设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2077|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    2 f8 D5 R6 w& m, u7 O' {) ]% p7 P4 ]" M9 v  O
    解释的不错4 y8 e/ F5 u) p/ f% k2 o- {; b8 x

    + R  L9 o2 G; K9 T, g  Y  B递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。/ ]& H- @  k0 C

    4 _$ o$ u& \9 H/ Z# g# u0 `' [ 关键要素$ D% H6 i$ J7 `; r. i0 l
    1. **基线条件(Base Case)**
    8 j4 S3 Y  R6 e- W8 W0 S' g: t9 w   - 递归终止的条件,防止无限循环+ @! i/ I+ N$ x+ i2 D  W9 f2 }
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1: f/ U$ V' C  n. s4 B1 b# g' i
    6 h- M6 x3 a+ e) m5 \& y- A, v
    2. **递归条件(Recursive Case)**
    1 P2 r/ B) S3 P: j' f   - 将原问题分解为更小的子问题$ x) I2 E9 s, T0 |
       - 例如:n! = n × (n-1)!! V3 @3 D; `) U( U3 _+ ]" _+ d5 S

    - @, C1 o$ F' f: j/ p% q3 M 经典示例:计算阶乘
    8 ]) Q. P: r) u0 Z) W5 N: [) Gpython9 q0 [; }9 f0 B- w$ Z" y4 W
    def factorial(n):
    * W4 H8 f! [& \1 h4 [4 I5 v% Z    if n == 0:        # 基线条件2 Z* n4 S4 l( u+ Q3 Z/ F7 l7 W: z0 c
            return 1
    " w: y! X' L5 m3 ]: {" `0 W# |% u    else:             # 递归条件6 y* G% n5 M6 j& g/ Y  R/ z  l
            return n * factorial(n-1)4 S" j% g4 G4 A
    执行过程(以计算 3! 为例):
    6 @5 p9 q. a2 t0 x- B$ S1 Z* |factorial(3)
    8 r, P& z* ]' y( v% F3 * factorial(2)
    . Q& ?% k  r" y" a+ ~/ \3 * (2 * factorial(1))" O; c4 s) [0 {. ?8 _1 Q
    3 * (2 * (1 * factorial(0)))
    / j% E8 w2 j- ?+ y9 {1 I3 * (2 * (1 * 1)) = 6
    4 q$ t* S/ A; R7 L& X- K3 |; M; s' ]. V/ N3 f: B9 ^' A) p
    递归思维要点; y7 @5 R" b5 W/ B
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ y1 ]5 ?! I4 T4 L( U
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    - Z" g" I- K  F9 A# W) k! d( a3. **递推过程**:不断向下分解问题(递)$ ?; e+ @' ?, O  X( }3 M, \" R
    4. **回溯过程**:组合子问题结果返回(归)1 Y1 M, r$ q9 w; B2 v+ ~

    . K+ ^4 N# x: s 注意事项
    8 M* g! ?- I( e9 p4 o; o. z必须要有终止条件& A6 \/ @! f% j: h; g- }
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)7 @7 S' f8 S/ ?  C
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ) i, {( S0 ~# I% r  ]4 q4 `4 m尾递归优化可以提升效率(但Python不支持)
    / M6 `" A" a3 h, A+ q' s( L& i
    / q. b1 L6 J3 c1 x0 C( p9 h 递归 vs 迭代
    ) x9 O* G; P9 F; j+ v. H& G|          | 递归                          | 迭代               |
    ' F7 a" |9 Q0 }% G; R|----------|-----------------------------|------------------|
    & R) f, y& h" V6 U' d' E| 实现方式    | 函数自调用                        | 循环结构            |
    % g$ f6 ~: h) |; ]. M0 l$ b| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ) C5 g1 P) y$ y| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
      }( @( I9 {0 }; |* I| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    - }  g4 i0 k/ P7 d( W7 [: ^8 ?7 [. B. U* ~5 k% k9 H
    经典递归应用场景  D- B# T% R, [* F
    1. 文件系统遍历(目录树结构)# \* r5 u3 y( r- C2 @% c# _
    2. 快速排序/归并排序算法
    # P$ f8 Q% m; p! h, t$ o3. 汉诺塔问题2 `/ v5 Y" d$ _& G
    4. 二叉树遍历(前序/中序/后序)3 U( w- e* _) O
    5. 生成所有可能的组合(回溯算法)
    / M4 Z  a6 G0 K, [) g* ]  f9 q8 n
    ( \) s5 S1 |' D试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    1 小时前
  • 签到天数: 3172 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,7 g* @/ N5 h& N; ~& E
    我推理机的核心算法应该是二叉树遍历的变种。/ ?6 S1 L8 F/ i3 x
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:! D+ Y1 `7 b# d' c% N% T" ]
    Key Idea of Recursion
    / b4 K$ s) v7 v0 b( m; p
    0 {. t, g( b" r; N- K" UA recursive function solves a problem by:
    ; ~" a9 D) C3 u5 M
    . H' S6 F& g9 j) {    Breaking the problem into smaller instances of the same problem.: `. ~9 o# T/ [6 _4 A$ |

    $ L- F) A+ v% l- I& q/ y- ?    Solving the smallest instance directly (base case).0 O& l7 o; l. j
    6 \2 {+ a- a* P$ b6 a8 @" q1 _: H
        Combining the results of smaller instances to solve the larger problem.5 ~' I6 C8 I8 l/ A! V
    " U; o( |& s. a) L: {9 R, f
    Components of a Recursive Function
    1 T7 V) h1 B( l# K# ~/ `; h$ V- l2 y! d
        Base Case:+ p7 A) U) L' Y! z% I
    5 _" O( e) f8 Z: R8 @, e/ _
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    - b" p8 H1 L# ^: O" ?) j5 d1 b; f, G* f6 ~# X! {2 {2 g
            It acts as the stopping condition to prevent infinite recursion., D* M0 i, B( M$ g5 |" Z5 @( m
    1 n9 S7 Z( S+ i' g' @
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : E$ |, O; c. M) \6 j
    ; I* V& y: L* v: {2 Q% Z  X    Recursive Case:  |" X0 y1 A# v" f% ^' E

    ( z# z9 w( D, R! a& B4 S5 }        This is where the function calls itself with a smaller or simpler version of the problem.
      y- g; K# K/ d* q4 a# C- Y( |" [. Y7 G% h. W" a6 e" Z& m# F- \% U
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).9 g. r3 U& o+ V6 P' q  W4 U

    ) \0 N5 Q  g' \' X% n, ?Example: Factorial Calculation
    6 z5 b' k( d" Y" u$ }8 ^; l- F0 P- J- J2 I5 p5 Y' ]
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:; }$ v6 O) ?0 e9 P8 O- H9 n& g
    " u5 P, }1 k* ^8 K% @6 u, Q5 }
        Base case: 0! = 1
    ) N7 [, A! _. P( ~# H$ L: W
    8 l- L- |( u  @9 b( k    Recursive case: n! = n * (n-1)!
    5 Q. S4 Y/ L5 P. B. ?* J0 _; x/ g
    3 T9 L, B% V3 R7 vHere’s how it looks in code (Python):2 i2 k" P8 M# k+ ?
    python
    % u6 v6 i8 z) k: l4 X- e' U7 _( k7 E5 r4 Z
    ) c* W0 _! ?$ H
    def factorial(n):$ P0 {& Q' N: h* y6 l) y. E
        # Base case
    ' U8 \; O& W/ r6 G3 ^5 _, K  L    if n == 0:* h  D/ v+ P% z& h4 w
            return 1
    8 p8 p1 V* J7 U! @' B  H: w; F% ]    # Recursive case& d/ [+ t, @8 y3 c: Y
        else:
    : p5 W( H* I+ f0 U/ T, I        return n * factorial(n - 1)
    & u) u) h$ J2 \, n. R
    8 {+ y( o: k1 [$ t' J# Example usage
    % E/ c* z! q, r& w' p; aprint(factorial(5))  # Output: 1201 A/ t  c5 }4 P. v3 ~4 g  ?

    7 H" ?4 T. h. i) z3 WHow Recursion Works/ j+ [7 r, Z: h6 b+ |; N% {# v6 g

    8 N2 d, E2 S/ \& t: V    The function keeps calling itself with smaller inputs until it reaches the base case.
    2 w8 J4 s' m5 x$ k5 \! Q- w% F
    ( S8 L( g4 q! m& |. N    Once the base case is reached, the function starts returning values back up the call stack.+ c% u! U; ?" }! ?
    0 w' D$ B9 [+ b, [, J
        These returned values are combined to produce the final result.3 P4 j$ C, w; o& d5 C, z. P
    / f6 @9 p3 q4 F8 }8 R
    For factorial(5):
    8 Y) `6 {6 O+ H9 m! O% u2 Z: V! A% F6 z; `- b/ g- w4 L

    ( H6 I+ O5 _+ _; z+ Y* X5 cfactorial(5) = 5 * factorial(4)+ O5 @2 s5 m( D+ |  h; X
    factorial(4) = 4 * factorial(3)
    " h0 w$ o' ~& [) ~6 @factorial(3) = 3 * factorial(2)
    " Z& L; C; }1 g( ~: M+ J% {factorial(2) = 2 * factorial(1)
    7 ?$ ]. P  w% [2 W6 ]0 Dfactorial(1) = 1 * factorial(0)5 ]. j0 T; A# I/ N6 M" ]) b6 b
    factorial(0) = 1  # Base case
    : @0 [: b/ x" i- M: q6 m4 a. y2 p) m( Z
    Then, the results are combined:) S& l# G8 w- N0 b0 {  H

    3 N2 G6 J3 ~2 V1 K1 m6 ~4 x  G0 T$ d% K/ I: H; Y
    factorial(1) = 1 * 1 = 1
    & D! D7 ]& J9 b7 rfactorial(2) = 2 * 1 = 2
    ) o. j2 o9 C5 F: g' m# I3 W& h( `factorial(3) = 3 * 2 = 6
    0 ]" P; T- ^2 Z9 Y% f" |factorial(4) = 4 * 6 = 24
    2 D, D0 u6 q; E, `+ cfactorial(5) = 5 * 24 = 120
    ( N: A1 k, y& _& ]
    ( R: Z) ~& E( k4 ~Advantages of Recursion
    1 P0 w; Z: e+ l5 T/ K
    , I0 t* `3 \! P8 \" w' V* F) I/ J  Z    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 z9 S- Y8 c' R8 t4 @- `
      E' }4 w% {% `
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    4 R; F8 c6 p% ]' k, P5 |" M- N! V- e2 V  D7 T. w. N
    Disadvantages of Recursion
    5 L& w. y1 B' F% W3 d1 T+ z
    1 Q' m" ~5 x" |4 |" R8 [: c. d    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% z. S3 B0 E1 i: g% v8 e* V
    1 Q( Z) D6 f# |/ @# k8 |% v1 C
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    2 |1 ]1 t, H1 f! P; G6 f4 w+ V; C* _0 L! |$ c2 o
    When to Use Recursion) J, q; _6 c+ H
    4 Z9 y) H1 T* [0 O' _, y' S0 A4 S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).6 s1 _5 e! H4 Y9 O
    ' E; h* Y4 @+ P; {8 Z/ }! H4 l
        Problems with a clear base case and recursive case.& ?% q7 L3 m( A: H2 i. {

    % T0 U. f% K/ J; N/ t1 |Example: Fibonacci Sequence- |4 z0 p% U! k% x* K# f9 n+ y1 G' s% e
    7 R0 ]. @! I2 E0 B' `( N
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    . a# K. K% o1 a  o% e7 Y6 `- P' ?2 s! P2 ~/ A
        Base case: fib(0) = 0, fib(1) = 16 _' H/ ~# V2 r

    7 a% o$ f7 n0 I0 F" A9 C    Recursive case: fib(n) = fib(n-1) + fib(n-2)' Z- h# p! Y" B$ A3 o' J+ N

    " ]6 e- w7 y( @2 b" _python
    2 n1 m2 u) B0 |' Y3 L. o' p' U2 ~  Q, P
    6 C7 z1 y$ d' h$ d( D7 ?
    def fibonacci(n):; n( A: b: q" z' z
        # Base cases, u9 b/ M( i7 r1 j  M
        if n == 0:! a# N6 [. W: I* |/ c
            return 0
    + O9 ^" z' Z  ~    elif n == 1:
    9 F1 x# p8 d* |# C- s( G  h# B        return 15 E/ t7 D- d. J: T) |
        # Recursive case" @! i" Y7 f" a2 m6 v3 }  X3 I
        else:
    8 y$ N! \3 p+ a: f0 m3 d        return fibonacci(n - 1) + fibonacci(n - 2)& d7 [, F8 ~! F0 ^* }8 c

    : C2 l! n8 O  P4 a! Q* {- P- s' A# Example usage
    & C' o1 ]. U/ _" i$ T9 jprint(fibonacci(6))  # Output: 8
    4 h. s& l, e/ e9 T2 H2 \0 U! x' I4 v& R  c1 E" B% g1 i6 s7 J5 t, |
    Tail Recursion% G9 g; {7 }! Z/ W* k) H2 K3 t

    , g! c$ Z8 X% A7 |- S$ XTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).: h' W+ [0 P: p. f- ?
    % v; i3 H9 V! q) M! `; o& x
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-13 09:09 , Processed in 0.060850 second(s), 17 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表