设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2090|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑   v4 M6 p1 X. C8 d$ V$ o1 ]
    * x3 K1 _* S9 ^
    解释的不错
    . \+ H7 q! g# ~1 z$ |! q3 _* F; N  G& V
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% a, X' q) Q  u3 v) W6 q- B1 x

    6 j1 @' I- r+ ]$ i2 i) | 关键要素
    " e2 ]5 G& _& K4 A/ M) X) J1. **基线条件(Base Case)**
    0 T' I! b9 Y" s/ O" L   - 递归终止的条件,防止无限循环
    7 u% u# B' O9 w   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1% Z' [+ F2 X: {0 J  b; E% Z7 ~
    0 y+ T7 ]- z2 T
    2. **递归条件(Recursive Case)**/ `  w2 P/ P+ g8 j9 z0 R, r4 N% F
       - 将原问题分解为更小的子问题
    3 G$ d+ Z( S3 s* M5 T& ?  ~   - 例如:n! = n × (n-1)!+ U  G) I) V% ?& u% ~: U0 `

    + w8 E9 f9 `& N( c9 e( v+ ~: b' S 经典示例:计算阶乘
    8 h1 k3 a8 q; r8 C  Z3 M, Apython) ]/ s% P1 e& W1 }
    def factorial(n):0 `1 v* V# e; C/ u. C
        if n == 0:        # 基线条件+ Z  v8 S+ M0 m
            return 1) e2 f' I- v. F$ m4 @
        else:             # 递归条件
    ! k* a! u! d3 W& h9 l- `        return n * factorial(n-1)! G8 n. t! j" t8 Y: ~
    执行过程(以计算 3! 为例):; [) n9 b% e6 k- A
    factorial(3)
    ( @: U1 y4 `( o$ P1 J3 * factorial(2); f1 F8 p, \3 a  ]' @% ]
    3 * (2 * factorial(1))
    " i+ a5 `3 p0 v% r- n2 D' h3 * (2 * (1 * factorial(0)))
    3 ?+ q9 h9 u. ?1 s" B" y, I& F! Z3 * (2 * (1 * 1)) = 65 x' u) t; n# @% g

    ) x1 n5 r, f, I. x$ G6 f 递归思维要点
    0 z- C& Z! m1 L9 k- F9 i- F1. **信任递归**:假设子问题已经解决,专注当前层逻辑2 q* Y- Z. A8 _; G- J2 ?
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)) F2 H1 `2 t( a: @0 ?% e/ w
    3. **递推过程**:不断向下分解问题(递)1 r$ a6 j* D, t- }& j
    4. **回溯过程**:组合子问题结果返回(归)
    # \3 s2 ]. O3 i! [- M, z* n4 h
    6 r- }8 W: J5 a' j: M1 G 注意事项
    ( D1 O3 d7 q" q" U2 j$ {3 [必须要有终止条件7 ?/ A( }2 Z1 x. @5 M& W2 u
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    + |. I2 ~( l" X: K' }某些问题用递归更直观(如树遍历),但效率可能不如迭代6 B4 [( g- U  g8 D1 Q
    尾递归优化可以提升效率(但Python不支持)3 ~* b$ V1 H  ]- H. c, i) Q

    % T9 P% Y  M( N7 k 递归 vs 迭代  D/ w2 r# a; ^5 S( y0 e2 J
    |          | 递归                          | 迭代               |
    1 J$ o- P% ~, o( w# c( {|----------|-----------------------------|------------------|
    2 Q. _6 f! C, `; F0 q" y' O* |, \| 实现方式    | 函数自调用                        | 循环结构            |  C: t: A, Y; }$ d
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 B0 |0 ~6 ^/ W| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& q% n9 P8 f* l
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |9 H9 H  q, ]; u) Y

    " U& O* O+ F" w( b0 _1 J0 [1 s. s 经典递归应用场景. ~5 }6 L' Y- W5 Z  x
    1. 文件系统遍历(目录树结构)/ N: N9 k( m0 [$ N) z
    2. 快速排序/归并排序算法
    , ^! o  w1 `2 b& |1 S  R' m6 O. s3. 汉诺塔问题3 z/ m3 Z* O# a4 N- k
    4. 二叉树遍历(前序/中序/后序)
    6 |( L, {/ H, E5. 生成所有可能的组合(回溯算法)8 f! b* t8 I7 |% Z% ~8 ~$ y
    9 d8 N, B, [- r/ w- G. ^: F# l
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    8 小时前
  • 签到天数: 3174 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,5 e" W+ p  q: U) k" x; R
    我推理机的核心算法应该是二叉树遍历的变种。' `- K5 q  A3 @9 u' b/ }
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    * M  }2 u5 f/ u" m5 eKey Idea of Recursion
    # y) e7 A8 U3 P) V6 r& Y7 V8 M0 u. F# W9 I( V0 Q8 o
    A recursive function solves a problem by:
    1 T2 h( E& x7 D: V5 g8 G) X& E# D8 a) H" C( v
        Breaking the problem into smaller instances of the same problem.
    ' K; V" ~$ x4 L; H
    * ], v  Q6 w( V! h# d( l) D+ |    Solving the smallest instance directly (base case).
    ) }; n' m/ i8 C( p; J% M5 C, a( z/ z. x  w# Q
        Combining the results of smaller instances to solve the larger problem.) O, m2 d" `, c$ F( G" ~' c

    4 ]: H3 F+ i! a1 ZComponents of a Recursive Function3 _9 s( N& ]' M8 r1 q7 A- g9 p8 B
    ( `8 L$ M1 k2 }4 S) Q1 b
        Base Case:
    ' X( {4 h7 }3 z" Z% X( _3 o3 i6 P+ {9 `. ?! C7 l
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.' v1 x6 b' F, h7 q

    % h- I: x6 R& _        It acts as the stopping condition to prevent infinite recursion.7 Z' i& Z" w% `" t1 W6 E
    2 [6 E0 F& S0 L( ]# _# ?
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: [/ z0 U3 p" w
    % a' m+ O; W3 t/ }, _0 g
        Recursive Case:9 Y" f/ i, d+ j1 K  g% F! O# O) t$ D3 e( V
    , [* @# L5 n% k% `
            This is where the function calls itself with a smaller or simpler version of the problem.; C, H: z& K$ n/ K# A3 S) x' y8 G

    ; E; C) w1 L, O- P: r8 n7 P        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    + r8 d7 @7 _9 v% s1 R/ t& [
      k! y  ?+ P5 {* U% mExample: Factorial Calculation
    , t2 P* ^( }: o' n9 {" O+ n$ f
    5 x: s; A, p7 J. Y- Q3 D5 k4 x: PThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ; @4 ]) s2 _8 P7 i
    / r8 ]- ?/ I- z# ]3 }) J    Base case: 0! = 1
    ) j3 z6 s! k+ K' O* U9 |5 q# E6 T3 V: e% M9 W/ u0 I1 V, `
        Recursive case: n! = n * (n-1)!
    / b$ B1 i, ]  d
    " G% i; s7 q, d8 F- m: n7 _Here’s how it looks in code (Python):
    , ?  ?% }+ ?$ ]! j) H; g3 U% Q$ spython
    & U0 F  D  d7 L1 ], t8 D/ p: ^
    6 o! |  V+ n' R* i
    " C% [- F+ i8 T5 Wdef factorial(n):5 j$ z& I) ~' X8 F- h
        # Base case
    . ?% W- q/ K: k    if n == 0:
    ; A- @& x3 u1 v        return 1
    - D- `. Y6 x- T- \0 R4 R    # Recursive case
    # I) j- U, Y1 ?" O9 _' i    else:8 U) {* e6 K2 s4 j: {
            return n * factorial(n - 1)) Y0 q( n$ T9 B" f4 o6 r

    1 k5 h$ X1 f3 y5 @& K& z# Example usage1 o& o) V3 U! t3 O) j: ~5 d! ?$ U
    print(factorial(5))  # Output: 120( y' C+ b. c9 M' m! Z
    & i$ q0 \6 p+ m- @0 q
    How Recursion Works
    & Q- y2 A9 b0 H& A  i+ p  C0 c7 i! c& w
        The function keeps calling itself with smaller inputs until it reaches the base case.6 l" D' n! z& s4 R, n" D0 ]' F* v. y
    & q5 F, R$ A7 q- j3 {" e' F
        Once the base case is reached, the function starts returning values back up the call stack.
    / G  Q; j$ [. K& q- q: u2 Y5 d+ m1 E$ r% m! V" _
        These returned values are combined to produce the final result.. q( K3 Q4 V4 }+ J) W- t

    " j$ \& K' D3 T6 [9 _For factorial(5):/ K. }2 B5 q8 a( ?- y7 n1 L

    - c/ @0 p5 ]( o2 H% ~( R* i6 D$ _2 g& l* O: C
    factorial(5) = 5 * factorial(4)
    8 r$ o9 _' ~( ]# z$ _# {, vfactorial(4) = 4 * factorial(3)
      I& d( B+ I  n& L5 \) F: `0 O: yfactorial(3) = 3 * factorial(2)7 V) D# F* t5 ?/ m# R
    factorial(2) = 2 * factorial(1). r& x. W7 L' ]8 _
    factorial(1) = 1 * factorial(0)3 q& q; I' V7 P
    factorial(0) = 1  # Base case* @3 ]* [# {7 w- X( H

    $ Y0 X; A1 h$ ^) zThen, the results are combined:  G: f' n4 S, [
      I& c* O- p9 {' D# A7 }( h2 ~
    ; e! A7 M1 K" [6 W7 y; h9 O
    factorial(1) = 1 * 1 = 1
    ' ^9 w/ X3 t1 r9 ?) a4 N/ Yfactorial(2) = 2 * 1 = 2
    9 N/ B1 c! [% F& D% nfactorial(3) = 3 * 2 = 6
    ) I6 j- Y, V3 ?1 D. g; Mfactorial(4) = 4 * 6 = 24
    ( u: }0 W; _! L* i$ z- ffactorial(5) = 5 * 24 = 120
    8 l& F" Z: x( Y! p& }' G( I, f  k, D2 z: r- K0 ]1 c1 L9 M
    Advantages of Recursion
    / e, ?( Y% f$ u* K2 B5 B" T
    * R* p1 f6 r9 t7 q6 [* F6 D, W! p; P    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    , W8 W& s7 A8 t; U2 @
    & |& [7 C( M; e) \! `    Readability: Recursive code can be more readable and concise compared to iterative solutions.1 o  K! M; T: m3 x3 e

    5 ~# K8 v7 m8 ]Disadvantages of Recursion
    8 n1 a" A$ Y  j" c4 }& U1 O4 k6 y- g0 k- u
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    2 l1 ^8 P& I" ?" s! ^( x. z# [% @, i
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).- Z7 E, Y, H# d
    ) i3 e+ s3 T4 ^- t2 o" L
    When to Use Recursion
    # a$ q1 I* U" o/ @5 P- i  e) n9 J$ ^; w$ n3 B
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).; ~- ]% B& y0 f; }' |  ]

    & T$ U& E/ Q  r2 P! ]    Problems with a clear base case and recursive case.; V& c* R, P6 w. \

    3 A' r7 l$ h2 [* H& t' b! O2 ]Example: Fibonacci Sequence
    ( L0 T! U9 r( t, y+ [* i' K/ N( K! [
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    8 t1 I, R, b- v' D9 P
    ; A8 b+ M  ^$ p: K2 I) M, e    Base case: fib(0) = 0, fib(1) = 1
      c' j% u! B1 z2 Q; D& z2 z) [9 d0 \3 a( g4 }9 l
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    5 B! q& B9 [' G# u" z6 x+ H5 e" V$ J$ [8 r3 w
    python3 {* x+ O9 D1 U' m" _. h
    # `1 [+ Q# I# E. k' b" E

    6 C7 q% w6 a$ N% P1 H$ o- V, H3 Ndef fibonacci(n):3 O$ v2 `, H5 x( i* g
        # Base cases1 C& E3 F7 I$ T$ `
        if n == 0:# m' g- q" q" I. Q! T! V' X
            return 0
    2 m5 g1 l4 _; |7 G! e$ Y& ]0 H    elif n == 1:3 H  ]8 S4 h9 B$ ~
            return 1
    9 {5 \- j1 k- O' {- w    # Recursive case
      s7 H. F$ Q/ y8 y    else:0 A2 G1 J# V, F# q5 Z7 _0 }  v
            return fibonacci(n - 1) + fibonacci(n - 2)3 W. _6 k: m9 ]& S+ }6 C' F
    " c9 x$ Y2 `9 H! q% s2 A
    # Example usage  e8 U# w& t$ V: I1 V% O
    print(fibonacci(6))  # Output: 80 Q% D6 U3 e& {  D5 E; T" n4 ?

    * K# M5 U: R$ |9 ^% I$ V" d4 X- Z$ }Tail Recursion
    ( |; X* R+ ?5 e, y0 F" Y, R  m- S; V# B
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    6 C; N; t; u' c6 W" w/ H9 s8 j8 ]$ [2 s( d; w* s8 @. t+ l. C
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-15 18:00 , Processed in 0.083272 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表