设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2057|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    " c8 i4 c! b8 I, F
    ' y# e" I  J% |% ^3 M6 ]& w解释的不错
    9 W9 x* ^$ s/ N, K# v
    . \! L2 f. B3 h: V递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。, N; [/ F5 B6 P: B8 K: o0 F% k

    & W/ [! X0 I$ q2 W 关键要素
    7 [% a2 c2 b4 t1. **基线条件(Base Case)**$ D: ?# T3 T  ]3 t& |; p2 r
       - 递归终止的条件,防止无限循环7 ~& A* L& i7 S, Y- J
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 14 p) Q" Z4 D. \4 t5 {8 W# ^

    8 r$ {! W6 h  K# B; X1 N* o: n2. **递归条件(Recursive Case)**' g& ?* E0 M4 @& S4 u0 e" X
       - 将原问题分解为更小的子问题
    9 }5 T7 f. l$ R   - 例如:n! = n × (n-1)!* Z! P8 r! ?1 ?. ^1 X6 B. G% g
    , X! Z2 |* i3 d) n
    经典示例:计算阶乘
    / k; |: a. T/ D7 q5 spython
    7 ~- S1 K3 m  t# H! |def factorial(n):
    * D+ ]& V- i4 z9 j+ U1 C    if n == 0:        # 基线条件3 e' t. Q8 L$ |) H0 J
            return 1
    2 e5 k8 Y9 a6 w' a/ _    else:             # 递归条件
    5 j7 K/ f# m2 n2 O" J$ P        return n * factorial(n-1)
    # O" p! ^! a7 y# b1 p执行过程(以计算 3! 为例):
    ( c4 |3 {+ ?* I; E$ {' C, Ifactorial(3)
    ) g5 N& W) [. D9 a2 q3 * factorial(2)! }+ [8 b# J" s' c4 \, R+ i
    3 * (2 * factorial(1))# u' o; O! F& x4 Y! {
    3 * (2 * (1 * factorial(0)))
    ! s* x/ M; o- A% d7 A6 y" q# t) f3 * (2 * (1 * 1)) = 6, g9 f& S* t! h# o2 A; t( q
    & C* n7 S/ t* h
    递归思维要点
    . g4 @' ?8 r) f4 U9 \0 a9 J1. **信任递归**:假设子问题已经解决,专注当前层逻辑
      Q' y; @: A( [# f, {9 Y2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ) A3 K5 y' |! }* C3. **递推过程**:不断向下分解问题(递)( d; e* s+ E7 q0 C% |! ]' E& R0 Z0 A
    4. **回溯过程**:组合子问题结果返回(归)
    - ^( A  f  K- F9 ?. j# q3 [
    $ X+ V3 T4 Z! [' \ 注意事项
    ; M  G% r! Z" j# q# z& g% ]必须要有终止条件
    8 v+ y. w' H+ ^, z; o, v递归深度过大可能导致栈溢出(Python默认递归深度约1000层)% J& w  l% c; o1 I
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 g" d2 |7 u( g& ]7 O( q尾递归优化可以提升效率(但Python不支持)
    ; T) ~7 ^: I1 x' S3 I# I  ?- T7 @3 J1 U* w
    递归 vs 迭代
      r' r9 ~4 n& a7 h( T|          | 递归                          | 迭代               |0 P3 b4 |& Z1 E+ {
    |----------|-----------------------------|------------------|: P2 _, |. y. F$ k
    | 实现方式    | 函数自调用                        | 循环结构            |
    7 l* K4 B( m' d# ~; {3 F% N1 e8 M| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |) S7 t6 w' q) n! i2 g. U
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; h9 O# ^. `9 }) s: f0 _* l
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    / d( u0 @' B" F+ ^2 l9 C- \
    $ ^4 {) q& ^# j 经典递归应用场景$ C9 Q6 P4 N+ E0 J8 @! ?2 \
    1. 文件系统遍历(目录树结构)
    , a5 Z7 T3 W9 ?: V% J5 @: v2. 快速排序/归并排序算法7 \0 s! }- g  |0 @, p
    3. 汉诺塔问题4 J* T- Z5 B- F" l
    4. 二叉树遍历(前序/中序/后序)/ Y( t- A+ ~) K9 V8 B
    5. 生成所有可能的组合(回溯算法)6 a& R9 I/ |' ^# Y* w# {9 w' t
    . S3 s' N- s) {) \
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    12 小时前
  • 签到天数: 3168 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) I9 p7 N. I  r我推理机的核心算法应该是二叉树遍历的变种。  Y3 r! W( x) @' z- g: O
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 P; o& ^0 I6 n' xKey Idea of Recursion
    2 N4 y- P) B. i! W9 {5 H" v' m; `- ~
    A recursive function solves a problem by:
    ( w7 _  f3 Z& B2 Q
    9 i% R/ |( G9 z# S+ Z& Z! s3 ?+ r    Breaking the problem into smaller instances of the same problem.
    7 F+ [. F$ a1 u# h( {
      W% E; J1 T* s2 o    Solving the smallest instance directly (base case).
    " p, A. S5 V& U9 Q7 d2 r, A7 h) x& i* y4 T4 J6 z
        Combining the results of smaller instances to solve the larger problem.
    " [" }# T3 k/ ~: a$ _2 ~8 _- \1 h* M' i7 ]2 |
    Components of a Recursive Function
    ' `3 `$ o, Q$ |% P' J; d# j+ ~8 ~! y( C/ }1 j
        Base Case:
    5 j, {8 a# G  I' Y8 ]3 K6 w4 c+ R3 a: C* |) T
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    % v2 `, i1 o# f& }% \9 o0 @3 k! H7 J9 a" l
            It acts as the stopping condition to prevent infinite recursion." H+ y" k1 R0 p! {

    % O+ i+ u/ M8 K& j2 C2 ^$ ^        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    0 V$ z4 S4 ?- {* d8 s" e2 r& A) v2 L' v) ]" J
        Recursive Case:( [+ }, ?1 m$ Z" S
    3 g2 ^8 K. A# F( p  }9 s' e1 k: @
            This is where the function calls itself with a smaller or simpler version of the problem.
    0 I6 ~. r8 U) A+ ?( g
    6 m9 h5 O+ L- _( O+ v3 E+ l9 {        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    7 v0 Y* y  u  i' r3 {0 P  Z" U/ U6 l% @1 m0 Y2 M
    Example: Factorial Calculation
    & \: y4 x1 r1 ]: R. G+ f. F, l3 ]7 e0 C& O; W
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    $ X6 C/ m+ v' o) K" k, m
    # u1 b) |6 C: @' C3 r% c    Base case: 0! = 1+ {: e6 ?/ E% H7 }: S/ w& k
    : n6 H) P; }! I! }6 J
        Recursive case: n! = n * (n-1)!
    6 _; A$ A1 H6 O5 z& ?* u6 s9 }9 C/ z) J; L! t/ n+ ?
    Here’s how it looks in code (Python):
    - `( `- |3 }' q8 Q- F; x" Apython1 r( |0 _1 ?& Y/ D  t
    3 o: H8 A, z' B% o: O  n- G7 m
    " w6 c' E; d2 D$ }4 B
    def factorial(n):
    2 Z: t$ O8 X( [, g    # Base case4 j9 r1 ?: l4 J6 H& s
        if n == 0:$ U% i" r$ c- w. n
            return 1
    ) S# q5 p' S! B    # Recursive case5 f( f- j: D& x2 P/ d5 K
        else:
    - `0 H8 y7 N5 O0 y/ }* X        return n * factorial(n - 1)
    4 U0 w4 A1 v# ~5 X( [( |; l6 y
    4 l$ k  j9 ]3 k2 z/ G# Example usage' u. C; U6 T; l# t
    print(factorial(5))  # Output: 120
    3 g; [& g4 w$ |& \# D
    4 x$ k! M; g( |' eHow Recursion Works, b* g& {; ]& J! _+ P

    + j+ }9 ~3 C6 a. N$ |0 s# G    The function keeps calling itself with smaller inputs until it reaches the base case.% L; D( z* |& ]3 C

    * @; B, o* c" p) ~8 C6 Q    Once the base case is reached, the function starts returning values back up the call stack.. B3 L7 I+ |% V" ]% ~% o5 d$ z* \
    * n% U3 j7 z+ L; m9 [
        These returned values are combined to produce the final result.0 [( S7 O3 K8 J6 a
    - ~' z) s( J$ P
    For factorial(5):
    ; E2 u! N' m* h7 }0 M6 p3 E1 Z# x( E* J+ r* e5 Q( W3 ^
    7 {& P+ @6 r, F% K% j
    factorial(5) = 5 * factorial(4)
    ) c& E; g0 O' @8 B8 D6 x0 `) dfactorial(4) = 4 * factorial(3)4 ^& x9 P# x- Z* Y# p. e1 Y
    factorial(3) = 3 * factorial(2)( c! j0 \* v5 h+ c  \
    factorial(2) = 2 * factorial(1)
    : q( R- Q( W9 q- d* M& b" nfactorial(1) = 1 * factorial(0)
    1 \, k2 F" z3 ^! R, S) }factorial(0) = 1  # Base case
    0 r7 J* i& u1 f( h) I* r: L8 o9 e2 r* E$ R6 @0 D, @- Y5 a/ V
    Then, the results are combined:$ u5 c* I8 m( h2 B& n2 g: t

    & q; G+ G4 I# {" X* ^9 r+ Z/ }0 S
    factorial(1) = 1 * 1 = 1
    / b& `, ]# q  p% ~factorial(2) = 2 * 1 = 2
    * L1 }/ Q. R+ {: Gfactorial(3) = 3 * 2 = 6$ n) O& F( m- g/ L
    factorial(4) = 4 * 6 = 244 C9 A8 A7 M8 V. E, t  w) {
    factorial(5) = 5 * 24 = 120
    ! E9 E$ e7 c8 y. P# f  ~! |7 u: P) p. Y4 {4 n
    Advantages of Recursion
    # G* ^4 f4 A& g, P" |
    & `4 d* f- O0 [, A+ k( Z, ]8 P    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ) z3 E7 _5 E8 I$ j
    , K' w- Y4 r  W2 v9 N    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % C; e1 r* J* z; `: f$ r' Y! `, l: u% I" H
    Disadvantages of Recursion
    ) v: v, v; X1 u4 d
    1 I( ^$ @2 u4 h0 R4 J  t" J  v    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.) a4 W: W) _8 P; J
    & i! q& z% E, f0 i! t: y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).& c& N/ H) ^/ {3 p% T$ e; [3 @

    ! \! Z. D% v! g7 v5 X$ ^When to Use Recursion
      r) Z: O2 \2 o% y0 i* C1 N0 K+ z' d+ _8 x/ P5 o- [
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).5 V( `# F/ M" e
    : ^# @3 e6 ]' p6 k
        Problems with a clear base case and recursive case.5 Y( Z! f1 r# z! m, E+ G1 D

    7 s+ {* v4 H( C9 q3 p& ~Example: Fibonacci Sequence
    , d3 _& N9 Z9 Y' v/ K9 O4 i+ _: \0 m3 W. J" z( W7 Q# R7 {
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:% H/ R6 j4 }( W. h

    4 s* [5 P& S( g& h# r1 k+ ]    Base case: fib(0) = 0, fib(1) = 1
    0 @' q' Z+ l8 ?2 `1 T3 {+ L) ]% h" f2 c) f
        Recursive case: fib(n) = fib(n-1) + fib(n-2)" t6 z3 K& j: i. g
    6 C9 H, E' C, F
    python& L3 k9 {& g# k1 D

    . g$ C- p5 g; e8 I5 R
    9 o: R3 q9 r2 Udef fibonacci(n):
    : Q& H. ]+ N* I" Z2 c$ @    # Base cases, D" R  k1 }$ R, n# z- P, R5 H- U9 Q
        if n == 0:0 ]; H- n& W& \
            return 09 m7 H; F; V' H% p/ `9 K
        elif n == 1:
    ' W" l, n+ e7 P  K) @3 j; M        return 10 @9 D9 S, k8 [" V7 Y
        # Recursive case
    2 k* K7 M/ }1 S1 M    else:
    2 y. Z% [3 H! E6 c$ ?1 s3 R        return fibonacci(n - 1) + fibonacci(n - 2)
    * [- ?( s$ J, s* f( O* {7 R. V
    8 h+ N8 I( X7 o8 }: ~4 \; y6 |# Example usage  c2 O7 E! q$ i/ @
    print(fibonacci(6))  # Output: 87 q$ A9 W7 v* s2 T$ ^7 l+ I# i% n
    / W& l% w  c+ H4 K4 d! z$ K
    Tail Recursion
    - }1 |* e6 W4 w; I: P# h4 b; Q; j! K1 s6 ?7 F
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    . x# y" k' s: f/ N2 i1 R( Y- l& F9 F5 h: v
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-9 22:23 , Processed in 0.058520 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表