设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1671|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ; b' ^2 o$ O# q" I( v2 f. S; j

    0 ^* C! O" g, |* d1 O7 R; _解释的不错. ^0 a/ e7 v4 Z
    6 o" g2 {+ R6 ]
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    3 A/ ?- Y; |- s$ ~9 p; E: [; X4 B; \- v3 a4 x
    关键要素, n1 H* [; g1 B$ }
    1. **基线条件(Base Case)**
    7 Q+ p$ C# P+ A( }+ k8 F   - 递归终止的条件,防止无限循环' M8 t, f4 _3 t  W
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    3 z1 S/ o# \& d, U( Q  @5 `; e" A- U; y) ^; Q- C
    2. **递归条件(Recursive Case)**6 O8 ]' H7 t, [* H' S2 O7 i" o
       - 将原问题分解为更小的子问题
    7 z  t) `. f  [' ~   - 例如:n! = n × (n-1)!
    * G+ v2 s6 w2 W& P7 E0 g7 H* Y' U# o& {% [, Z1 u8 s* M
    经典示例:计算阶乘( }) i2 {& D! P
    python/ {) P1 ^7 B6 n1 U
    def factorial(n):
    7 ~& L3 v; @, o% V6 s0 E) g    if n == 0:        # 基线条件
    4 @( N  A- j2 V# |% D1 @        return 1
    0 Z) H/ \. E: T0 @    else:             # 递归条件2 }) N) _  d( m
            return n * factorial(n-1)8 Y+ |& J$ B) q: _4 L0 F
    执行过程(以计算 3! 为例):5 J( G4 @6 V: T& |/ {7 [4 f
    factorial(3)6 V0 c" d3 A0 ~  w
    3 * factorial(2)5 W  {2 s! k  N' I6 k" z/ {- j
    3 * (2 * factorial(1))
    5 `6 p7 J! _: q0 U3 * (2 * (1 * factorial(0)))
    & \! }, J" |; ?0 D" c- L& w" C3 * (2 * (1 * 1)) = 6
      g' F5 t3 v1 O4 p: ]1 j& z% l
    $ }4 Q( G& f+ T  ~' P: ] 递归思维要点
    " ]* |& N" x! n% B1. **信任递归**:假设子问题已经解决,专注当前层逻辑* O. Z7 S. ~8 c* K: b! ?
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    8 `3 m2 [+ R# m+ e- c0 }3. **递推过程**:不断向下分解问题(递)
    - u0 A# S8 C7 H* H3 X! |# J* U( P/ D4. **回溯过程**:组合子问题结果返回(归)8 u  z* X3 s* b: u0 u  n
    , W  ~2 ]$ R+ X) }$ ~
    注意事项
      o5 y; B& r  h3 c. O/ s; [必须要有终止条件8 S5 a/ Y. o) S4 T+ o8 M
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)6 g. y8 ]1 I5 O& ~
    某些问题用递归更直观(如树遍历),但效率可能不如迭代2 E1 @  r* e8 F
    尾递归优化可以提升效率(但Python不支持)
    % f1 g2 A& a  n/ d  ?7 v, Y5 ~  |: q# R2 u2 K( `: a- U
    递归 vs 迭代
    ; n+ A9 A" Z. B, J* U|          | 递归                          | 迭代               |
    3 \: j1 R2 m* `& Z|----------|-----------------------------|------------------|
    : q/ x- O* H3 n3 E6 U| 实现方式    | 函数自调用                        | 循环结构            |1 v8 g+ ^1 P1 M2 Q
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    . Q8 L5 M$ X( j/ ~4 c: T| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 Y' Q0 t- T6 ^
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; G! ^/ ~5 e$ z9 a) o; o2 H. k; i1 T* }  {" I
    经典递归应用场景
      v8 @: A; W% X; F2 l  p1. 文件系统遍历(目录树结构)
    ' e: q7 ^: h" T8 H3 T2. 快速排序/归并排序算法$ N3 w  A% v) `1 k& @$ P8 R% w
    3. 汉诺塔问题  B9 a+ C. o( e7 p' }% F
    4. 二叉树遍历(前序/中序/后序)# A* F; k7 A* ?/ G
    5. 生成所有可能的组合(回溯算法)
    8 k, t/ p+ y: O  O. y! p! b1 Q0 k7 M8 G5 Y: c* R
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 10:05
  • 签到天数: 3130 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ c% c; }" f- o% A
    我推理机的核心算法应该是二叉树遍历的变种。
    * f$ Q7 v  J9 _! l另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:" K/ N2 H& j: O9 [
    Key Idea of Recursion+ U5 ~1 U; u0 S2 y" ]2 E
    0 E: v0 r' ~8 Y% C
    A recursive function solves a problem by:/ N: ]1 ]# o4 J; F6 B" `) M; Q7 u

    ( C9 M$ F8 g# e( O) @    Breaking the problem into smaller instances of the same problem.; V$ C: r- Z  @) h9 d: ]3 X

    2 t4 D( G$ P9 y! C. V7 x3 O; m    Solving the smallest instance directly (base case).) ?9 y, U3 u3 |
    2 a, C% \6 D  ]- [8 m
        Combining the results of smaller instances to solve the larger problem.
    . `1 F; L3 L5 u- l- c, v4 K- P
    ; B! w, F! T$ F8 GComponents of a Recursive Function
    ( q) F8 m+ p+ |9 p, z* a) A4 ]2 X6 ]9 l- }! A" x' v3 S% S
        Base Case:
    1 X5 c3 N6 ]1 I  j7 u! {8 ]/ D
    0 m1 f7 v/ m! F+ E& f6 I+ t        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    # d+ ^% A# P  R4 c+ @* [- h
      z. W  t& ~# I4 B. q+ b2 {$ z2 ]        It acts as the stopping condition to prevent infinite recursion.
    / B% P' i, }8 R) z9 ~
    4 ?$ {7 l$ o2 \        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    0 ~3 A2 c- x8 D2 c0 }4 b
    7 ^' k1 E* I2 r" ^( u    Recursive Case:+ e( V& [' [6 A6 D+ P0 `+ F
    7 w. w# i# _* ^+ P1 @2 U4 z! g
            This is where the function calls itself with a smaller or simpler version of the problem.6 f$ v, |  _6 s( [: U/ c
      r4 ^6 Z& X, E1 u/ I# E
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    & |  T1 n6 E- U" a$ [  y2 |% E- o
    / }/ ~# e) E4 F& @9 @Example: Factorial Calculation8 p5 T( d6 k3 J  x4 k" W
    1 ]6 d0 J3 \9 F: J' j* g
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" K8 V# Y! I0 Q7 V, r6 H

    , Z! U. h9 B" W% G1 e" L    Base case: 0! = 1
    & @6 H: L0 ^- W, Q
    & q& m  n4 ]: T% l    Recursive case: n! = n * (n-1)!/ b; L9 l8 C( W1 w+ B, j! e* I, C

    $ G, K" w6 Z, r, z+ i9 _Here’s how it looks in code (Python):
    7 Y( ]( @! M& E! M( |python  A! p6 _; P; ]) z
    & ^, ^2 g( W& e7 b# s$ ?' n  \8 p2 C
    + ^6 D5 {* @3 f" g, _4 l  A0 a
    def factorial(n):
    ( c) w+ A) R5 j6 y6 l0 F    # Base case
    * g8 ~0 ]: \+ _/ C& D% g    if n == 0:6 {  Z" F( J) E4 u; t, |- ]' `  p+ {- l
            return 17 p; B0 C; Z( o( w2 _% \$ m* w/ h6 O
        # Recursive case
    3 d! d9 o, ~% t, ?! z- q    else:
    ( U  r2 ^, e7 N1 M" i' Q        return n * factorial(n - 1)
    + u" r: \; K2 `$ `2 I7 M% U
    * i& j; S. N9 g/ H# Example usage  T) _" J' ]* @! P1 L+ \* g" Z( M3 W
    print(factorial(5))  # Output: 1209 a# M2 M7 e: [* y5 I7 }

    0 _* @2 A1 l: m7 UHow Recursion Works1 d" ~; z1 Y; Y3 T6 I6 n2 o- T7 g4 w

    * e" H( S3 Y2 ^    The function keeps calling itself with smaller inputs until it reaches the base case.4 [8 r6 t+ g: ~/ p" O9 [: [  Z! t

    & |& A0 \! C! M# j' W    Once the base case is reached, the function starts returning values back up the call stack.
    - k/ Y$ v/ e+ U9 h1 A! M2 l0 s; z/ W
    # N' |7 x1 g* C6 p2 M2 g$ N+ |    These returned values are combined to produce the final result.4 j$ `. h2 C) k) ~7 S, p
    # N1 e: {: n, \0 U, V& v
    For factorial(5):
    ' h5 L; g+ B4 |7 i% Y
    8 g+ Q! _/ {$ v2 b
    " `+ [# o4 S) I: b) G% z( o& I: xfactorial(5) = 5 * factorial(4)
    & ?" l2 F! R+ Y+ G. Nfactorial(4) = 4 * factorial(3)) @/ c2 @2 ?7 x# @, j0 j" G
    factorial(3) = 3 * factorial(2)
    5 Y3 _+ \# y  |) U! I7 T1 P/ O  Mfactorial(2) = 2 * factorial(1)
    - D) ?$ K( C4 Q$ o+ I6 o- i5 ?factorial(1) = 1 * factorial(0)
    + f) g3 z% f% T' r& y; k* g( }+ k' gfactorial(0) = 1  # Base case$ D$ b! b1 N0 T) m5 U

      I" w' X9 A1 S6 h6 o7 DThen, the results are combined:
    ; {8 y2 @. b1 U' m) W: E
    ; W# d& {, U( u; c6 @' e3 _
    # n/ x: J  `: U2 s* M% [factorial(1) = 1 * 1 = 1) Q# j- E5 P1 [6 b6 h
    factorial(2) = 2 * 1 = 2& Z; z/ b& J0 w+ o: s1 z1 ^1 ~
    factorial(3) = 3 * 2 = 6
    ) L7 M% G* p  B. A% nfactorial(4) = 4 * 6 = 24
    . K0 N& B) R" p3 z# K# q6 |factorial(5) = 5 * 24 = 120# z4 q4 C- K' ?) |
    0 r- ]8 W/ A7 e/ m& V2 b1 h6 u
    Advantages of Recursion8 `  m7 Q* S' p* a
    2 M+ T5 O# N  i: @: |, K+ M6 Y
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) i" m* U* C& u

    , y/ h' c- |8 r, v+ E    Readability: Recursive code can be more readable and concise compared to iterative solutions.- {8 z. R: Z3 p- Z' r6 v8 e9 M* U8 s

    2 @4 }4 b- I1 V) ^Disadvantages of Recursion! p9 l9 y  J, S& S5 [" d( ~- x
    . V1 @2 c2 Y, k% Y* f% s% c
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.1 b$ K& D* f" Z* e, k. r

    : n: W7 m* ?- o& S: r1 g    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ( M# F1 {# a6 L6 t3 I7 p- ?, `% S2 S2 N
    When to Use Recursion% i9 M- ~+ H) ~1 F- ?
    ) A9 Z- e* D5 |3 O) M& n$ T0 [
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).0 l2 w1 p9 J. X- s

    ; X2 y8 S% L5 q8 F9 ?    Problems with a clear base case and recursive case.
    8 a' O6 ]' P' p0 v. q7 s
    2 R" {2 L8 D+ l1 d* J. j: zExample: Fibonacci Sequence0 m% x* b+ x3 Y3 F

    6 ]: A+ M- M% `; o$ yThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:2 n( |: `: C8 c5 g7 u2 x/ d

    . ~- X1 `3 V* a2 v    Base case: fib(0) = 0, fib(1) = 1
    ; Z$ V  U0 ]7 w) x. l8 ~- Y# Y# B0 h/ x6 Y
        Recursive case: fib(n) = fib(n-1) + fib(n-2)" l$ J; f3 o8 @! I) @: _
    8 s* k8 }& ~% E
    python4 T2 q* X# i& N8 e0 X1 l

    % z  N, I; [: u, c- p! ^* K) `7 ~8 ^' O0 m2 S" N" I0 t' x4 O
    def fibonacci(n):
    + {. V, V# A8 {9 y' Z    # Base cases2 A* G3 k1 x- i" [5 l7 C
        if n == 0:# q2 }) A$ B, X2 {4 @4 C  A, X- O
            return 0
    $ ]$ m+ }. x" B* }! \1 |# P    elif n == 1:" q2 }1 w; s! R
            return 14 t2 t& g+ j/ ^$ P
        # Recursive case6 Q) ?1 N* s1 z* |
        else:1 \! `6 x4 i6 H- L: Q5 d& |1 R
            return fibonacci(n - 1) + fibonacci(n - 2)9 S4 {; j6 |# |" ]
    % A; \% g7 o: }) ^
    # Example usage
    ; W6 q" s3 F0 l6 ?print(fibonacci(6))  # Output: 8: E; s- F6 D( h# W& c- M- O
    $ }. ]- q& a" i3 `4 b5 n) F
    Tail Recursion3 A# j4 M' w  b/ W$ _; N; j0 Q
    % l: q( O9 `5 O8 F9 I4 c
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / F1 }+ r! W- G: H4 G3 j# n
    8 ~( E" R* O/ p) L0 ~2 r3 Q. pIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-29 13:20 , Processed in 0.034075 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表