设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1978|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 p, }4 F: `1 w" E3 m& [% q6 T, t6 B; u3 T
    解释的不错3 B$ y: x2 P. e/ U- _* i- R- }- N

      m0 m; t5 y9 q& F4 h% p; v递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& B9 b/ O$ R& U  W$ z/ Z5 |3 _8 O3 v
    ' J, T+ K# l# |* H& P8 D" Z
    关键要素
    " j- u# @' l4 v* G$ u. [/ D1. **基线条件(Base Case)**
      b+ c& {# c/ [" r; @5 j4 j9 n   - 递归终止的条件,防止无限循环
    % w: [, @( h% G" w   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 v7 x+ x2 i6 \4 ^7 G& T, @7 H

    ) ?: g! a8 M8 e$ X2. **递归条件(Recursive Case)**
    . }: D) K& D4 O4 [   - 将原问题分解为更小的子问题' M( B. e$ E# [. N/ Q
       - 例如:n! = n × (n-1)!5 r$ _4 a4 G& b/ v

    - F# r) k; {0 U& s 经典示例:计算阶乘
    * M9 h& d  w# G( c" O5 G; qpython: h8 v# v4 j& [8 f& q0 y' n' j, O
    def factorial(n):
    , V; x3 {, _3 u4 t2 q8 i    if n == 0:        # 基线条件
    3 O& ?# G. T1 C+ |, h        return 1
    - B, q: `, c0 s    else:             # 递归条件$ Q" B  F5 f' O
            return n * factorial(n-1)
    2 [- o2 K$ q1 E) [; ~7 o. Q执行过程(以计算 3! 为例):
    ( i8 E0 u7 p9 R) Y% Vfactorial(3)1 G% S$ o0 w' O% U4 _
    3 * factorial(2)
      [$ Q0 l" M2 _- c3 * (2 * factorial(1))
    / F' r% ?. Z' }. U8 {" _3 * (2 * (1 * factorial(0)))( E. h0 H" K! z  y
    3 * (2 * (1 * 1)) = 6
      C, P% ?$ J. `- x; a8 y; H5 _3 d8 B$ P) s3 j
    递归思维要点: [- I4 P8 Y# O# [2 f) y4 U
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    : W* U5 O0 g9 C2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    2 |! V+ \5 s* n. i9 C! I9 \( k3. **递推过程**:不断向下分解问题(递)
    5 |: G+ p( A$ M* B! |- q4. **回溯过程**:组合子问题结果返回(归)
    % }  {  d5 d3 Z7 n! _" b% E' p# W3 w3 S
    注意事项
    , s7 P; i9 E: D6 E* U必须要有终止条件8 x3 v# y3 y  ]$ \2 G
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ( w) d: }8 q% |1 H某些问题用递归更直观(如树遍历),但效率可能不如迭代2 y& u7 Q1 ]; @" T3 P
    尾递归优化可以提升效率(但Python不支持)
    ; U+ d5 b8 c# v; o
    0 b3 q& b" ]* I: B' G% W3 f: a# Z2 M 递归 vs 迭代
    % v' `* r0 s8 ^+ P4 y|          | 递归                          | 迭代               |
    0 a) N$ w9 t7 q! x' g4 C9 ~: H|----------|-----------------------------|------------------|# C6 ?0 }2 Q7 l- G+ n( F
    | 实现方式    | 函数自调用                        | 循环结构            |% d8 b  Q6 O" \  e3 ~  R% r
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |& B9 G: _  i" F  J
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |- ^) {* P# R3 q" |- K2 U
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    4 P( i  u9 F( E& ], w6 c0 D# ~5 _# B& s7 x0 @, S& U. i
    经典递归应用场景
    0 t$ D# u) X4 p# l1 L5 u. V1. 文件系统遍历(目录树结构)$ d9 {0 l  H# _  ~$ ~
    2. 快速排序/归并排序算法" u, \3 Z0 W2 I4 [) d- ]2 A0 C- g
    3. 汉诺塔问题
    ( Y2 o" ~6 w- S0 D. v9 G4. 二叉树遍历(前序/中序/后序)8 ~3 }; N) k) o! ~! _) [/ ]+ v: l4 E
    5. 生成所有可能的组合(回溯算法)
    ) {7 d! ~4 L) L: b) l, @. Z+ @1 b
    6 {3 Y& o) z7 T% y* R4 E试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 05:47
  • 签到天数: 3157 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) p* n- F$ I+ D
    我推理机的核心算法应该是二叉树遍历的变种。6 k' V5 z$ X+ S; p# A* j
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    , E  o+ y0 f" g8 Q& }Key Idea of Recursion" K& n" S( x$ a! ^* D

    , W$ l. }/ b3 Z; _( n# C1 kA recursive function solves a problem by:1 d; J& p5 a+ W, a0 H5 I$ W

    * S2 j; O5 f8 t4 O" C! q    Breaking the problem into smaller instances of the same problem./ f& B& t, ?1 j. W6 S

    " I3 j6 w- H$ n4 U8 e- @+ r    Solving the smallest instance directly (base case).
    8 j0 j" f. v/ B# y, V1 g
    " w& X  f% |7 D    Combining the results of smaller instances to solve the larger problem.3 r) T* E5 v5 X! D3 K3 R' S
    8 q, p$ J8 g  o/ v
    Components of a Recursive Function
    % v. G7 b; C. P% {, R2 a- ?& }/ i
    0 i4 k% b! z2 L6 S0 T    Base Case:2 s* H; b1 A3 f" ]. q8 N
    7 A# D( b: _0 i' B8 N
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    & A0 P" Z& e+ Q' }. i" n( y8 p5 Y/ m3 Z
            It acts as the stopping condition to prevent infinite recursion.3 h9 J: I& ]6 p" e5 U5 m5 G5 I

      l4 v. h- n& l: |1 e, `! h* ~        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    . ?$ {  ~. f6 v9 X" @1 ]6 F! A* J' b% V
    : z: r. ~% [5 Y; G    Recursive Case:
    . H: \5 ?8 J4 e6 d0 M
    : Q% J0 G/ M* r3 \9 L/ c5 Q: \. c8 ]        This is where the function calls itself with a smaller or simpler version of the problem.
    6 r5 K# i2 b; t& s- H; Y% p: r! W/ [. }& K
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ [6 j3 c9 S4 B3 `1 @. f

    6 A4 n3 J# T* H+ J, S6 K) L, `Example: Factorial Calculation
    - c, w* k' ~% v1 i0 t3 E! r) [8 u; R" T- ~( Z7 E" F
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:0 o  q" T: l/ c4 J+ F* a7 R: l6 H" H

    / |! Y, n! i6 p5 H! p& a    Base case: 0! = 1
    8 ~5 ?( c! a, W1 j
    ! ?, I/ |5 |- I! Y8 ?    Recursive case: n! = n * (n-1)!
    8 \8 w# m8 O' f8 z" J! ~/ j  T
    / |, G+ F* d% w( h! v) s: \" dHere’s how it looks in code (Python):
    6 w$ T" }% v. s- V) |python7 i/ E* f' c( m0 O+ N4 o* F& m5 f2 ]

    + K3 M+ z  q  g6 [4 H- B, f  y" M" w6 }5 o2 W
    def factorial(n):4 `4 P! E$ V+ Q2 _+ g/ v0 I
        # Base case/ q1 J5 T* R, u; |& B
        if n == 0:/ ]0 ]4 q) S/ I" S
            return 1' I' I1 `5 P+ P! @7 y
        # Recursive case2 s$ x% Y7 l8 K! o/ X- j
        else:# u* _; f: l0 i" B# R
            return n * factorial(n - 1)
      G; C- L* r; e9 S# T* R( }* D* O" D0 @" H/ V7 ]
    # Example usage
    " L; @  S: |4 L5 s3 Oprint(factorial(5))  # Output: 1206 t# \; u( \9 j. s4 y: B

    0 n! g, }+ n& G3 b  r9 t' EHow Recursion Works
    7 t; W* i; E; y
    4 q% @& W: C, z. i    The function keeps calling itself with smaller inputs until it reaches the base case.
    + w1 R3 R2 |5 M6 b2 O4 c9 s$ q& S: }/ E" r
        Once the base case is reached, the function starts returning values back up the call stack.
    2 e' V- L1 K) h7 Z* q
    " h. ^" n* ^) R  U; U    These returned values are combined to produce the final result.: Y8 n& h+ }8 Y  Z% L1 z
    9 C/ [: U' C$ G; r4 Y# r6 ]1 q
    For factorial(5):3 L" @7 _" |9 o0 R

    ( J) g( Y; k- H  N5 K4 T+ Z9 [( C& X! U3 t. Z. z
    factorial(5) = 5 * factorial(4)
    ( S' Q! z  y9 w& K! V4 Y% \factorial(4) = 4 * factorial(3)
    # F, M1 E" G1 ^2 i1 afactorial(3) = 3 * factorial(2)- F0 x, ~4 ]* |' q3 w4 q* }9 Y
    factorial(2) = 2 * factorial(1)) T" r9 l: r4 j" p) K
    factorial(1) = 1 * factorial(0)
    3 S5 t& [  Y( s; A! {; P! l: I- D! {factorial(0) = 1  # Base case# a: j: T1 ?+ E2 e( W

    & r1 r3 _2 N9 Z% JThen, the results are combined:$ U* r6 X4 {; ?1 \9 Q
    / |% b8 t' I5 e+ |" R

    7 U$ t1 i! C( `# e& Bfactorial(1) = 1 * 1 = 1/ j3 v9 L7 Z$ J
    factorial(2) = 2 * 1 = 2
      O# E0 ]! B0 Y7 Z5 Efactorial(3) = 3 * 2 = 6- S- J4 K, v2 [# P3 i( S2 o8 o
    factorial(4) = 4 * 6 = 247 _+ D; l+ l2 i  a2 _( w
    factorial(5) = 5 * 24 = 120( n! k& A+ D/ `+ t$ B( q1 ]4 X" W
      e2 b$ {! B5 i* c
    Advantages of Recursion0 ^0 F( Q2 ?" u  z6 o% A: u
    4 T5 ~4 u2 P+ \( E) n
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).& ?; d  r6 u  f# a
    6 {) R5 \4 w7 t( G
        Readability: Recursive code can be more readable and concise compared to iterative solutions.( T+ u2 T9 c4 A

    $ ^4 P9 [) ~7 ?. nDisadvantages of Recursion
    8 H- P3 a; ?. c  ]9 u" O9 q, R
    # k( Y* D9 a" M4 ?( |0 b9 u3 [0 N    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.+ h2 Q- ^5 H2 s7 g! u: \

    , f6 q! g7 w1 c/ g* ]. u; q$ s$ m    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    6 O! t$ D: p8 X% s* r7 P0 M+ {0 D9 [3 E) c
    When to Use Recursion
    $ w. L# g8 z1 m4 Z/ {) h* W4 y" E$ y2 P3 E# G+ M$ i$ e
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    / _5 Z: J5 H1 U1 m; M& j- L' i/ ~/ c! T4 K  I
        Problems with a clear base case and recursive case.1 C) @' D+ Z& n& y
    % A1 Y+ ~7 N/ `* [- c* C
    Example: Fibonacci Sequence
    % s' S  T# Y; F/ M. G8 K
    # E6 @0 P9 t: u5 _! x1 }The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:; P/ r7 p- x$ \& L6 f

    & ^& ^- E* V9 ]7 N    Base case: fib(0) = 0, fib(1) = 1
    % q: Y) p4 {& C2 m5 H2 d8 G9 I) M4 b3 `( L( v
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ! w  ]$ |. U3 b+ @; M/ U# C7 q
    ) e2 I: j  q) k; {' xpython8 u% p+ i3 V1 k: F5 g

    2 v5 m; T8 [. }* m, u6 [
    ; p9 D8 Y6 r/ ^# W& Rdef fibonacci(n):
    , D/ l* [. @0 p8 [6 M, E    # Base cases
    6 _+ y4 p: L+ _% L    if n == 0:" F6 v' p, y9 O6 F6 I
            return 0
    ( J0 q: P2 L- V! q# {: O    elif n == 1:
    , C) X* X+ Z. @/ z' L2 y+ V        return 1
    6 d- C$ w& B& }/ v8 A* r' k    # Recursive case. m! S7 Q  p5 s1 F) T% c! ]
        else:( V* `: ?/ @( B2 B9 g) p" Z  R" }
            return fibonacci(n - 1) + fibonacci(n - 2)- y4 V$ N8 w% o0 f: _

    # E+ `: {2 i7 x0 ?! c# Example usage( o" u' r" V& u
    print(fibonacci(6))  # Output: 8' w. k, R1 K' m  x8 w* B
    4 J3 K3 k6 e, w0 [8 L% l' L) n
    Tail Recursion
    8 M( h1 O6 k' v/ B+ t5 r# T! g* g0 z4 l# T
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ( I  y/ U( l% Y7 y$ Q+ u
    6 o0 |  q: Z( F/ qIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-30 04:05 , Processed in 0.071726 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表