设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1482|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 & o: g$ d0 I& C, s3 m$ ^' D' X. ?
      V7 B, ]2 x# w4 B
    解释的不错/ q! [9 k1 Y3 A% `7 b4 i
    6 Q+ `; C0 C4 P) N: {
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    % Z+ C! Z& }; w" _5 Z& g2 y/ Y: A
    ) i% p( Y. {2 W; L/ r- P! G 关键要素
    8 @1 D0 }" E8 X. }: J  c1. **基线条件(Base Case)**
    ' j* m7 @' T8 d9 K1 g9 J/ R   - 递归终止的条件,防止无限循环
    . h9 l' U* `( ^' y" J   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " q# h! p' Z, W  S# Q+ P$ d" s2 m) O3 E& W0 j) k. J
    2. **递归条件(Recursive Case)**
    + d' i5 Y- {1 N7 `   - 将原问题分解为更小的子问题; W* v/ I5 u+ ^$ f/ Z) z% {
       - 例如:n! = n × (n-1)!
    * e! N  i# R7 I7 n( W6 k/ x7 m  X9 w) F0 g
    经典示例:计算阶乘
    ' p* V  j3 j# s7 }: Mpython
    + V0 ]3 ~5 G; f- odef factorial(n):' G$ Y8 s7 O( y2 M
        if n == 0:        # 基线条件
    : O: G8 S: {: t+ V; R" Y' f5 m        return 14 f; g) p8 M8 e. ]( r  U
        else:             # 递归条件
    : O/ ]/ D5 {8 ^        return n * factorial(n-1)4 {2 |7 |8 T) Q' B/ ~# w" X( e
    执行过程(以计算 3! 为例):
    ' N6 f/ P/ g1 Sfactorial(3)
    # {8 r6 [0 e' ~* M3 * factorial(2)
    7 M% t3 S1 U* l/ o& ?+ b3 * (2 * factorial(1))3 B$ c% ^6 _% W8 b4 n5 i
    3 * (2 * (1 * factorial(0)))
    4 e3 Y! l: z% c$ T5 Q) Q8 \3 * (2 * (1 * 1)) = 6
    8 Y9 F' |6 A! P4 t4 |; [  ]2 u, Q8 X, L7 c4 e
    递归思维要点9 _! S; [* D% s) v2 U
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    * K! Q8 w5 A3 M# j8 Z3 C, M2. **栈结构**:每次调用都会创建新的栈帧(内存空间)$ ^* [" S! j2 L, i1 k  w
    3. **递推过程**:不断向下分解问题(递)( G% V0 G. s( j* `& q
    4. **回溯过程**:组合子问题结果返回(归)! U- N- G$ T8 K5 |5 ]! ?# ~, A9 H

    % I! t; j& I% Q8 A1 H 注意事项- W' l9 v! C6 [4 |0 G! V
    必须要有终止条件! |0 ^4 g' @8 H/ J! K
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' ~! p" S6 c3 T& V5 ?
    某些问题用递归更直观(如树遍历),但效率可能不如迭代4 r8 g- W2 W; U- e0 T
    尾递归优化可以提升效率(但Python不支持)
    % @, Y% ~+ N) [3 i4 w
    " W$ [. ]# v/ r( W 递归 vs 迭代
    , d/ B7 I% c9 C& l+ [|          | 递归                          | 迭代               |9 V3 [% u; c7 f) _+ l1 a; Z3 |- g
    |----------|-----------------------------|------------------|5 R+ a( Z% v# v; _. D0 i5 T- w+ H; O9 N4 S
    | 实现方式    | 函数自调用                        | 循环结构            |% V" }; j/ d- R0 \0 q3 x$ d
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 A" @$ T$ x4 o; k0 y( b
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 L9 u% z/ E% E
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |5 M" f& t7 ?9 X. @2 L
    7 V* s6 d% y0 w! K7 I% q# U
    经典递归应用场景
    3 K5 Z2 F8 V3 x8 O4 `1. 文件系统遍历(目录树结构)' U4 i- X6 V! G8 Z
    2. 快速排序/归并排序算法5 w/ W1 y6 G/ }2 a& X+ b# X
    3. 汉诺塔问题$ f, G- d, s+ D  s
    4. 二叉树遍历(前序/中序/后序)
    / n9 h! y' j0 Q+ E, j; i3 V/ ?5. 生成所有可能的组合(回溯算法)
    % b0 o+ S9 v4 F! G, ]  J8 o! }6 ?" g1 v1 X2 |5 t
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 01:20
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    $ Y. h% q8 {3 s6 H: R$ l我推理机的核心算法应该是二叉树遍历的变种。) f; @# g' ]- T
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:5 t/ I6 V: `3 C+ t: N3 n0 [' C. i
    Key Idea of Recursion1 i/ A7 w/ g  y; P* p& T  ]- z
    : E$ F6 v& w8 B0 k
    A recursive function solves a problem by:4 U5 t; E4 I. [2 }+ l  ~

    0 C1 b, O% Q$ v4 ?! ]    Breaking the problem into smaller instances of the same problem.: T3 q3 }, _& O, m) H

    , a8 g# L: a0 w1 `; w    Solving the smallest instance directly (base case).
    + `/ O% q2 p. K6 C2 y/ y& p3 o
    " e$ ?2 Y* G- k# G3 Q' v/ k& f: \" _    Combining the results of smaller instances to solve the larger problem.
    ( A6 y" x5 |) M/ Q# H% ]/ a* q0 w* e( s7 C9 ~/ S
    Components of a Recursive Function
      x& C8 m0 U/ x, C6 v6 d( C$ \2 K) o! B2 L  F5 m7 |2 z
        Base Case:( Y. }5 z: l" G/ [4 ^  P
    , _- K) W" I+ P0 I* Q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; P, n. Y! l" X$ z1 f  _: A# ~4 s2 Y/ l. P( b/ ~- F
            It acts as the stopping condition to prevent infinite recursion.
    8 a$ V$ T5 A- Q7 P  Z% d/ h$ |# E' V
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    1 [' n' [+ z2 s& S6 C& S$ L* U- h/ R2 ~
        Recursive Case:
    2 O. B' T; X1 U3 p
    # s% W, Y( B3 w1 [$ E        This is where the function calls itself with a smaller or simpler version of the problem.
    4 k& C' A6 l" ^. X$ v1 Q/ j( \$ e
    0 T7 U6 b% O0 s        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).3 }0 `6 i1 @, G% z+ p( }9 m

    : N3 k1 R) _( ]! y5 kExample: Factorial Calculation
    ) S& d7 l2 F4 R% ^/ n' \2 B4 E0 a* ?  r
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:- U$ X9 ?1 g" a3 M. f

    * k7 O! ^+ R; u    Base case: 0! = 1' I: ?; w* u4 ~# V
    3 ~5 U7 {  B+ f/ `
        Recursive case: n! = n * (n-1)!' p( K; u0 w9 j9 G
    * z: u) d2 |) c* m6 M
    Here’s how it looks in code (Python):
    . C" [& V: w6 u" h% M* i4 \( kpython" h, n  d2 }1 o
    $ l. ~  |0 N+ L0 V. k3 m
    " S7 [/ O/ ~4 Y, O% C
    def factorial(n):
    , F1 s  H* s; Q0 ]; Y5 t    # Base case
    ( r2 \- `" V( R; K' Q2 b: _% L    if n == 0:
    , V5 g' F, v/ |' _        return 1
    & {  x, c, O3 ~, Q# z/ P! @    # Recursive case. h7 Q' W6 P  v
        else:
    + s0 P: K/ g) q$ }% }        return n * factorial(n - 1)4 T% p8 j3 m" n! r/ N8 N1 O
    ; d# I( D3 V6 Y- e1 M' ^
    # Example usage+ @2 i: r& ~& m. k$ C
    print(factorial(5))  # Output: 120
    2 U' I$ V/ J' e$ ^, w6 J' q# }" l' y% ^( T1 f0 A
    How Recursion Works9 A7 m0 b' B9 \: y0 }2 D* q
    9 D' K# A' q4 O9 f8 c. ?
        The function keeps calling itself with smaller inputs until it reaches the base case.
    / C4 L  i) q7 A+ m
    % G8 z& N& R+ X5 G% a    Once the base case is reached, the function starts returning values back up the call stack.; k5 k( i! v# X1 B! d2 f1 J1 H

    & ]& F5 \0 ?4 {. T    These returned values are combined to produce the final result.
    7 W* W* ]0 S/ f3 g+ M; K
    ; ]- M& Q; `$ {( ZFor factorial(5):( Z  R5 T0 |+ X# E

      d+ T/ B  H9 c; w9 W; a; ~5 t' O5 o3 @
    factorial(5) = 5 * factorial(4)
    2 l  A( S/ u9 {4 V( i: Q3 m! ufactorial(4) = 4 * factorial(3)
    " _1 j& ]: M3 Z- K8 @$ D5 H  Z6 Mfactorial(3) = 3 * factorial(2). Z4 {5 W( a7 [- `6 I) n( G5 N, `/ R
    factorial(2) = 2 * factorial(1)
    " A2 ]& r1 \3 R# b; Vfactorial(1) = 1 * factorial(0)7 j5 c# S& k* D7 X
    factorial(0) = 1  # Base case0 w* r. ]9 x) k

    # L- E! e' H: e. hThen, the results are combined:
    + o2 D# e& y1 W0 M  Q+ q
    * ^, d" a3 m! n% f' f$ Y( a# K0 d9 U2 n" N7 `+ e) `$ v
    factorial(1) = 1 * 1 = 12 L4 m7 e& m8 I7 p9 h3 c" A7 H
    factorial(2) = 2 * 1 = 2( O; ]7 G( i9 M' ?4 x) |
    factorial(3) = 3 * 2 = 6
    4 Y/ J8 D: e9 yfactorial(4) = 4 * 6 = 24
    7 H7 x: O7 h) g' ]. Zfactorial(5) = 5 * 24 = 120
      X7 N& f! h9 g1 f7 G
    : b- ?7 h- i+ V& x4 XAdvantages of Recursion: O: v9 X( W; Q  f0 ~. @& L8 p

    & n3 {; ?3 }# i1 q    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    1 P7 j% `% L. [4 {3 z) n* ?7 j! C; V4 M, o0 T) T' G
        Readability: Recursive code can be more readable and concise compared to iterative solutions.) j" A" A7 Z2 t& j
    ! U- ~2 l# S( F% K2 K, Y
    Disadvantages of Recursion
    , y' z) C0 @- F1 G% f6 I+ b' k: x- r/ y. z2 E' j5 l
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ) v1 T9 r3 {- }' I7 ~/ ^$ y6 a6 Y; t8 W
    3 S" R2 d8 [+ ]; h    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).8 C  N" A% b; R' V  @

    & C; K( ^# R1 W6 q) tWhen to Use Recursion% `' d1 y, T- H+ l2 m9 W8 s7 D
    : V( |- P$ l. M4 I
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ; A+ v& I& c4 I: R9 S- x  h( G
    . ]6 G( b# y( m$ K) c# i% J# H    Problems with a clear base case and recursive case.# u* N/ q4 k+ q3 `( T

    5 D' y2 s' B( I' ]9 @Example: Fibonacci Sequence' R8 A, i; Z$ @% p
    : W3 k: z5 [8 \  y4 f, I& p
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" w+ B/ d' U3 {/ G/ j: L
    2 j, z/ ~. n/ X+ A6 ?; f$ q
        Base case: fib(0) = 0, fib(1) = 1$ ^7 u7 R7 G* ]! Y
    0 W3 L8 X! [) z+ a" f; i
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ; a4 E) x+ j0 U7 ~$ W( |+ w
    $ o! M' Q, l# j# k$ Wpython
    5 R! Q/ z$ }  U% u/ X0 u8 b+ ]$ d) Q& i+ t  p1 M
    % x3 y" Z9 A6 |2 n
    def fibonacci(n):
    . }+ r5 V$ n) ^- N4 Z- w2 y    # Base cases
    & e3 [' Z2 q7 t  w7 F+ E$ @    if n == 0:
    ( V4 F$ K6 Q- O        return 0
    ; B; z( B0 c0 G8 w  ~    elif n == 1:  A4 _, t% B( C$ O
            return 1
    ! d5 o$ e/ J" h    # Recursive case
    4 e; I1 j7 W; k9 V  e7 |    else:
    ! V- A: ^6 ~* y" Q        return fibonacci(n - 1) + fibonacci(n - 2)% X! h5 v8 k, Q! ]$ |' G# [" ^& m" G

    : C9 g. K+ _5 Y# Example usage% d0 _6 D& }# `5 n5 ?) w- a
    print(fibonacci(6))  # Output: 82 y6 @- \; a0 {, O8 n5 E8 `
    ) I% B/ c- U# d, \
    Tail Recursion
    ' ?: D8 |$ ^$ {8 S) _
    ! [) ^' p1 V( e9 q1 gTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ! h; P3 T+ h. S$ [8 J' V. L8 h- g- p8 V9 u7 W; E/ I0 k: }
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-12 17:18 , Processed in 0.030140 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表