设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1409|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # K2 n$ c! H. W7 W6 n2 r1 H. v! X- k; z
    解释的不错4 w% O& `4 V5 r& i- S
    5 P2 P+ n6 a8 ~# R  O/ z0 E
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; b3 r. L& J: l4 @- Z
    8 ^7 r3 V6 M2 i2 w
    关键要素
    # y, ~  W+ r5 I6 v! [1 d5 Q1. **基线条件(Base Case)**2 V( L0 E: b7 `4 f4 J  R9 p) Z
       - 递归终止的条件,防止无限循环1 }6 ~& u. V6 ^( f! ?
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1) _, p1 Y- Q, H) c

    % c0 S8 g2 e- N2 V2. **递归条件(Recursive Case)**5 Q  |/ O9 S1 c, h/ s9 D
       - 将原问题分解为更小的子问题
    * }9 I% w& T1 j' }) J   - 例如:n! = n × (n-1)!
    ) b3 n' h) M; j4 G4 t
    2 G! x7 g" n' M0 M3 f% R! a/ m 经典示例:计算阶乘* I$ a: J$ V7 p2 x* R- ]: ^
    python
    - x& U. N) `' R$ h8 Q4 ]def factorial(n):
    4 T: L5 v# }2 q6 u& z8 Y. B    if n == 0:        # 基线条件: N/ o3 u8 f* q' b1 l( F
            return 1
    ! j9 `/ O* m2 f+ t+ v) S) W! b& [7 X    else:             # 递归条件* T3 E$ ^& d, Q% M, g* i
            return n * factorial(n-1)$ f" j" F7 z% ?8 `
    执行过程(以计算 3! 为例):
    ! z9 K7 ^" A. o/ \8 z3 h- p9 xfactorial(3)
    6 Z# G4 \% {0 U$ s- ]$ t. s' t5 P5 W3 * factorial(2)
    8 Z8 r, L. l1 [: x; d3 * (2 * factorial(1))
    4 T2 R; ?* \. ?9 }* u3 * (2 * (1 * factorial(0)))
    ( d; U# e" k0 w3 * (2 * (1 * 1)) = 6( O5 V( e1 G; \6 ?; {

    4 P' Q7 W5 a+ {  ?% [/ t" u 递归思维要点, m) b: G! s0 G: K) D
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑  K: [- q& A( G4 ^
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  H: y. O, N! [" b$ q
    3. **递推过程**:不断向下分解问题(递), U- L# q& o+ l
    4. **回溯过程**:组合子问题结果返回(归)5 E7 T4 R3 f  f, k

    & m, R2 b, d& G8 F$ j 注意事项: o( P8 |& }4 F2 S
    必须要有终止条件
    - I/ s) Y6 m3 ]. N, }) Q2 T递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    4 z# H& c" h  ?6 r! r# Z某些问题用递归更直观(如树遍历),但效率可能不如迭代1 j/ |( ?0 C2 ]; G3 L
    尾递归优化可以提升效率(但Python不支持)) L1 ~( E! w! `' a
    + E) L4 b  U$ @8 T9 b1 ]
    递归 vs 迭代
    ; W* A1 N5 C- A  f|          | 递归                          | 迭代               |
    $ A' W  h7 S( m|----------|-----------------------------|------------------|2 u0 R1 m% o) M
    | 实现方式    | 函数自调用                        | 循环结构            |4 F: P0 q( G3 C  R9 V
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    " `. u7 V( _, h- o! q| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    9 k1 Q6 s- |! M8 R% `* |  K| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 e/ i0 I3 T, u' V1 C) d, f

    1 u. \7 O# F5 z8 X+ ], G 经典递归应用场景
    % R+ Y, x! r2 K1. 文件系统遍历(目录树结构)
    / C' `: D- u# C5 `2. 快速排序/归并排序算法
    . t0 G; G; K9 v3. 汉诺塔问题) j1 T( \* G* {; ~  Q/ D
    4. 二叉树遍历(前序/中序/后序)
    ( [8 u, L% H0 J9 d5 L) T5. 生成所有可能的组合(回溯算法)
    3 G( @2 H& ^" c4 G3 Y5 r. `
    6 i1 I1 @; P3 Q) ]2 l试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    5 小时前
  • 签到天数: 3112 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    0 }3 E7 E: {5 L" K/ b我推理机的核心算法应该是二叉树遍历的变种。
    3 n; @  ]: l; w另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:! T+ G& ~7 y# D- e3 ~
    Key Idea of Recursion
    . y2 a( n) ]3 z" Y* T4 m/ v8 K& F. b9 ?, D. S
    A recursive function solves a problem by:
    2 U1 D7 @7 g: e. D8 k+ i! V
    0 m1 d( x* q4 p3 u8 N: m5 q    Breaking the problem into smaller instances of the same problem.# p/ g# f( H8 e0 P4 V: h7 d& a

    " u0 B. P5 D' a7 V( b  {# F    Solving the smallest instance directly (base case).5 I2 U" F' f4 a& }8 J+ C

    ! ~7 g( F, }; ^* |9 ]4 D    Combining the results of smaller instances to solve the larger problem.
    7 z7 b5 S9 s, j& _* ^/ C* w
    5 x" _6 O0 S6 J: R, `" z' i" i6 pComponents of a Recursive Function( Q5 d/ k: F% N0 K# t) V9 H6 j: o
    5 ]6 m8 K) F" j6 n8 h
        Base Case:
    & X* W, f$ l* v8 V% Z: B- ]6 W$ C7 ]1 d$ _. P  S2 J9 |' m0 e
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.2 }3 I1 K+ t7 Y) B. }* k
    3 b2 @1 [. W+ ?* l
            It acts as the stopping condition to prevent infinite recursion.
    ! k+ h; o5 r0 v
    ! N0 Z' b2 U! v& g6 a# p) b7 V        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' b7 n3 w& W/ b: z% J
    ( d6 d1 x% \7 T. V    Recursive Case:
    & E8 @5 E( v9 f# [5 k0 r
    , P; d  T- D/ X+ s, n% C/ D, ]        This is where the function calls itself with a smaller or simpler version of the problem.
    $ S" H9 B+ O; }4 \& p3 a0 _# s* A
    , A  o( i5 l. y6 ]( B# J        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., C& W4 i3 r1 Y
    # R* F) Y+ n2 z  Z+ Y5 Z  v
    Example: Factorial Calculation
    3 r' a" E) q4 F+ K6 L; f! [5 Y2 k. @; Q# ~) {+ |6 Y/ k4 }1 y
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:3 w% R+ F9 l) w$ E3 m8 U
    ) G! R4 O* V& U& X. N# \: N
        Base case: 0! = 1; H& d9 S6 G9 o8 ?- |4 H% C

    " H% r! f* \, L7 j5 ]    Recursive case: n! = n * (n-1)!
    & D1 r6 W- Q" R. b
    8 T! ^+ ?+ O! @4 R, m4 e- _$ J0 H# NHere’s how it looks in code (Python):
    4 m  i2 X7 W' Z) j5 }6 M' h! R* Apython
    7 X$ u* y4 A# r/ h' K# R5 Z  z
    0 r0 x, b8 c- q9 _% j) e) W2 W0 a" l9 Q% o; _
    def factorial(n):
    ! K0 @# {' B2 Q) ^9 V5 W    # Base case* j- U# t: F$ o. N/ d
        if n == 0:9 h$ o4 |- F+ _6 e' W
            return 1; h/ }8 \, ?+ s: l/ X9 k
        # Recursive case
    9 n) e9 S7 N9 r4 e    else:
    , k6 V) c( G0 S. s* D9 s" O2 q% Z        return n * factorial(n - 1)
    ! r- m+ o% d, w* M7 X0 D" W& {/ [1 ]
    # Example usage2 T; S/ |! G6 ]4 w% B7 F
    print(factorial(5))  # Output: 120
    ) q! u; W" [" X8 d' m. ?; O
    : N  o2 [( V* j9 gHow Recursion Works4 p6 ?: ~7 j; K. y; e

    ' j8 V3 \* d! a1 t    The function keeps calling itself with smaller inputs until it reaches the base case.
    ) O5 t0 d2 `- B$ o2 I1 _5 q
    9 Y  r  _$ e: Z7 d$ l( M8 \) j& _    Once the base case is reached, the function starts returning values back up the call stack.
    $ |2 t2 c8 o6 c1 X% X6 s
    ( b; @, Q9 x: E9 w    These returned values are combined to produce the final result.% T8 H3 o, ~& E* }% \

    8 y) N, c: @7 R, ?5 IFor factorial(5):
    7 Q( ^6 w5 E9 \% m6 y6 V
    / p9 |# T% k  ]* ?0 J! D9 P
    - c2 A* R- R  y- j. a* ufactorial(5) = 5 * factorial(4)1 \. O; J2 f& i# X0 _9 a
    factorial(4) = 4 * factorial(3)2 n! ~9 ?2 a* s7 d( l% g% U
    factorial(3) = 3 * factorial(2)# h3 H4 e) i+ U: }- D6 L* X' J
    factorial(2) = 2 * factorial(1)' S; m5 E( q7 V8 l! P# X
    factorial(1) = 1 * factorial(0): ^9 u' q' a- p5 I; E. V
    factorial(0) = 1  # Base case
    7 \2 ~0 b0 n: K0 l$ ^7 X
    2 Q7 R( f( m. I$ H/ y& R$ i/ Y3 ^) SThen, the results are combined:8 u1 x/ k+ N% m; P1 U
    7 B  N4 ]3 {4 a* ?; S8 k3 i

    7 M" `# ~* \" @0 O& v& }+ ?factorial(1) = 1 * 1 = 10 Z$ e6 M: r( ]) ?
    factorial(2) = 2 * 1 = 2
    8 T) `% h. S1 e9 k% Y& Kfactorial(3) = 3 * 2 = 69 r" w" q" C$ L3 M% z1 e# ~; W
    factorial(4) = 4 * 6 = 24- K$ L$ b( s% F
    factorial(5) = 5 * 24 = 120' `$ Q' v; r6 J" r. P

    ' m+ m8 F# P& p9 }/ eAdvantages of Recursion! M) h- |8 Y7 U( I( `; p" ]
    - A) i5 Y( R( ]# u/ L
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! _/ q' {" T5 T
    0 M5 \* l6 r1 e9 d/ Q
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 A+ C* w9 p0 r* J
    5 j+ ^, O, q; mDisadvantages of Recursion
    5 C* ]: i! l1 a* U) S3 G- m' q' A6 c/ {* n1 Y1 j; [8 W) i
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      ^4 R# R: i6 N$ U
    7 }, W( ^- W% y1 n/ j+ x, a    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# v3 H1 k7 @/ Z$ N
    + j) o& Y3 |8 B1 O
    When to Use Recursion
    0 _" q5 F7 m7 z  W6 ~' M
    , K( B, |9 W9 C: e# Q, M7 k    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ) M7 a7 n+ D6 f1 B6 |5 }: O" v% C* T7 q0 v) G8 W! \
        Problems with a clear base case and recursive case.8 }" v6 Q5 z& A) I9 J3 ~$ t

    * t' j+ T8 Q/ D/ y1 [4 m# c# z( yExample: Fibonacci Sequence
    " \8 i) ?+ t6 Z1 [3 C! I4 r% a9 ~: [6 g5 h& y! c0 V  A
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& Z$ Q# s, \% D& [. W& V  c" M
    8 \4 L1 a4 O# y6 `
        Base case: fib(0) = 0, fib(1) = 1
    4 k5 ?; Z, e, s. M$ U1 Z/ x5 s- g4 N7 ?3 d0 O2 R2 e3 i
        Recursive case: fib(n) = fib(n-1) + fib(n-2)% Q! s) N" ~$ Q0 l
    " a" x6 J, i8 i  G. A, v' x5 T
    python7 i0 b- o$ u" K- C- T+ ?6 V

    3 s5 R/ q) j) _. U7 u( ^5 q' E/ p- @9 z5 h4 C- I" L
    def fibonacci(n):
    ! Z. q6 M. Y& ~% p    # Base cases
    . W- C$ c+ X* `2 H/ K/ \    if n == 0:$ c2 Z' T: [6 u' {4 j& B: a1 l, |- W1 A
            return 0
    + q, i- D) v: \$ F! U    elif n == 1:# H& ^  A( ^/ d
            return 1- {, R1 y7 B" f/ b9 b; P0 Y
        # Recursive case
      D( U5 r% {2 v0 e' F+ b    else:% P/ R  @/ \) r$ W2 O4 h- c
            return fibonacci(n - 1) + fibonacci(n - 2)2 A, E7 h- [0 k: ?" M; t
    . C" ^' P: D. J, `; o, ]" y! R
    # Example usage/ G/ Z/ c0 |( Y" V: F
    print(fibonacci(6))  # Output: 8
    - Q2 A0 W% h: J2 Q/ R* Y  @/ L- N2 s, l  o7 F
    Tail Recursion
    1 J0 c9 ^% |7 _8 S! E9 G7 _2 z) v' g! p" a3 V
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).2 a" ?% V' ^% h3 \9 m, j9 K

    / u, V2 M/ j7 q/ L: DIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-8 12:48 , Processed in 0.038767 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表