设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1948|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 / P$ l/ X. `9 i* m) A
    7 N; q2 u" d9 @% C3 _6 ]8 |1 n
    解释的不错; A% C  g( B* V: `/ l

    + [& x" I. I1 ^' N+ C% K9 z6 t递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。( B, I7 P+ T! A; V% {' B" V! J! n
    $ Z# M; W, N" D2 _  |
    关键要素# |: v% ]/ p( w
    1. **基线条件(Base Case)**
    : b- \0 O9 V' f- f- p; _, D" g   - 递归终止的条件,防止无限循环
    % b) e  C3 B. j4 J" k8 m( r   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
      N, N9 I% n0 w: O& m7 j$ _7 S' ]& L1 w
    2. **递归条件(Recursive Case)**
    8 K5 J4 e- M( E: P/ U) O   - 将原问题分解为更小的子问题
      }, Y0 t  v" T% G+ h1 R, u. i+ a   - 例如:n! = n × (n-1)!1 H0 I5 ]5 ]' D* @3 T; G# C
    & J9 u+ n& E1 Q* U7 |, K
    经典示例:计算阶乘( _% a1 N4 }$ b+ m  y% L
    python: q( a, U( c0 i( d+ x5 x) q, y
    def factorial(n):
    + k2 }) `% {+ b* i    if n == 0:        # 基线条件
    " m4 a' c: Z  [/ w( q8 T        return 19 P3 b# q/ ]3 s! x2 r3 G
        else:             # 递归条件0 ^8 }( W- n! R4 V9 [
            return n * factorial(n-1)
    5 e& ?6 P. R  M! M/ X$ S. q  ^执行过程(以计算 3! 为例):
    0 P8 u  {# j1 J% U+ Afactorial(3)7 J: E' E2 |& x0 y( Z. @: R: m4 G
    3 * factorial(2)
    $ K$ U7 i4 I. J2 F3 * (2 * factorial(1))3 @  A& V$ D( ]* I) i  o1 z; }
    3 * (2 * (1 * factorial(0)))
    " M  i, I4 C5 ?. v3 * (2 * (1 * 1)) = 6
    ( n  Z9 q0 L( X# b5 D! \
    1 `. b* y" j# o. O: G4 K 递归思维要点
    5 W* R3 B7 b- `4 N% ^1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . p& V0 o  s; [' y. \# |6 O6 [$ w2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    2 i' I0 T  F" \% B3. **递推过程**:不断向下分解问题(递)3 E) j+ m( N. f" e
    4. **回溯过程**:组合子问题结果返回(归)8 g  O( k+ J) p; E2 _/ C
    ' i1 d) F  E$ M  X0 J) D
    注意事项$ O3 I& I: O  Z- a
    必须要有终止条件  s$ _" F. [4 Y, r
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    & ^. E) X2 k: ]0 y. u2 D0 j某些问题用递归更直观(如树遍历),但效率可能不如迭代
    $ K. Y7 k% G) P9 \( v尾递归优化可以提升效率(但Python不支持)
    $ C' P  r# x/ v3 `
    $ i' X; y+ O0 i1 w- Z' P 递归 vs 迭代
    / y0 R1 V: _! U$ }2 y9 n  q|          | 递归                          | 迭代               |
    7 |& ?' o/ C" q|----------|-----------------------------|------------------|
    4 G% ?$ i' [% w8 h8 x| 实现方式    | 函数自调用                        | 循环结构            |
    6 `* [6 j+ g9 D3 r  Y/ N| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |& \$ s, m3 V7 M: }! k  p
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    + G& t* k& q# g6 P2 N$ ~| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ) J9 h4 j: `0 h
    : y, |$ U; B3 L8 \6 s 经典递归应用场景
    & {0 H7 Y+ V9 A2 ?+ Y% |* I. i1. 文件系统遍历(目录树结构)
    ) M" v0 N! A5 Z/ Q, ^) i: n2. 快速排序/归并排序算法
    7 c8 D* l. [7 W) Y3. 汉诺塔问题" C3 V8 p2 u- r2 L9 p. x/ c, V
    4. 二叉树遍历(前序/中序/后序)
    4 H3 T: }4 \' I5. 生成所有可能的组合(回溯算法); ?, W! {( u8 @2 [* p
    - N! @8 h# O% M) ]. Y. l
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    4 小时前
  • 签到天数: 3154 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( w* i0 }* N" y' u, n
    我推理机的核心算法应该是二叉树遍历的变种。
    4 C$ q% P/ H" ?0 O' \1 H3 r另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    . P3 M" Z6 i0 dKey Idea of Recursion- O2 z) [; B+ w5 y

      b: M7 p4 P  T2 J/ w& u6 vA recursive function solves a problem by:$ u. B9 H' g" ^/ y; O
    - i! V4 l6 o1 Q  H# g
        Breaking the problem into smaller instances of the same problem.! }7 O- A$ U1 @$ Q/ U# C
      G0 _1 J: [' w  ^
        Solving the smallest instance directly (base case).% p  L! ?; F( u) p- q/ p6 L
    / [1 f0 |# L# x7 i& C) \
        Combining the results of smaller instances to solve the larger problem.
    * v8 w( [  x) d, M- d6 ]7 C1 b: v2 l2 m' y/ e1 b
    Components of a Recursive Function8 N" Z, k& j6 W* ^) r
    ' \; J! \0 N7 J. ?8 D
        Base Case:( b# ]4 \, K1 O5 E! h+ ?

    5 d5 h$ G6 c& r# O, ^/ N7 c5 P        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    - O# J3 U% C; M# k. o' j& ]
    3 q- _* p! s! V% {        It acts as the stopping condition to prevent infinite recursion.
    % ]2 Q  N, r0 z3 Y4 I+ ~4 p' `% P* i9 k9 B) k+ x- A4 P6 @; [
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ) U+ A0 g& }: w" a1 w/ }1 E+ _3 i( z6 ]
        Recursive Case:/ e8 c; N$ A1 s0 |2 ~1 W5 P' `

    ' T0 l+ x5 l6 l: |/ S        This is where the function calls itself with a smaller or simpler version of the problem.
    5 N5 G* h8 ?" [1 I/ w- D7 K
    3 g) b% F/ C. f4 {& f6 z$ _        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      v7 D% s$ H( R4 Q1 X/ \. a! l0 U7 Z# u1 l- q* l; v
    Example: Factorial Calculation
    5 H& ~2 V  x  S7 ]) |$ M; r7 t
    7 N7 Z: ?$ |2 j# o; tThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    2 t$ d" d# D4 Y4 _% c% B) G0 \- a1 l2 {/ x5 C
        Base case: 0! = 1
    ' i; r3 [1 ~7 p
    : v& o, U7 \  V3 ~  Q    Recursive case: n! = n * (n-1)!. b2 a9 j) a% s1 t6 A7 `5 b, |
    , f. e- R/ J+ P6 ~8 Q
    Here’s how it looks in code (Python):
    - K" W) P* a# l$ f# ?$ Dpython3 V1 W( J3 n, K& U7 g
    % g/ r; I3 M* m0 y6 J4 o0 n" {% C
    8 j& p1 P' x* N* A9 j$ P  i
    def factorial(n):9 ?8 |7 s# H* i! E* T) r% ~
        # Base case
    " ?& \/ [5 P( g7 e  D    if n == 0:
    5 _$ Y) Q+ x3 a# I: [3 b. m% Q) G        return 1
    , ?: i- U! j; J" g- @: t    # Recursive case9 w- [; b: |3 k% X& D# m2 f
        else:
    ' k2 k, O. _2 {, }        return n * factorial(n - 1)
    $ \% k0 ]) ]) f3 Y. |% l' j! U" [( s% a+ ]" D. f: F" m
    # Example usage
    - t. @2 A4 f. e. q4 V5 h3 ?print(factorial(5))  # Output: 120
    6 j! l2 D% h  q- }. q3 ?8 T$ C/ |+ U5 i/ @6 n3 o
    How Recursion Works
      X' n8 S& ^* |) z, g! V; G7 m- _1 k' I; t
        The function keeps calling itself with smaller inputs until it reaches the base case.% _5 m3 a* s: C+ G/ g8 v
      B) e- I; ]  o' y
        Once the base case is reached, the function starts returning values back up the call stack.
    % ?& j+ z+ P4 |' R% d4 r
    # @, A7 v! H8 Y" S/ h    These returned values are combined to produce the final result.7 X' p' x! i+ H8 y8 L/ e" u( {

    7 E0 w: K& q5 o4 S. R, z! yFor factorial(5):
    " Z6 e, m( Z9 \1 x, ~
    + n. c& [: c/ @4 B; X) W4 a# \
    factorial(5) = 5 * factorial(4)# ^* T" n6 ^/ m( W+ B: P
    factorial(4) = 4 * factorial(3)
    0 A$ y* r' b* A0 |& @factorial(3) = 3 * factorial(2)+ j# U- d9 s, c  ?
    factorial(2) = 2 * factorial(1)' |. c3 b% x% f" I* ~
    factorial(1) = 1 * factorial(0)
    6 y. ?* n+ D8 ^7 T$ zfactorial(0) = 1  # Base case
    7 Q7 ]; f% Y% }" B# f- J$ ]+ v! B3 P
    Then, the results are combined:
    4 e4 v0 z$ A; R" L; ~
    0 U0 {% c6 ?: o$ t. K( z' L0 }; v- K7 E4 h( z' o+ d
    factorial(1) = 1 * 1 = 10 i6 t6 [9 F7 t7 t, H, W% Z: A; Q. U  R
    factorial(2) = 2 * 1 = 2
    . r6 m( b" L3 G2 Gfactorial(3) = 3 * 2 = 6
    - X6 B" z' s& c9 |: O# ofactorial(4) = 4 * 6 = 24  `- t" G0 U1 `1 h
    factorial(5) = 5 * 24 = 120& {- i* h" D; e

    0 X' i2 f1 Q. f- Q% B! QAdvantages of Recursion; J/ h+ o# N9 A  }3 V9 m  h
    3 E  X! d& @1 _% l) r1 E+ s# s6 S
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    3 E2 t, B1 @; Y9 J. x: j0 v4 ^( t( N! V& U2 T, |/ W. Y/ }5 Z: Y
        Readability: Recursive code can be more readable and concise compared to iterative solutions.: }+ K6 g3 @  K" C6 P( ?- S. \; d

    " l( _* v2 k3 _6 g5 A+ }2 A' ZDisadvantages of Recursion
    6 T) H  @/ _  A3 t6 ?1 C
    4 D0 H" _. z) x    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.5 F; a- J0 e/ l) B% Q- y4 b5 X
    . |% C, Q, X9 R' J( n4 Y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ) Z: z0 H5 c0 C' J. j" Z
    / X6 }3 b2 I. Q/ H% x/ ^: \( }! bWhen to Use Recursion
    # B2 t% |7 M/ E
    9 D7 J- N; W! w4 T' J1 c, c    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) W3 G$ S# W* l' C7 f
    3 ^  B1 B3 A5 j0 @. x. o$ u) h/ V
        Problems with a clear base case and recursive case.+ I  T0 t/ |  G5 V, U

    * B- B% M* _3 `Example: Fibonacci Sequence
    % D+ ?) h+ [. l) T
    4 T4 t* B+ ~" o, {- gThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 n- W/ V3 M8 T9 d  T
    8 _  @0 j- W, U( L: ~' d4 C" d9 g    Base case: fib(0) = 0, fib(1) = 1
    , a* e+ Y. w' \! A/ q: e2 ?* r5 u3 ~, L
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * o  X/ H+ ~5 \3 N9 ~( X1 b+ [, u" O; ^% ], o3 u# R5 r1 H
    python- Y1 o2 Y8 T6 f! Y
    0 M: _! N  c7 @5 o: ~8 N# Z
    0 E4 u3 R# G4 e, s+ v& K5 F* u. C
    def fibonacci(n):
    5 C# y% ^- @5 p6 g! C1 U5 [% t0 q    # Base cases% z" t+ m5 Z6 K6 j. i, y
        if n == 0:/ M) Q4 D5 p3 Z! `
            return 0+ R3 F! I4 ]$ R" x
        elif n == 1:8 a$ i$ v5 c9 z8 F
            return 1  f4 r6 A& v7 @% T/ G1 R  J* u
        # Recursive case
    ; n0 P- p+ f/ Z    else:
    5 c- B1 X0 C. e9 Z( w+ w) D+ C        return fibonacci(n - 1) + fibonacci(n - 2)
    * l1 O: u+ H! p% @0 v2 D
    # D% \7 a9 c  r$ z, C# Example usage  h  O) }' q' l
    print(fibonacci(6))  # Output: 8
    6 {, X: V& c1 X4 R0 \
    ' e' ~9 t0 f. i5 [- d3 NTail Recursion
    2 Y7 Q8 ]$ `( C9 o+ i; u# p- `# V3 [# E+ V: L+ n
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 X! S2 g* o2 T% `  h
    % _6 F3 I2 B: ]  E7 E; k
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-25 11:26 , Processed in 0.056761 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表