设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2012|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 - u3 r+ ?# Q: ^" W0 u& [
    7 h" \+ ?! [  X* D: j
    解释的不错
    9 N+ f$ C& |5 z: Q7 D% x
    9 e% A3 k3 A* L( f6 v; {7 B, T4 C递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。: G6 l* R5 q) {" q
    9 e) N& _" j( w" u5 i0 t
    关键要素
    3 c3 N2 |0 `* J# W1. **基线条件(Base Case)**
    6 T* U7 k. n0 ]  k! w) w& J   - 递归终止的条件,防止无限循环
    9 ~5 N" s! N& Q* W   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ z! M% `: U* B9 \. E7 m) j0 f
    ' Q8 J2 d: a8 B2. **递归条件(Recursive Case)**0 f/ }& z3 _8 A" c: _( W  x8 I* h6 Y  \
       - 将原问题分解为更小的子问题. C: d0 C- u" L5 ], r  `
       - 例如:n! = n × (n-1)!
    & V. g+ k( z5 z: t) W5 G6 ~9 @3 X+ u- [+ a, A' Z& E1 t2 X$ ?
    经典示例:计算阶乘" H/ X- j- j* c+ k0 l% r$ @
    python
    1 M1 ^+ ]4 L3 D1 vdef factorial(n):( k1 W& s2 ~2 p( A
        if n == 0:        # 基线条件# r/ `  g; l7 S8 w
            return 1
    ) D; L( L% r: _. b) S# f1 G2 ?    else:             # 递归条件/ o$ ?0 v* T& g  c/ j0 G
            return n * factorial(n-1)
    4 o- _$ |: D6 Z6 q# A1 P' c执行过程(以计算 3! 为例):
    % P. J# i0 V  s' p2 N4 L5 u; o6 Cfactorial(3)
    9 m# Y6 ?6 c+ h. m0 }8 v$ r. U3 * factorial(2)$ g2 f6 I% g  O2 w# F+ q( m
    3 * (2 * factorial(1))/ W8 }  Y  _. B1 L
    3 * (2 * (1 * factorial(0)))
    * i( r) c& }. c( f1 D3 * (2 * (1 * 1)) = 63 o: j7 s0 D4 w5 a: ?

    / a& k7 P  f3 z& w( V. @ 递归思维要点& i2 d! p- `. [1 V
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑9 g; O$ k5 |; Y/ y7 A+ W) A
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    0 [- N/ ^, `8 ^- b% g% F2 T3. **递推过程**:不断向下分解问题(递)
    ' P- a9 [! V4 n9 f* m' P, P* u4. **回溯过程**:组合子问题结果返回(归)
    3 Z1 m5 M# z5 o
    $ P  k: M- E: ?! \, v* O 注意事项
    9 x+ K! h8 ~1 j  G& F必须要有终止条件
    . n1 |! `9 c8 O) [( h) e* c) O递归深度过大可能导致栈溢出(Python默认递归深度约1000层)% N% _' U- J! d5 @7 v7 a
    某些问题用递归更直观(如树遍历),但效率可能不如迭代, O( f( o, I$ _" `, R+ J
    尾递归优化可以提升效率(但Python不支持)
    ' l4 v: G% c  A( R3 f7 a* ~6 B; c. _2 p8 o  E9 m5 y8 z0 C
    递归 vs 迭代) Q' [' d. J2 h* P: x- i; W
    |          | 递归                          | 迭代               |
    & A5 Y7 C3 ~' ]- f6 R+ O|----------|-----------------------------|------------------|+ i6 X8 _( }: R" v. S% a1 W
    | 实现方式    | 函数自调用                        | 循环结构            |
    ' c* \* e- G4 s0 @| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ( q4 ~9 O: f9 w8 K9 \- i, F) {| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    2 R/ s) S; P1 f" h5 w| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( P' a: y9 I  H& S& U

    ; ^* w2 N+ B0 D3 g 经典递归应用场景
    ) Y  U% t+ @6 G1 A' {  l& t/ n9 \1. 文件系统遍历(目录树结构)
    2 c+ d$ b, ?2 f! J2. 快速排序/归并排序算法- \$ l1 C- q! v, Z7 L+ _! W
    3. 汉诺塔问题
    / R9 r# t0 q6 }4. 二叉树遍历(前序/中序/后序)
    4 U) `5 l, m7 q6 |# t5. 生成所有可能的组合(回溯算法)
    # q" ]) F& ?; d( o8 E, `4 J* s& T% ~( k! f
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    16 小时前
  • 签到天数: 3163 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,0 h1 P0 M$ z8 x" c# H- x8 v8 e; I5 v
    我推理机的核心算法应该是二叉树遍历的变种。7 @  i8 D0 ~8 k% `
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    8 ~1 X2 z+ X! _+ ?Key Idea of Recursion
    1 g9 C# L7 p8 h: N8 {
    " F, `2 q( ]# I% l% }$ wA recursive function solves a problem by:9 |$ ~; Q! K6 c4 `' S6 k
    ' V. v  M  W9 f* @" @
        Breaking the problem into smaller instances of the same problem.6 o7 }4 M, U+ U4 i

      r7 Q8 ?( b( ~: W& E" s    Solving the smallest instance directly (base case).
    6 G2 u: L. _, W9 D: N9 H0 O0 [+ s  @! s  ~' ?. J; ~
        Combining the results of smaller instances to solve the larger problem.; g+ t! }) I* o# q+ G& k& _8 L
    4 \7 p6 r) V4 ~" v
    Components of a Recursive Function
    7 T/ t/ R. b, Y8 H% V" z2 w
    - O! c% L0 f9 n5 z( y' @- N    Base Case:. o, ]1 x( C' l0 h  V4 u2 D- ]
    ; {8 R6 d, y# K3 N! Z# v0 l( F2 t  |
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.+ q  A( X1 ]: W

    4 z' _" Y  [4 }        It acts as the stopping condition to prevent infinite recursion.
    - X; R6 R& G! v. T6 G9 T* f3 E# `
    + `8 N4 K. l) @3 e        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    1 G! t1 T4 Z1 T; d9 S0 Y0 ~- \) C: s: ~/ u. D5 Z2 t: X
        Recursive Case:
    3 T4 u7 S0 P1 A' I9 y3 r4 w8 @2 ?+ l
            This is where the function calls itself with a smaller or simpler version of the problem.
    5 ]! b2 i0 F3 \, p0 y) d5 V6 y) t: P3 w
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ) M3 [. @0 _0 S3 T* f# w4 ]8 K. g, o8 x! y9 B! U6 h' H
    Example: Factorial Calculation
    9 F7 K1 l% Z" U! K/ X7 ~% z! @
    - A5 J* ]5 C5 zThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    8 P( c6 O( X: s$ i( E
    ! {1 \# e! p' G3 e/ B  r5 a    Base case: 0! = 1. ?' _- {" r+ c, ^0 A
    0 O# l( e" L- v" A$ x5 y% Y9 G) x
        Recursive case: n! = n * (n-1)!
      A+ t4 \) [; H0 Q# j$ }
    3 a/ A; [  L4 Z. L, C' tHere’s how it looks in code (Python):
    4 I7 k3 s2 R* Lpython
    4 I$ V0 ^7 ]- o# z5 B& p4 M  y& `
    - Z; x) |. G3 h2 x$ e" O2 D$ }- y# w+ D
    def factorial(n):6 N/ {6 T8 m- X4 Z( D
        # Base case% \0 x' n7 j" s3 {1 l
        if n == 0:
    7 v2 j' C2 Q8 Q5 z/ ]; V        return 1
    & x; j$ K5 i0 G/ V7 V9 n9 K    # Recursive case4 ]9 @( c5 W( u9 d( k2 B
        else:0 i, R: N9 C, K
            return n * factorial(n - 1): ~* ]- o# b# k
    : V4 B, d6 `, U6 W& o
    # Example usage
    7 q/ `3 S* i- `! z+ Mprint(factorial(5))  # Output: 1204 d% ?% j4 ]4 Z6 E

    4 u0 }, E/ n1 }( q7 e# n! h4 d5 `, nHow Recursion Works3 m! Z  Q5 N. M2 m2 ^( X

    * }' i+ Z0 N2 f6 Y$ B% G& T    The function keeps calling itself with smaller inputs until it reaches the base case.9 D7 u1 ^" ?/ i3 n- T/ D

    # v/ Z$ U* V; k- r$ D    Once the base case is reached, the function starts returning values back up the call stack.! T3 b7 o$ N4 n7 D& d( s* a6 P+ ]
      M% e  x( _! v) ^4 @8 z  m
        These returned values are combined to produce the final result.
    ! z# Y# @5 K; q" ~, \$ q1 ]9 T) a) s0 |/ U' A! _: L
    For factorial(5):
    & `$ W! y! a/ q/ T, n8 T8 Y
    . D- n9 r) s$ o, f; L& Z( J6 t) a' s6 S+ ]* _  }  A& d, ]  v
    factorial(5) = 5 * factorial(4)
    " Q0 \1 G4 m6 l5 T% j- K/ }factorial(4) = 4 * factorial(3)
    # X0 j$ s* `# \( R1 d( H; u* T( Tfactorial(3) = 3 * factorial(2). [  D! Y* l( F$ j: `! b! W
    factorial(2) = 2 * factorial(1)
    ' g! P" {# a( y2 a$ R* _factorial(1) = 1 * factorial(0)
    ! C3 G3 W2 L. G% j# Lfactorial(0) = 1  # Base case
    5 r/ p5 m* n- t: I9 g0 i2 Q: _5 X5 b! b% t6 X* h1 Z
    Then, the results are combined:
    ; a, ^* T% b: A( @8 `
    3 N$ D; T# y& Q5 O! R8 q: X1 O# a. h" D* P* u  c
    factorial(1) = 1 * 1 = 17 r- A: x$ q; L7 _' Z( y
    factorial(2) = 2 * 1 = 2: Z  _- G1 v' C. V: T
    factorial(3) = 3 * 2 = 6
    * v* m6 R' Z" Q3 }, M1 c7 }" Zfactorial(4) = 4 * 6 = 24
    3 m" a, A4 u- {% Vfactorial(5) = 5 * 24 = 120
      ?' y* P- B3 j( l9 }3 u  C) L
    7 T$ h, n5 h) g' Y& b0 \& vAdvantages of Recursion
    6 g  b7 |- E. ^6 w% h  G  H7 E  J3 d4 }. s% X5 B2 a. J: J
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).* V# ?2 m* }8 f: f2 m
    ' }; U% X9 Q0 ~2 R8 x8 L7 e
        Readability: Recursive code can be more readable and concise compared to iterative solutions.3 y* f* e: R2 u% X! b' F

    0 {' n: M" i6 g+ s2 b, }2 @Disadvantages of Recursion/ J& a0 X1 s% E2 r
    " N5 L% D' M/ G: r& E  w# ]
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    # J8 {5 g, b/ e- r- Z
    * u( f, k% o  ~1 r1 h+ B    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* n# z3 Y/ y, X
    4 j6 g" L: |* s
    When to Use Recursion% V: q* J8 _4 R  q+ W

    * u8 l$ x1 k7 X- }# a3 E    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).8 F# q0 w# }, N* }  G7 L. I% C- {0 O

    # Q: W$ c# s2 e+ E0 Z    Problems with a clear base case and recursive case.
    * o4 a' e- ^7 |' e/ R  C5 v3 i
    ( X( v# O. P+ A2 k* S9 l3 gExample: Fibonacci Sequence
    ; X& B4 A9 Z( M& U, w
    - U. }$ }- u& G) I) Z: {The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    # G6 J2 Y( J4 B  q0 _
    * _; Y7 \) G, W: L0 k4 |+ h    Base case: fib(0) = 0, fib(1) = 1
    5 A1 b/ o! {: y  T# C2 m
    5 x' y1 y0 H5 }6 h4 I    Recursive case: fib(n) = fib(n-1) + fib(n-2)1 P; S3 A% A  o4 T7 {
    8 y( F) q& |, m# ^3 u4 @, u7 u
    python6 l* X4 {. J+ }8 V$ b; i: L& n# G+ Q

    4 I. x% S/ e, ]( n' S# ^( ]+ O" y, M
    def fibonacci(n):- ]* G$ h, p- L9 R$ }4 p+ q
        # Base cases# G+ \( [; U2 ?% \$ g
        if n == 0:# \' U$ i' Y7 V# B% m: t
            return 0' _6 t1 J: ~2 F; F
        elif n == 1:
    - A+ ~! I5 n9 \9 V1 I        return 1
    3 _- W- Y+ _; o8 p; b    # Recursive case
    ; m4 W# V! V: A, h* o  ]$ m    else:9 b/ [3 n" M# U# X5 @* |/ K
            return fibonacci(n - 1) + fibonacci(n - 2)4 A% r# B) Y) Q. s7 ?5 v- [

    . a0 @+ p+ I+ \& E6 ~  W9 k# Example usage9 H6 }0 P# K4 `
    print(fibonacci(6))  # Output: 85 @/ t5 |/ y2 p8 h  `2 p

    8 [, U. y) _3 S& w$ R% O- d4 RTail Recursion
    + M3 F5 I! T; }. h  M5 _. r( F0 I2 c( p- ^
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # Y2 N1 U$ S, Q1 t* [3 @/ X0 h7 e7 W. h1 H# |& v
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-4 23:13 , Processed in 0.078375 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表