5 * factorial(4)$ x5 d$ ?/ x+ q( q/ R
    factorial(4) = 4 * factorial(3)+ U3 U/ q/ _# D9 M4 S3 A" ^
    factorial(3) = 3 * factorial(2)
    + L" V: C5 |  H, O. B& e- D" rfactorial(2) = 2 * factorial(1)& j( ^8 D3 h: V* m8 n
    factorial(1) = 1 * factorial(0)# h+ {- o) k6 K9 Q
    factorial(0) = 1  # Base case
    5 _5 N) {& q* k- Y! R7 a
    6 q! f  B0 D4 p  L5 L( xThen, the results are combined:+ e6 B8 |, _5 D1 X- L2 {; o
    ) Y5 P2 {# ?. b5 G$ p: _/ M& A
    0 h+ c3 Q/ k7 t/ b6 u% N0 q5 m/ |
    factorial(1) = 1 * 1 = 1
    7 I4 g: g! X4 ?7 }- Z) qfactorial(2) = 2 * 1 = 2
    / G2 }6 P2 X+ A; q- {% l+ m+ |; Z  ffactorial(3) = 3 * 2 = 6
    + D  o; I) K* w& V( d7 _" bfactorial(4) = 4 * 6 = 244 Q( H6 v0 d) s# F4 M! @
    factorial(5) = 5 * 24 = 120$ z" m4 P: l1 m
    ) F7 S9 p8 ^1 H5 G0 r3 {1 H$ v% G( X
    Advantages of Recursion% Q, v7 L( p" E# @: l
    / E6 w9 g0 F) U1 p$ f4 d
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 r7 @8 a3 D3 R

    ) x2 W# k& b# E4 U. M$ C    Readability: Recursive code can be more readable and concise compared to iterative solutions.6 ^+ c! r9 W9 J7 s$ Y

    * v3 V* |8 S' V9 \6 B* fDisadvantages of Recursion
    * P  l! m9 M; l* |( a' @% }' r7 t  I
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.( U- n% s1 b7 H; r7 C; Z0 U7 D' ~

    ; g( Q6 F7 z* b, o    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. x+ |2 H. f# f4 Q7 L9 _! q
    9 C0 R# B+ [" B1 h5 ]4 t% F9 M
    When to Use Recursion
    % m6 K  J: U$ W% L' V0 p9 ?, O# w6 n# J- Q& X
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).( h, Z+ b/ E$ m3 A7 a) q0 Y

    # }: ?2 k" m: z% A6 V% N, G) v    Problems with a clear base case and recursive case.
    9 M3 Q- N. O) B# w  t1 v# Y. o) O
    Example: Fibonacci Sequence9 p! w7 M6 r* U* E+ L% }+ ^' ^% ]
    4 P  T* u' Y+ J+ j
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) T8 a, ]& @0 w9 A! |$ p: H
    9 @" g  o$ t& `4 ~* X
        Base case: fib(0) = 0, fib(1) = 1
    / U6 H! M6 r$ x  A% _, e9 I1 `8 J# f) o: f4 b+ _
        Recursive case: fib(n) = fib(n-1) + fib(n-2)6 ^6 _3 a. ?+ E4 M& E: Y

    - }( D! ~/ F' P1 Y+ ?$ i$ Npython9 F7 J% V* Y( }

    % r3 R3 ~: z' ?! P
    & `7 h' A, l/ q" Pdef fibonacci(n):
    % F+ G9 y9 H6 O# q    # Base cases( f% n' ], a4 ?8 N" E* }
        if n == 0:6 @! x& m, B! C) ]; N& b, X
            return 0
    & c1 G* m$ a" o" h- x    elif n == 1:3 F! k$ w+ V. p4 j% W2 i
            return 19 l( q- f8 t! t( X& z7 ], I  U( x/ o* F
        # Recursive case
    " }  M& h  J4 l    else:
    ( l8 Y1 c$ b8 R! K( v8 Y$ H5 K        return fibonacci(n - 1) + fibonacci(n - 2)5 t; c. z* E5 Q8 D  a! r2 z; w
    6 V: G  U. q; P  l
    # Example usage
    $ y5 U) M. O' e7 C) A; F; fprint(fibonacci(6))  # Output: 81 u7 c: D$ v: o6 Q; e
    . q/ A( R5 G+ ~9 |
    Tail Recursion; J1 k( C' z0 a+ ^! n" q
    5 Z2 a: m0 s2 H
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. ?( U* V& `- k4 d: ^, c0 A

    6 [/ t2 ]2 A" {1 n; p4 MIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-1 13:17 , Processed in 0.059657 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表