设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1422|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 " ?* O4 E; ]' \: K" X. ^! e( j

    ) ^( |: \) N* F( F解释的不错
    % k3 p) o% m) p6 }
    , z* {8 m* \. g/ g# X递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# S' e& v% K( Q/ z; Q: S( V

    , k  J/ M! F; C! }1 G& @) n 关键要素
    - v% F4 }1 H9 P. v/ R1 X1. **基线条件(Base Case)**
    ( }# i3 \3 b- T/ q. F# q$ }! _   - 递归终止的条件,防止无限循环
    7 k. ]( _' c0 H" _4 Y& x1 ~6 j   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1; x( `, A( `3 ]; U; W; V: O, L. H& d

    ) F3 H7 J8 G" H/ s( l- V2. **递归条件(Recursive Case)**8 d0 J2 w$ ?# q5 I, y* D! z, R3 x
       - 将原问题分解为更小的子问题
    * W4 Z. U9 t( c   - 例如:n! = n × (n-1)!
      {7 K" N: o7 x6 J3 n$ W  w7 c3 }9 k( e- {( n3 K9 k
    经典示例:计算阶乘' K$ n% }3 f! P3 _9 _
    python
    6 e% l4 g, `5 a/ v+ J" r+ kdef factorial(n):
    2 R& \: V$ O& N: ~! U    if n == 0:        # 基线条件; _' G9 `" h9 _- s/ r: M9 U4 D
            return 1; c; [3 `7 C- `" k, i' m3 K
        else:             # 递归条件
    " Z! Z5 P7 l& G/ `; w6 C        return n * factorial(n-1)& n# @$ o- o  v+ p
    执行过程(以计算 3! 为例):
    3 R( V; |, n. K+ }; Vfactorial(3)
    ! ^& m7 ^/ s; H9 Y. Z% ]: D7 z3 * factorial(2)
    4 ~% k! H( q& C$ r; k3 * (2 * factorial(1))
    6 \5 u8 H  n4 L; B, j: k3 * (2 * (1 * factorial(0)))
    . [# i, W6 `" d7 M  z1 r3 @3 * (2 * (1 * 1)) = 64 m  ]9 [; T/ i: n" |

    * R& x( W2 Q2 D5 v0 o4 k* S 递归思维要点% {" ~/ D( t9 U1 ^1 g
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑1 F7 x! e* m# Z! k$ m# s
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    & N4 U' M- n- W/ p3. **递推过程**:不断向下分解问题(递)+ X  p3 ?- T7 d5 c7 q& n
    4. **回溯过程**:组合子问题结果返回(归)
    / n3 K  s9 K* j  @
    1 U6 ^' {; `% W 注意事项
    * ^$ U. f) a3 T1 i必须要有终止条件% I5 H' C1 g2 L0 K
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层). ^6 }; f* f8 F6 S' i6 [! i, F
    某些问题用递归更直观(如树遍历),但效率可能不如迭代: o# L- F# p; {' g- d- N5 T
    尾递归优化可以提升效率(但Python不支持)
    ! Z4 w* q% ^" ~; a% I$ i
    7 H3 o9 X# x. |2 ?" D% L 递归 vs 迭代4 n4 X9 T, m" m
    |          | 递归                          | 迭代               |1 s. _3 S9 L" e5 u: O5 g' x
    |----------|-----------------------------|------------------|
      z' ~8 R3 i7 Z. y| 实现方式    | 函数自调用                        | 循环结构            |# V; }$ n8 y3 I8 j# a
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 P% k! u( l% H7 }, j# y
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |9 S# z) n/ G- f7 @" R
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |8 D, l* F. ~* ^2 w7 A( Y9 s
    ! ]4 W' C& W4 H7 S- p
    经典递归应用场景+ j: S0 N# x; Y5 ]2 D
    1. 文件系统遍历(目录树结构)
    7 _- C% A, A: J7 t  b2. 快速排序/归并排序算法' y' r; x, O( b7 c5 O  N# Y
    3. 汉诺塔问题
    ( h4 o* v9 C) e& E2 t/ K; o- Y4. 二叉树遍历(前序/中序/后序): Y4 n: H" q- \. w, q
    5. 生成所有可能的组合(回溯算法)/ H) z8 x, [. B. ^, @) D
    ! q2 I" _% E1 N6 I
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    4 小时前
  • 签到天数: 3113 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! s) n1 L: V: j$ `
    我推理机的核心算法应该是二叉树遍历的变种。
      ^$ {2 D5 B) S! }, O另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- ?* h! Y+ N% j$ S
    Key Idea of Recursion
    4 \, L0 t5 \( K4 _% y, ]9 W2 Q! J$ t8 k) H  Y: ^
    A recursive function solves a problem by:$ n) ~) W, u( X; |

    ' g1 P; r- Y4 u    Breaking the problem into smaller instances of the same problem.
    & F' `3 |' [" Q% u6 ]3 p
    8 N+ {/ d2 G9 C3 c1 w1 z$ l+ G    Solving the smallest instance directly (base case).
    ) d& K7 |7 M6 _2 H& q/ I# [/ b9 [6 g. R6 q) p! r$ b, Q
        Combining the results of smaller instances to solve the larger problem.
    " D. q+ P. z# p9 ?0 i6 ^$ H& V) |+ u% e! z
    Components of a Recursive Function
    & t7 D& X5 y- }' q  L4 {$ L4 l) L) C0 D: @+ G
        Base Case:
      m! }" @  k/ `& m' R8 Z/ L% f) z6 N+ y, t- F1 a
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 C% o  g: z3 N; M- W; [( }$ C- L
      a& h; ?% P" E6 k6 ?& }        It acts as the stopping condition to prevent infinite recursion.
    ( A, C; X+ D. H+ i& {
    + k& h) v# e: Y1 n! ]4 W# U7 c, i        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    + D( V4 s, K. Y8 f: e7 n1 q. q& V( {
        Recursive Case:
    5 y& v. a4 x2 t* K! v5 e% a$ T& C2 T: L
            This is where the function calls itself with a smaller or simpler version of the problem.$ f7 C% f, k  }: r3 A& s* [1 {4 N

      N8 _. {. B* g4 |; u        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).  A2 R) h* Q) G; f: p% J8 v* Q2 _
    4 U  q) O& L& o8 C0 k
    Example: Factorial Calculation* E$ A3 T' {5 E' K
    5 `* p/ F" f0 k. Z; t7 a# a  O
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    / V8 q; k/ N# N1 v6 x6 ^! n
    ( h6 h: \2 a  B' R1 T3 G) |    Base case: 0! = 1
    3 y" j. f7 P" ~' B& U; a/ D( Y6 F( _  P8 \6 e9 q9 N* B% J
        Recursive case: n! = n * (n-1)!$ n1 q1 E/ X6 ]7 U, B1 {1 l+ \# g
    4 t3 d1 _4 @/ i% T
    Here’s how it looks in code (Python):! H5 k7 V8 }$ k9 Z
    python8 B# o. T4 q# v! {" O4 r. x
    2 ]+ n0 P- ]( |- ?0 H6 P" F, j
    " M1 i; U% ?5 j
    def factorial(n):
    ' f9 J. z( A4 ~    # Base case
    1 q. @# }' {+ e2 ]1 O    if n == 0:$ _$ B. K4 b$ E) k
            return 1# e: R+ R8 n# Y2 c1 A
        # Recursive case
    3 r( Y2 \$ c5 S$ |: \" f' L2 q    else:
    2 N: ^' R( F- T2 z8 q) T4 J        return n * factorial(n - 1)% j& U1 q# a6 x  D* I

    ; }4 ]1 ]9 e  V" h! X- p# Example usage: F; ^* }) K( `6 h, \) i
    print(factorial(5))  # Output: 1206 ?) u" }1 \1 }" y. \9 ?9 b) W

    , J7 c+ J# Q# f; j2 bHow Recursion Works
      p) y6 G& E( D6 l4 A' e0 N* X. x/ m: x2 S' D# z2 `
        The function keeps calling itself with smaller inputs until it reaches the base case.
    1 b5 Y8 ^  G7 M5 R; b6 ?" b7 L& S+ u" b* ~+ `
        Once the base case is reached, the function starts returning values back up the call stack.7 o% j4 U6 k( N3 X
    7 B* l3 C0 h5 o* X. D+ U# b
        These returned values are combined to produce the final result.; v: p% |  f# H9 G0 @

    4 a: r! V6 |( d" X  d% n) ~For factorial(5):
    4 t- O6 Q4 }1 o: T& {/ {( S: ^) o9 X3 x( p* D

    - l) [2 T% i5 z" Lfactorial(5) = 5 * factorial(4)
    , Y3 t6 m+ ~3 P+ P# J- Z) Cfactorial(4) = 4 * factorial(3)
    - u  Z- g8 O. x# y& }0 j8 \- Q& Nfactorial(3) = 3 * factorial(2)
    " H' W- W7 v2 V) Qfactorial(2) = 2 * factorial(1)* O! f* @; t, h, g
    factorial(1) = 1 * factorial(0). i# \( i: ~# R; G. s" A7 W( ]
    factorial(0) = 1  # Base case
    - X' G( o8 P% [; l9 X( m. y
    ) K2 \& b& M, B4 U: KThen, the results are combined:
    # n) E( w4 H0 F; a/ p
    * i# G$ m: [4 w" n5 a, y8 v& v- s0 i& ~2 |" R7 H7 d
    factorial(1) = 1 * 1 = 1. m1 K3 m/ y: U6 Y) a
    factorial(2) = 2 * 1 = 2
    : W8 D; r3 Y; T7 h6 w- b' S. g, ]. k/ \factorial(3) = 3 * 2 = 6
    ; {- I+ s& k8 |  {& E: C4 l* y; Kfactorial(4) = 4 * 6 = 24
      S& P% B* [* W1 I6 [factorial(5) = 5 * 24 = 1203 I' F: i2 }$ x3 h

    : w# M0 `$ M( [! T* [Advantages of Recursion! R9 j  E( m/ V+ _( \+ j
    7 U9 s. r0 P: O! U) D; R% F; ~3 E, i( `
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    2 v, l; M  F4 R$ J3 z7 Q8 K' a1 I1 G" d/ D
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    & j) p7 s7 ~, D, H4 P
    7 s. V2 s0 g. }+ MDisadvantages of Recursion
    ! R+ F/ q7 L+ n
    , c; `2 {$ w! K* m, i; L' ]2 Q( v    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    & Y- v1 j$ L; x" x( ~/ {8 I, u" J' n* S. t$ G; Y. V. [- J1 u
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).1 N9 l+ P' D. {

    4 Z4 ?) R6 d8 ?  S( P( J, t9 hWhen to Use Recursion
    " ~) j7 P& ^- S/ v' O
    9 Q1 `6 a# C9 a3 ^    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% t0 P% i6 S# P' q0 X+ W% s+ ^
    3 p. g0 J0 j6 D2 j0 F3 ]9 I& c
        Problems with a clear base case and recursive case.: K5 H% F# b9 u3 R9 E
    ( v. Z; E/ u- S7 ^6 f6 Z
    Example: Fibonacci Sequence
    & o3 l  j5 z4 w4 T# n: C2 }, e- Y& e  O+ h& e
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:! ?4 O  m- T9 _" H! f
    1 m1 o6 R% X' Y8 p5 r
        Base case: fib(0) = 0, fib(1) = 1
    $ P1 H/ F- K- q4 y8 `0 x! Y2 k  P# U! P$ M
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * G/ w- ]4 s, ]3 n8 x8 }1 h8 e4 O: s, h
    python+ {6 O7 W. e% m  X1 m: {
    4 _1 b+ T: h$ z8 L# ?
    ( ^  h8 ^' W3 i4 p4 V0 D
    def fibonacci(n):, l7 p5 K$ J! f+ n& k# X. M( I
        # Base cases
    . v/ @8 n. j& J    if n == 0:
    * I5 f8 s( m: F- x% T: L        return 0
    # A% o; B- ~! N* `' y    elif n == 1:& H& c6 a1 O2 u$ {  ]
            return 1
    ; G4 `; l4 ?. T# X# {" ^    # Recursive case
    2 Q" `. ?9 G& y+ F# M4 {* k    else:; U- F( Q' F7 V$ \
            return fibonacci(n - 1) + fibonacci(n - 2)
    % S* j* d' o5 ~
    , `5 k5 C1 n8 F% L9 F# Example usage
    # l3 c1 d# {: J3 oprint(fibonacci(6))  # Output: 8* \6 k" U, j$ j# C/ M! m3 b( V( u
    0 e8 E' P+ Y% {8 E
    Tail Recursion2 s' }7 Y4 |( L! j1 w

    / x& v% V  a& m7 D0 d5 K# LTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).$ a3 ~5 n* c$ t+ S

    : u- y" t( f) g8 R4 ]In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-9 11:44 , Processed in 0.032214 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表