设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1624|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    , e1 ^* n! |. m" d' A( F$ ~1 O' m  ?6 O! E
    解释的不错
    - A: ]: j% B# C& t+ g# F4 O1 U/ W+ N/ B1 q8 n+ O! S; A
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    * }7 A6 {  d/ [' ~- N
    6 I( `; E' H6 e; C0 u 关键要素
    & `2 g8 t$ F4 h% @" O9 r1. **基线条件(Base Case)**
    7 f  E& P+ X' x/ j; L   - 递归终止的条件,防止无限循环3 U1 g9 p1 I" O1 @" h5 M
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , i2 M) O& A6 _# [% [0 H
    , Z, }0 O" S6 M/ q2. **递归条件(Recursive Case)**' l5 b3 L( f. d* r8 s( g
       - 将原问题分解为更小的子问题
    * |; w1 U: e  \7 q   - 例如:n! = n × (n-1)!
    " \4 A% _3 w5 a- {1 N
    : I% K! S0 B: j# q 经典示例:计算阶乘  r3 O0 }3 c: N: y' b
    python% D- \% Q5 ^. z
    def factorial(n):. b$ {2 B: {( A
        if n == 0:        # 基线条件2 B# Z0 \- {4 N. f: |* y3 d0 D
            return 1
    9 q  E3 T! f$ F1 T    else:             # 递归条件
    : i' i; O1 F; O! u2 a        return n * factorial(n-1)
    ) x$ }6 k& t6 H1 o5 [: v执行过程(以计算 3! 为例):, `. }5 ]9 ~6 F* `
    factorial(3)
    % L0 c  T9 Y# X3 * factorial(2)
    - M, p$ I6 E. w- V3 * (2 * factorial(1))
    ) q! v! ]/ e) E  d) r: T3 * (2 * (1 * factorial(0)))& _6 E* c( [$ V% Q
    3 * (2 * (1 * 1)) = 6
    0 }" k" ?, s+ o! M9 |, i# X
    # q6 t7 e$ }6 S. T8 m1 O2 d 递归思维要点
    ' }: b, R2 t5 I7 l5 r9 z1. **信任递归**:假设子问题已经解决,专注当前层逻辑3 R6 T" s1 S5 t
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    - d0 |4 t2 z0 U5 C3 H" _3. **递推过程**:不断向下分解问题(递)
    % m2 n8 ~: M8 l) z1 z5 c9 Z1 S4. **回溯过程**:组合子问题结果返回(归)
    * c( P3 e6 x2 @. \
    6 _3 J' U, G3 ?" N; [# j 注意事项9 j& ?6 W- k  D% {
    必须要有终止条件
    $ O$ a# n( A1 X9 {$ N& G8 c递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    & t# }* w" o7 E. d某些问题用递归更直观(如树遍历),但效率可能不如迭代# s4 A- I$ H" N" e8 q2 d) s$ K7 {
    尾递归优化可以提升效率(但Python不支持)
    ; Z& c4 c5 ]- o8 _* O
    , X$ k/ B' `4 R5 B6 J' N& U 递归 vs 迭代$ H% ^* ~& o- x" M
    |          | 递归                          | 迭代               |* f6 I: Z1 }) E! b
    |----------|-----------------------------|------------------|; w; S0 y" _! `! e: N
    | 实现方式    | 函数自调用                        | 循环结构            |
      B3 L" N! r$ I: h6 U' h8 L) W| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ( C- J8 q$ H8 {) f' a' k! B| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    # Q0 P% c, [  B2 [2 L+ x/ S, V) Y. x, g| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    1 f- E# @) h- V2 F2 U. U! g$ c  s% v  k0 S
    经典递归应用场景
    7 K5 g  l$ O' l1. 文件系统遍历(目录树结构)' B" p3 P6 L, c# P3 ^) |
    2. 快速排序/归并排序算法+ g8 V4 x, v6 V8 Z! `8 z* o4 x
    3. 汉诺塔问题! ^* R* Y, N/ K- K7 t
    4. 二叉树遍历(前序/中序/后序)7 D7 x; k1 r+ F' D
    5. 生成所有可能的组合(回溯算法)
    5 R* x2 r( M9 X6 T$ p9 W4 H; w
    , A! k( g( `. E) H0 Y试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    9 小时前
  • 签到天数: 3126 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) ^' b: k% D4 {( D) D8 d9 k. Z1 q我推理机的核心算法应该是二叉树遍历的变种。
    6 {1 u- O( J: ]* E3 W0 t; W另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:* r$ x+ ^' d0 n6 I' l4 m, M; C" e( S
    Key Idea of Recursion
    + }& e8 X6 o4 ]
    1 U1 d6 a2 Q3 f! m6 e$ SA recursive function solves a problem by:. B) D' L4 O" U# _& z1 r5 Q

    : ]: Q4 c) x, |' B+ ~( q9 m    Breaking the problem into smaller instances of the same problem.
    * f& o' {9 n# r7 Y
    & ]" k1 \3 d6 f: C3 J! i! E    Solving the smallest instance directly (base case).
    & C/ A5 k6 i+ ~! H4 |, G3 |: D' c( o" {1 x% \
        Combining the results of smaller instances to solve the larger problem.* \; }' X: g  N, N2 }

    0 T4 s2 ]$ L5 L7 IComponents of a Recursive Function
    0 y* r4 z% ~- t4 d4 K" Y& c" y3 y3 J  X) T) O! o! a
        Base Case:
    ! n# t/ K# D* m# e$ s$ v. j5 ^7 ^: {0 ?
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    & G% c- a) G; o# a$ [( K" s' s. e* E, K
            It acts as the stopping condition to prevent infinite recursion.- T, e. ~: I# d2 s# J

    / Z( F2 E( E8 O; `2 J  }        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    1 Q6 @! ~& X" W) ~/ X6 t  B9 ?4 G7 Z, W/ f
        Recursive Case:; e% \' J/ p- F
    0 ^! }/ o5 @3 H# V* S
            This is where the function calls itself with a smaller or simpler version of the problem.
    # f! S- U! q% k0 V* r3 z; D2 ?# g: G% W% |- E/ b
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: h4 h4 x: G6 U9 Q) l

    4 R4 V5 O6 F# \7 M4 J0 O" WExample: Factorial Calculation
    # H, T6 ^& a; P2 J+ C
    4 i! P. L. D0 Z6 C' @0 r5 AThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    / g+ L& ^; M1 S% R: s$ G
    9 u0 Z0 X1 J% W$ I    Base case: 0! = 17 @5 i3 h& `; P
    # ]) q. b& X# s7 m  ]; F7 \- ~0 {
        Recursive case: n! = n * (n-1)!
    $ X* j0 G8 p6 F9 b5 v# z& u( I4 s/ v# d5 e: h$ }  z
    Here’s how it looks in code (Python):+ \; Y" H1 t) N. @" e
    python
    / f# U3 ]; ^. `2 }
    % c5 ]0 ^6 T) p3 n9 |2 p8 `& X, E
    + @7 o# \! j' ]/ Udef factorial(n):
    / W/ n& ]7 W/ G( }7 Q5 V    # Base case. M+ N5 c1 |  W, c% F* S
        if n == 0:
    0 e9 o# n  {8 i( L        return 15 R8 [& v+ D$ {& O- `! R
        # Recursive case4 o% {6 O. @2 C/ |5 @( S
        else:" C. U! ]$ T# _! x; \
            return n * factorial(n - 1)4 g& D7 ]% R' n; b: O2 u+ S8 G1 g
    : Q  F, q, {8 U
    # Example usage  j* d- y" o4 i5 l7 i
    print(factorial(5))  # Output: 120. L: [+ o, c1 u+ a% V
    9 h, ^! m( i" o4 a
    How Recursion Works
    . m4 U* [, k$ d" d" v" w* J% E8 R6 b: q! T, h; m
        The function keeps calling itself with smaller inputs until it reaches the base case.! {  N  y/ s8 ~8 L
    6 v0 c+ v! A3 z: [% [, n7 l$ G% w
        Once the base case is reached, the function starts returning values back up the call stack.
    . X8 j6 P  @9 _3 w$ m
    # G& O+ W* z8 @5 G) L4 ~    These returned values are combined to produce the final result.
    ; g# z$ V. `! V  R( O+ g# t0 ~7 t( Q/ e% s3 w( }$ r9 F9 u
    For factorial(5):1 j0 n+ ^  g( g( h8 ]

    + o7 S% O' g) e* D4 g& ]8 o/ _9 v# ?* X& p) r
    factorial(5) = 5 * factorial(4)8 r* U+ s, M2 J8 I& z; d2 X# @0 ~
    factorial(4) = 4 * factorial(3)
    ! C. h% O" c6 q; t! Ifactorial(3) = 3 * factorial(2)
    , Q3 R: Q. Y2 H, Xfactorial(2) = 2 * factorial(1)
    2 \, k9 e  k1 Tfactorial(1) = 1 * factorial(0)
    6 \6 B3 e- P% ^* M$ }. u  h6 bfactorial(0) = 1  # Base case
    * s6 c5 X! q: _8 [' t  H3 w1 K' g" X3 I
    Then, the results are combined:
    6 N7 @" b6 {2 d. m: a: i
    ' y; N9 A8 Z6 q- s5 A* ^' s3 z& P4 O! `7 G' X( P( t4 k, P
    factorial(1) = 1 * 1 = 1
      [- K0 p. f/ S% f2 `8 T, c5 Hfactorial(2) = 2 * 1 = 26 r( h, y. F9 @- ]" P
    factorial(3) = 3 * 2 = 6& T9 V0 |( v5 p- Y) q
    factorial(4) = 4 * 6 = 243 y* j! T6 }) y
    factorial(5) = 5 * 24 = 120
    5 y8 {+ D4 d- K. U6 k  b% k7 B! y6 e- b' A( t8 Y
    Advantages of Recursion
    , l. c8 y9 p$ \; X; G
    % x7 d$ R% }; K; Y4 s  Q    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    5 Q9 F: S+ i6 ]4 P/ {9 v, A
    ( K- J: ^0 H8 d, T    Readability: Recursive code can be more readable and concise compared to iterative solutions.. B0 c7 S7 M8 a  \  o& i

    ! R' c8 k8 F9 R  Y& a/ g4 d5 rDisadvantages of Recursion6 u/ Z8 x" ]+ c

    ' ~# ^% S3 h! Q, i+ l, g. h    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.( l5 Y( J( Q* M4 R

    2 h( K8 Y% y4 g3 ?- G    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).! x  ^! A% h5 I6 q: ?. v/ |  a. m
    2 o" U$ _/ U. T6 e3 D1 f
    When to Use Recursion$ E# s2 b7 u" M# }
    ! ]" p* N* \: c1 I
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) Q4 U$ L; w2 {, m$ f0 ]; w

    ) x) J1 t% e/ z. _1 {6 l    Problems with a clear base case and recursive case.8 D8 O& u0 l' R

    6 ^! t  h$ K0 H' LExample: Fibonacci Sequence& }6 j" A9 Z; T
    " i/ x- g+ }+ r8 }; j8 M, {( [
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:. w0 c4 p6 g" G0 R  J% u

    ( b4 l6 w, t9 m3 B  y. ~# B    Base case: fib(0) = 0, fib(1) = 1
    + n, `: w: i2 g/ N4 X0 }/ u+ B2 L) u' X/ o
        Recursive case: fib(n) = fib(n-1) + fib(n-2)$ K3 F6 C4 U+ \' J5 G+ U; W
    & I! @, j* H8 s; p; s0 u9 n
    python
    - J/ E# V' _  @+ V# v
    6 Y8 V  d1 B. }# `
    3 c- p3 r7 A5 g6 q" M( Pdef fibonacci(n):" s3 e! }1 f5 b
        # Base cases$ N; P, y4 Z$ ^* c; s, i
        if n == 0:! G* i/ V5 j" {4 F9 e, |! `3 P
            return 04 t5 K/ W0 N+ C: `1 X
        elif n == 1:4 u- f0 l6 w4 D2 i% t3 O
            return 1
    & P$ c, j/ Y" C. P9 m& f1 z    # Recursive case
    1 v/ t) R6 ~+ N* E" l    else:( v. L% O  h3 @" N
            return fibonacci(n - 1) + fibonacci(n - 2)
    ; S4 f4 G+ s% o) x0 r1 y/ Q3 w1 A3 I" Q- c+ m
    # Example usage$ ?: I: u/ ]( u5 t
    print(fibonacci(6))  # Output: 8
    9 Q% D  C1 Z9 N3 Q0 r6 Z9 n, b  O) a" D
    Tail Recursion6 \! T& e' ~6 y1 v& n
      H* W, {8 G1 {0 \! W
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).- L; ]# l7 i! X: Q
    7 |9 Q6 r5 ^; f) u8 v
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-24 17:59 , Processed in 0.034341 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表