设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2008|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ! a6 [: c# l7 f0 Z" _% I/ m+ @# \& ^  e; }
    解释的不错
    * N1 P2 Z$ V+ G" \/ ^' y
    6 C) u& u$ _$ H递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* m) I. n. f5 k& t  k

    & q9 r1 f7 Q  D3 Y+ A' l 关键要素
    ' V; N3 n2 S0 h" V; t1 x$ x1. **基线条件(Base Case)**
    3 K$ p1 C$ d& T, ?! N& F   - 递归终止的条件,防止无限循环
    ! q3 l3 m3 \3 \5 G! s3 s   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 f, I% |- d: r
    + N2 j& B+ a! T7 r4 I$ a) S1 o3 _
    2. **递归条件(Recursive Case)**
    % c- q( p# ?1 O( w6 U   - 将原问题分解为更小的子问题
    & b& C) M# ]2 C+ J" j- M; |   - 例如:n! = n × (n-1)!, {! b: z2 K7 P6 n. I3 U# j" g0 I
    + P7 T$ c: Z  p: A! s
    经典示例:计算阶乘
    1 B) J, G' C0 P! lpython4 u' G4 @  p6 m
    def factorial(n):
    $ q: n) A+ u0 ~4 g3 ^0 H3 t) O    if n == 0:        # 基线条件
    ! ?3 ^/ S. c0 ^% G: M' y/ ?% z        return 1, P3 W$ \% p" a
        else:             # 递归条件( J$ O, H+ p( Y
            return n * factorial(n-1); _! H4 f" Q8 Z- P0 Q* r7 Z
    执行过程(以计算 3! 为例):6 A! _8 Z2 `( Z) _, h. _7 R
    factorial(3)
    % g$ [* M& l- G/ G4 E7 n3 * factorial(2)
    5 X* E7 G5 W, ?& O. i" E% e1 |3 * (2 * factorial(1))
    9 k3 t. k) y: ?, n- |- c' d- u3 * (2 * (1 * factorial(0)))
    $ i  F3 G- y! X3 L8 C, `! `! F6 m3 * (2 * (1 * 1)) = 63 \. d& e* e  G( a1 T

    # x! ^+ f, y6 L& b+ N 递归思维要点
    ! l8 c/ x9 l/ u5 U; [0 r- {4 i* t1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    & a3 i! F" R% Y, k' M$ r! O2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    1 k: M% \; }) \, I  i0 u3. **递推过程**:不断向下分解问题(递)
    2 M' t8 Y2 \, _0 M  i9 N* s4. **回溯过程**:组合子问题结果返回(归)0 n2 I  Y! s+ p# q1 D: E& t
    & Z9 q4 U' U0 J/ D
    注意事项
    * Q" s  y& S7 W7 V( a$ Z必须要有终止条件1 j* m$ Z2 S$ T/ Q2 w; k
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    6 u" a' X. h# e$ n某些问题用递归更直观(如树遍历),但效率可能不如迭代8 W+ p7 ^. }! O( n9 T8 B% B
    尾递归优化可以提升效率(但Python不支持)
    1 }8 `3 x/ F9 q1 ^. q! g2 N& L8 T3 C( {+ G
    递归 vs 迭代
    # D; e3 r0 o  b1 [: h|          | 递归                          | 迭代               |
    . R/ h# f5 C/ i& U' W1 k, T|----------|-----------------------------|------------------|* }5 M+ H, N6 `$ c% d' i
    | 实现方式    | 函数自调用                        | 循环结构            |
    ' l* @# e9 S) b. ^3 ~9 f' q| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |2 S  n0 U2 J/ m; x5 C0 Y5 @
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |, S' I" ], |( o6 [% v4 D/ S
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |& [: P" C% B" U

    # w: w1 x5 m/ q1 d  P+ A 经典递归应用场景
    " k* L* o: B# [: Q. ~  u  d1. 文件系统遍历(目录树结构)) N- D7 s$ F0 j# s6 c4 t
    2. 快速排序/归并排序算法: T% q$ w7 g8 E7 S
    3. 汉诺塔问题
    - P) w9 X  W1 K+ E4. 二叉树遍历(前序/中序/后序)
    ) ~1 E8 m) [$ j& n5 Y, ~5. 生成所有可能的组合(回溯算法)0 v+ L! e$ x& t+ i) v5 o8 s$ d

    , u0 |: @& a* m试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    昨天 10:14
  • 签到天数: 3162 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. i+ V% b' X+ u0 D% D
    我推理机的核心算法应该是二叉树遍历的变种。5 l/ u1 m' ~6 A0 Z
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:+ u& X( Y( T: Q5 M
    Key Idea of Recursion
    7 U5 a* H4 _+ [" g# }  J9 d- h: k  Q0 w9 S/ D. r, m
    A recursive function solves a problem by:4 s8 f2 F/ m: F9 c$ H
    5 h8 i+ B. O  C3 `# V* ]
        Breaking the problem into smaller instances of the same problem.
    ; d+ y7 m+ ?8 T$ m9 F5 a& z/ Z
    / @5 }3 v, o2 w$ r    Solving the smallest instance directly (base case).
    5 G% _0 G+ a1 W. ~$ d' s+ p. K9 E  ^+ d
        Combining the results of smaller instances to solve the larger problem.
    1 V" `$ x( T9 y. n, N
    , N$ P  S; p& O7 ~# ?; WComponents of a Recursive Function
    6 l0 x" T$ R% y7 n
    ; s' P- W% S/ p. h' H+ q    Base Case:: ^  m" |. X9 y9 N0 ?; _

    6 I4 ?) N# L. ]: t( U$ I: a        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.3 u9 V, |& Z* C
    3 `6 i) X# z9 v+ m6 T' |
            It acts as the stopping condition to prevent infinite recursion.
    : r4 |- V! @/ [7 m# W! K& L. b! t" W% x1 f2 m
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    6 |3 i! T  C5 B. w. S3 b4 W9 b/ y# m$ {/ ]7 j& L
        Recursive Case:
    . N# b( r9 v' ^, O9 h7 k& w  K0 w8 ~$ K' D& r
            This is where the function calls itself with a smaller or simpler version of the problem.! t0 s/ c; E0 @/ C( r' W

    ) p/ D) u, R4 r9 q& F        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# I  W" E/ M. V: f$ n
    1 m( x6 T- g3 S. ?' s
    Example: Factorial Calculation
    $ P' @/ T3 c% {; v! u1 V% I' y! U/ a0 |0 C5 o" _' Y9 G: l
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
      S. l" t3 ^6 N# E$ d* W5 i9 x0 }
    9 i" a; _6 |) u: B2 u) g    Base case: 0! = 1
    " O) e0 H. O# e4 x: p  V
    ) }0 l' r, \2 {  X  w$ q- c    Recursive case: n! = n * (n-1)!, ?( p( ^2 W( L
    ! }9 z; W6 o( I
    Here’s how it looks in code (Python):
    - |( S7 L* z0 }python
    * o' Y3 ?) U. G; u' s% d" _  L9 U( i- i9 p. b" N
    ) S, U5 z$ P; p  z1 X8 s1 m; e
    def factorial(n):
    7 m9 t" C8 n3 q# E! H) A* s    # Base case
    1 q8 Z& M. y$ C. l    if n == 0:# e: s* n# X9 a" L; O) U$ q
            return 1; k* \: I5 b1 Y0 @7 g2 X% q
        # Recursive case. f0 X6 z, V9 C: d5 h% f' d
        else:
    7 B) U* ?8 W* a        return n * factorial(n - 1)4 ]1 L1 q( c, U, x

    / `2 K( R# D; B# Example usage7 ^" ~$ _7 U( D8 U
    print(factorial(5))  # Output: 1206 R' }, r. p  V% A* L  s& [) N

    : d0 R% B5 i6 N# I( [0 hHow Recursion Works! i+ m1 `% A! K
    + l% Y7 T/ ?# a, t) H1 |% o
        The function keeps calling itself with smaller inputs until it reaches the base case.
    # _8 J' O- Z  \" o& P: v0 ]7 }" E* [, ^
        Once the base case is reached, the function starts returning values back up the call stack.; ~5 k8 w8 g7 S9 \4 }# w9 k
      {! T2 ]. }# M
        These returned values are combined to produce the final result., C  A' s! |3 g/ |- a- @" f

    $ a2 k" R, Q+ X7 R( [For factorial(5):  }* Q/ f8 f  T. A" E& C( ?

    2 |/ ^) _! w& j4 e
    " C6 z: m. S8 ?" Kfactorial(5) = 5 * factorial(4)
    3 [8 Z0 f: J$ E0 q5 k, Hfactorial(4) = 4 * factorial(3)/ e. [3 A2 T' P6 ^: \5 l
    factorial(3) = 3 * factorial(2)6 m' A1 x9 y4 }
    factorial(2) = 2 * factorial(1)2 J0 Z' n7 B; r4 G3 ]7 r% F
    factorial(1) = 1 * factorial(0)
    + s, P0 k8 |  \5 yfactorial(0) = 1  # Base case* d0 T3 H0 Y  P5 W7 P! s
    & t5 A. ~4 p, o& E, ^- K! L  D
    Then, the results are combined:, g: K2 D2 Y! z7 e4 z( |

    1 m& b" d& ~, f% o
      U* S" Z  z/ V4 i& k( Y0 Nfactorial(1) = 1 * 1 = 1' c+ \" o! v9 v: U
    factorial(2) = 2 * 1 = 2- Y: I3 F, N; R' D( t4 F
    factorial(3) = 3 * 2 = 6, V7 Q8 D! z5 y" r+ ^. R
    factorial(4) = 4 * 6 = 247 [8 \6 w/ p# [8 r! |
    factorial(5) = 5 * 24 = 120
    * ~+ u+ k  r' N# t; Q0 M. e7 ?2 @0 s! J* q, V7 j
    Advantages of Recursion# ]- t3 v- E  @2 v2 ^
    ' U% l+ v; o/ b3 n
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).. `- p1 @! n- j3 h% Q

    # b3 G. W1 A% k  G. q    Readability: Recursive code can be more readable and concise compared to iterative solutions.- H$ J: x  }2 h+ W4 c& Z

    / c& z' o* ?' O! oDisadvantages of Recursion
    , j4 W5 Y( R9 s* G+ ?! C/ n" \+ h: [' k  g3 e. \# k: X$ ~- O0 N
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ( p& k) x1 l& l! B" G- F7 ~) u
    2 @" i; W. J/ s2 K+ d% _# e4 B    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    # L5 U$ g2 Q: w6 ~: l9 s3 s
    7 ~& L9 h, A; kWhen to Use Recursion$ J! p* ^, v! ~" |4 J+ g
    % d$ D" C. D1 N& W$ j! ^6 f+ {
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' {. s3 A7 D. K* g
    + t" T8 s! u; v/ W    Problems with a clear base case and recursive case.
    # n- D; M) [! y4 X: k2 D/ W4 [' U* D% j2 ]# W
    Example: Fibonacci Sequence! I; a; {1 |  m0 s% F
    " A. F% X) M' ^" L( }  q2 x+ o
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    4 h6 `2 E) w8 I) S/ k  U& y; R' _: f$ ?5 n) F" s6 J7 ?$ y
        Base case: fib(0) = 0, fib(1) = 13 p  p7 _8 j0 i. n6 Y% E6 Q

    4 o/ N9 A! R6 p; f5 e/ ?    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    + ]0 {0 v9 g+ [4 Q8 }) z+ u: X
    6 F# u* @9 I% }- r$ a+ Hpython$ l' g6 Y; C8 P, N% b/ r5 K5 ?! k
    . k7 b8 ]* s7 F; u8 {4 b' @
    7 l- K3 |* Z2 q. b/ d# B
    def fibonacci(n):
    ; f1 l* L" s3 c+ h$ t+ V" i    # Base cases: `* Z, q/ h" ~
        if n == 0:$ @) n/ K% ^8 j3 r
            return 0, e6 C! ?9 J. c  v2 P7 _4 M8 i) S
        elif n == 1:' s3 X; ]6 d7 }1 p3 N
            return 1* K1 `! D( ?/ p6 O2 }  @9 v
        # Recursive case9 n3 C! w/ e- _3 f
        else:" D' n3 f  y( c" l" H
            return fibonacci(n - 1) + fibonacci(n - 2)
    ' y& X9 o/ S6 L4 E" @1 {, _0 _
    8 j9 ]) D2 W, {+ T8 O; N# Example usage6 i+ |) J0 P, w+ T1 V7 k% c4 D
    print(fibonacci(6))  # Output: 8
    5 ^- l3 Z( q2 j$ j
    ( H$ R! C4 t8 s2 w2 Z8 ^Tail Recursion0 e. O3 _1 K3 z& [
    / o; k) v; [: j/ r) r- i6 J
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).2 Z; e5 P1 r6 t" s) C' v" t

    1 D9 {! P: X& E6 `+ UIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-4 02:12 , Processed in 0.069009 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表