设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1477|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 F4 Z' q0 j. X& P8 K8 ?
    4 x6 ~: j  l/ {; R# i" b7 [解释的不错
    : f" Z, I* Y- M& C, Z
    # q8 I% c) b& I" ~6 h7 B$ q# {递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    & @5 }' H* ?$ F$ U# v* T
    - V* N6 w2 o$ z- H8 M, ` 关键要素, Z1 T5 V1 ?4 J, z$ t
    1. **基线条件(Base Case)**
    . |; s* k. e" Y4 w+ E2 I' w1 M   - 递归终止的条件,防止无限循环
    + x7 }: \$ W; P* `% J0 ?7 y' j7 }   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 I: b" o' `0 D1 p, Q

    $ s: Q0 }# Q  }2. **递归条件(Recursive Case)**
    6 u# Q6 w# F8 e1 J   - 将原问题分解为更小的子问题
    , A( u: Q) p3 g$ o   - 例如:n! = n × (n-1)!6 C4 @+ J0 _) A
    . k" l/ f0 W+ }, }0 _- A
    经典示例:计算阶乘7 u" t) W$ o$ N' m7 B- V
    python; u- w# M6 l* h& p( L* ~
    def factorial(n):
    # ]; J8 l5 b* |4 {% e) t# @    if n == 0:        # 基线条件
    / P5 k" d6 B% s' g        return 1
    2 D. p1 u8 [; K6 Y/ {' |. r) h    else:             # 递归条件
    ' Q1 S! S( C% r- h/ V  I        return n * factorial(n-1)$ V; E8 s9 {# L4 S
    执行过程(以计算 3! 为例):
    # T+ F) ^* [8 x  O1 rfactorial(3)
    - D) a" A" ?0 ?% J3 * factorial(2)
    * k6 U/ f2 X0 }4 g# _; M3 * (2 * factorial(1))
    + q, Y% W. F3 @) V6 A3 * (2 * (1 * factorial(0)))8 z( n0 ^+ g# ]% s
    3 * (2 * (1 * 1)) = 66 q, N, r& A: d0 }: |

    0 T4 [% k. H  {& u  z8 p) f 递归思维要点
    " M8 D; z8 l# l8 z: E1. **信任递归**:假设子问题已经解决,专注当前层逻辑/ l5 @7 G; Q2 s% y$ w% p
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)2 |+ A9 f$ c: Q1 ~2 s/ c+ h, G
    3. **递推过程**:不断向下分解问题(递)& C0 I  q& L# V6 _+ B  F
    4. **回溯过程**:组合子问题结果返回(归)
    / Z+ w- n3 B, O  v. D6 J" K. L4 l8 T' x5 a9 n
    注意事项
    - w; ~% i* G) r  f- [: z% Q1 d必须要有终止条件6 Z: u1 N$ U) x8 M0 Y* I% g" c
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)( a4 d8 M7 L. s' w& S
    某些问题用递归更直观(如树遍历),但效率可能不如迭代/ y. [: v, a. j# G- v- A. i6 F
    尾递归优化可以提升效率(但Python不支持), w  g$ j* b- r: u* u
      W' L: L# i! q# @6 k
    递归 vs 迭代
    # ~) w8 A% N) j& S|          | 递归                          | 迭代               |
    * R+ f% G5 d4 K( t|----------|-----------------------------|------------------|/ x1 H! a) L& i" [9 p
    | 实现方式    | 函数自调用                        | 循环结构            |
    * `, ^+ G6 l6 n- M% \1 a/ U7 ~5 q| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |& P: w+ K6 F+ v7 z% Y( A
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    6 t5 o0 T- t, a/ h8 B| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |$ o/ q: @; E4 C3 ^0 O: i
    / N* S) |8 c. |2 a! B: v1 y
    经典递归应用场景. O& Z* P8 h- K7 O
    1. 文件系统遍历(目录树结构)5 J" c0 s8 {! k5 E! N- J7 D- {1 S
    2. 快速排序/归并排序算法* r$ Z; c5 `2 r- `- @' f
    3. 汉诺塔问题
    % e3 w: B4 f1 B4. 二叉树遍历(前序/中序/后序)
    . J. }5 d/ B% X* I7 r: [5. 生成所有可能的组合(回溯算法)( ?0 c. U+ k$ L& F7 m$ H

    : h! C7 z1 Y, p. L3 V% z6 u试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 01:20
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    7 t3 U' Y6 Q  ?7 O- T我推理机的核心算法应该是二叉树遍历的变种。
    3 E: B4 X3 v, `# F另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    / `2 k% k0 N, iKey Idea of Recursion7 J& O, J# B3 ^& S9 v/ Y2 c) z0 k2 z8 h% y

    ( o. C- |6 u" j6 o0 p, J# J! T* eA recursive function solves a problem by:. W9 d' `+ S3 V+ I1 z

    2 ~* ]& u: K9 X& i0 c    Breaking the problem into smaller instances of the same problem.2 N+ J# p5 n3 Q+ L8 I+ s

    8 a9 b8 ]. h& R& H    Solving the smallest instance directly (base case).
    ; y$ {: |1 Y' Q7 Q0 o4 w. W5 f( _7 h0 I
        Combining the results of smaller instances to solve the larger problem.; ~4 P* @8 a/ j

    6 L( {+ L# l3 G+ j) |) QComponents of a Recursive Function
      a+ W% u6 X  z! R# e% @4 D- a0 j' Y3 i+ s
        Base Case:3 t3 c2 v  P( |

    1 }9 z; X; ^* n        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
      h0 X) q9 D  {, I
    # N8 s& H$ e" z$ C) z5 o        It acts as the stopping condition to prevent infinite recursion.0 ?% y0 S5 K8 F* p+ U4 I5 Z

    - [6 C, [* z$ W1 W        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ( c! ?' v# s* X
    " C7 D7 m6 ]: E* n. X, G  z    Recursive Case:
    * i/ t( A  r3 `0 }2 l7 q3 v7 y1 z* }+ Y2 G% F" x
            This is where the function calls itself with a smaller or simpler version of the problem.
    " o; Q5 e, f7 ^" ^8 }$ t
    5 q/ \: P7 w, G+ V/ T$ Z        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    4 {; C. F/ d% f$ ~  l
    ' i4 S6 p; Z0 ~+ q; d, F0 \8 MExample: Factorial Calculation+ u* }5 B  P/ {6 V1 R

    - M" k$ q5 o" P) C( d8 j* vThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:* g% @- ?; |! |+ v
    4 X: h/ {6 f2 `% ~- X2 ?; c$ A0 b$ g) R
        Base case: 0! = 14 R: l" A- z* Q3 Q' l& o$ ~

    + |1 L) m/ ~% s! f) Y$ Q    Recursive case: n! = n * (n-1)!
    - y8 g" @! ]( o7 c7 o2 s. z4 [' c$ W# X! z# Q- f, q
    Here’s how it looks in code (Python):
    , q" B( J' \% {& g( I! Q0 |python
    # U8 [+ L$ \6 F: q+ V! m3 z7 F! W* {, O8 Q

    - y7 W7 O" @  J: f- |def factorial(n):
    : x& I5 R0 m0 _- l+ i    # Base case6 O3 b: O& B1 w
        if n == 0:! L6 b# p( S. p9 k3 G% j' h0 H% r
            return 1# v2 K% N$ z" @# o6 D
        # Recursive case# a1 O+ i3 V: L$ m! g' Q9 i
        else:4 n' }" M0 c  e0 V# P: D, J
            return n * factorial(n - 1)
    4 c  t6 i& K$ l5 Y- d( {' n5 I8 s, y! u5 J5 O( X- K  c
    # Example usage( P9 I6 O- W" ?1 @- `
    print(factorial(5))  # Output: 120
    , n, }" F2 S1 X$ v, t. A2 s/ X! n. D- Q
    How Recursion Works2 z0 e' j. {1 S+ G- i5 ?
    . X4 k% \% U" h
        The function keeps calling itself with smaller inputs until it reaches the base case.: {/ h& I$ f" S
    ' r& f$ j" q) ~' n/ p
        Once the base case is reached, the function starts returning values back up the call stack.
    8 o) Y% J, C8 R1 }& m7 a9 s! t$ V# b  W* l0 R! b7 e: P" [, `, x" j
        These returned values are combined to produce the final result.
    : J- z0 [; z9 q5 A+ U2 b/ z! Y( M" `0 P% c4 L5 ]' J
    For factorial(5):
    & g+ `/ ~) F# E( s5 }# D) V8 \& j" M7 A9 p1 h# M' Z
    ' C9 m/ o0 [. R* {: m
    factorial(5) = 5 * factorial(4)% }+ x" h1 Z" N3 W, o  h
    factorial(4) = 4 * factorial(3)
    7 `% i. g" L3 ^1 N: e# Ofactorial(3) = 3 * factorial(2)4 c: L1 O# {9 y" p1 T# s  b
    factorial(2) = 2 * factorial(1)
    6 N2 g  C- B7 \( B& e* ?; Cfactorial(1) = 1 * factorial(0)3 _8 k+ i+ `3 d0 i9 k1 x
    factorial(0) = 1  # Base case
    + u6 c0 h6 u6 E: `' L# g) v: V2 z% a6 t
    Then, the results are combined:# R6 q) }# q+ H# g: ?9 m

    * Q" g7 y1 o. `, p1 c
    - R# z8 v6 X' ^  a5 E& ?factorial(1) = 1 * 1 = 10 n4 B) e; M: T5 x3 T9 Y
    factorial(2) = 2 * 1 = 27 V4 m. Z+ G; z5 \
    factorial(3) = 3 * 2 = 6
    ) U" I) {$ \' O! j, m4 Hfactorial(4) = 4 * 6 = 24
    9 B: A7 o2 _4 o& V% |factorial(5) = 5 * 24 = 120
    7 e  P9 ?2 o3 M. G0 z) W' k( [: ]/ g# ?
    Advantages of Recursion* s( u! K6 r+ }
      b! j, J; E# V
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).% R( w, `' O  P: ]% A

    # u4 e0 z& ?% Z- O3 s    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 }( U2 ?3 p# p. T8 H, ]
    / x9 B8 z2 e9 ?( X; W- J0 P6 a& YDisadvantages of Recursion- w7 j6 Z4 B8 [# p( h0 g# u+ k; m# g

    3 i9 `& y7 Q: S* l    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* J3 I1 t; S% G( F: L. |

    ' a6 F+ W+ Y3 Z" \3 o9 i    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).- h: E+ e) B4 Y

    ! [- n5 _+ B3 OWhen to Use Recursion! C* O1 y' P6 x( b5 F+ e

    4 L) Y4 v; P4 r8 i% v7 @, S9 ?    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) J+ i7 d0 `3 B& x( I  r) {* k, y

    3 Q0 }' w; X& D; e9 v* V; v& ~    Problems with a clear base case and recursive case.
    8 z  A( I3 p9 B
    ! p3 T" r7 a- OExample: Fibonacci Sequence
    : e6 K# l1 ~; I4 {8 n! ~7 w/ |8 u, {% B4 l9 s" s7 Z
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    8 N% E' B$ _6 A- o6 G, Q
    ) ]0 [; T5 T6 |$ k: \7 @7 B    Base case: fib(0) = 0, fib(1) = 1- {# d; N: E  S

    # D2 K9 @3 z4 i' e" m1 P    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    3 B: z$ b; p8 F% `/ a- g! v% o8 W" p4 y7 P: P' E  U
    python" `- g' I& G" V+ V$ O& q

    , S2 U( ^* S. u: {/ ?
    / u. x* `4 |6 g/ N, Rdef fibonacci(n):
    - E2 @. v% t" _0 f. C3 u, ]# X- w    # Base cases2 n% H2 e* C3 n  y: l
        if n == 0:
    1 @- k- u" E$ Z4 x        return 02 N+ @1 v- l5 Z
        elif n == 1:* `1 E; n1 c' h" H% B; X
            return 1
    7 @1 K' e6 s# X" X    # Recursive case
    # N+ q$ [  k! W! H. u! r" v; t) N    else:6 {# b# y0 _; k. w7 Z
            return fibonacci(n - 1) + fibonacci(n - 2)
    ; g: F- n9 v# e/ O1 m; A
    . }6 U4 q0 C9 C: o) Q0 d+ v# Example usage
    ( X& c/ \- c6 p3 \6 vprint(fibonacci(6))  # Output: 8
    8 X1 ]" P& |8 y1 m- u8 w- }5 t! n7 l
    Tail Recursion
    : z5 z) Z" S# I0 r8 E" K' t
    % U' d* Z/ n# I2 gTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. ^4 [# m+ H. C& v* w" A

    4 `8 y1 s5 i0 O" ^; L( ~6 PIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-12 05:17 , Processed in 0.044966 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表