设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2094|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    2 j: }5 S4 N' m4 F- v5 o4 V4 z9 C
    " s9 ^: t3 a2 U; A* A$ }解释的不错8 W( J% V. P" \+ W

    1 m, D% |' x0 y递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ! |1 z) y/ o6 N/ h" T3 |5 T
    9 A7 j9 j/ ^* \& r; e) j% ^ 关键要素- H( i4 T- f3 l* I, o
    1. **基线条件(Base Case)**2 a: ~# ]. N8 }3 E4 C! A
       - 递归终止的条件,防止无限循环
    ) r: t! w$ q; H8 U   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    # r4 B% v9 ^- J
    : D5 j' B7 C9 U9 Z0 R% x9 `2. **递归条件(Recursive Case)**
    , D8 Y6 m6 k* F, u8 I   - 将原问题分解为更小的子问题
    $ O3 ]( x; R. Q$ A8 k) F   - 例如:n! = n × (n-1)!
    & [! w. E5 X; r
    . g" {* U8 ^5 [9 @5 T, } 经典示例:计算阶乘
    0 S* N+ n3 u7 m0 I8 r, N  fpython' T( c* c/ C. H8 {9 e) Q( h
    def factorial(n):
    6 ]- |) j  \# ], W  i8 V: o    if n == 0:        # 基线条件
    * ?4 |+ U( T# ?4 r; t        return 1! E3 |0 |1 G, e
        else:             # 递归条件
    + S4 M! ]) d" i% I        return n * factorial(n-1)4 U6 I' H/ A5 |! z
    执行过程(以计算 3! 为例):9 e3 Q  b8 Z3 @0 X" L1 x( [, u
    factorial(3)
    ' T  s& `# U9 x3 * factorial(2). M. }! V( T5 `  {4 Z
    3 * (2 * factorial(1))
    5 ], R$ z% ?/ w3 * (2 * (1 * factorial(0)))) W$ z& t& P, p' Z" k
    3 * (2 * (1 * 1)) = 6
    1 a- [* N" |: f: i7 E
    / t; p  P/ ^1 X% B/ b# s0 G 递归思维要点
    / u# a* N9 ]+ r0 A/ v1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    8 i0 u  u- t0 M9 ~2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . K( K, h  y& W: w/ H3. **递推过程**:不断向下分解问题(递)
    0 \& Z; _) j5 F4. **回溯过程**:组合子问题结果返回(归)7 }1 t( _9 V, b. n

    2 q) W2 {+ {: E6 n$ m 注意事项" O7 W8 ]$ B  A0 X2 a) V( k
    必须要有终止条件& c/ ]) a; S( U1 k
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    1 G- C" R3 D9 S" A某些问题用递归更直观(如树遍历),但效率可能不如迭代
    9 w5 ]7 P' ~0 {" S, V7 s, q尾递归优化可以提升效率(但Python不支持)
    0 O- G8 n. n* |2 S4 M( S
    / g3 n6 _1 G2 M- q. b: Y* n 递归 vs 迭代
    ! u+ j- ?& p' e$ D+ B% c|          | 递归                          | 迭代               |9 z8 i4 [6 |) r. ]6 U( I; i1 _
    |----------|-----------------------------|------------------|
    ' T5 ?9 u+ F% S3 V8 a* O| 实现方式    | 函数自调用                        | 循环结构            |7 a( V7 `8 r! G1 H$ _/ f" o
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    & x$ X7 [6 ?, _7 D; P+ ]4 d| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    / k8 N. M8 M/ w| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! p+ }3 n% B& [
    2 `) }4 X: E1 `& t
    经典递归应用场景4 H! Q8 V6 O* g1 T7 I
    1. 文件系统遍历(目录树结构). D% |0 j9 _2 x9 f$ P& v$ A4 P4 \1 G
    2. 快速排序/归并排序算法
    ! {, x/ ^- v* q3. 汉诺塔问题& ^! ]" }# L' K8 ~
    4. 二叉树遍历(前序/中序/后序)
    ; `8 ~' @3 o9 g$ n0 W5. 生成所有可能的组合(回溯算法)6 P& Q9 g: L/ N
    4 J# m+ l/ l* a2 J
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    2 小时前
  • 签到天数: 3175 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,' ~: @- ^0 _- }" t/ u: k
    我推理机的核心算法应该是二叉树遍历的变种。
    + y  t" X3 K9 \9 R/ N+ k另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' {2 @! V1 x% s5 O0 g
    Key Idea of Recursion
    + ~* w+ y" J) X" {+ L
    : @, o1 s- ]" V+ l% PA recursive function solves a problem by:
    % l5 q6 _8 s# h' t  g/ z9 N" u
    7 F' Q: x4 K/ b$ d5 n3 w    Breaking the problem into smaller instances of the same problem.
    : ?& y! i0 k8 U$ [+ E  X( P2 c. b4 m/ |; P
        Solving the smallest instance directly (base case).
    1 r' U' j2 |- I' e( Z+ z' y6 }" n/ e# y! p  q+ p2 O& J4 o: B
        Combining the results of smaller instances to solve the larger problem.  |# ^$ i: y( Q8 f0 L
    # r+ s4 X, _" h6 y" f
    Components of a Recursive Function1 L0 X6 T( R# C6 C5 _$ H

    - u; y$ G$ c8 o# H    Base Case:
    $ ~# a/ R. V0 x. ]3 T3 d" ^
      v0 N* v1 `* h, U! _7 x/ F1 _        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( ?5 Z3 [* v  C3 c  ~
    ; I' I/ N* t4 e2 O* H
            It acts as the stopping condition to prevent infinite recursion.
    0 `' G( p8 m" u/ R/ {4 f6 Q9 ]; w( {# M/ w. b% Q
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    1 g  z: e* O7 v3 ~3 B. o' e$ v5 M" ^1 c% s0 c& D
        Recursive Case:
    5 v  J7 Q2 Y7 O) H: q1 ?3 ~* y' k( @, \
            This is where the function calls itself with a smaller or simpler version of the problem.
    " X5 M& N9 c/ b, ~- b& D! y7 r2 X2 f' t; U
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ' Z0 r, e0 j+ }; ~6 C8 l% S; K9 M  ?8 G1 H! _5 l8 y* E
    Example: Factorial Calculation
    $ u/ Q! ^2 U' U' l2 z! z! [6 p$ s( ?4 E7 y/ h1 ~, k! t, a  D4 F
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:* B+ C1 e3 M8 _4 M

    - }: I# I- p* p# o0 |/ Z    Base case: 0! = 13 R- G/ G* \) `/ \) @

    0 n4 \: ?3 N& n8 Y: P2 Q6 B6 F1 N    Recursive case: n! = n * (n-1)!
    + `0 K/ [1 G& j6 p
    ( L' s$ U0 h9 i3 T/ P3 E3 a" YHere’s how it looks in code (Python):" A4 x' y8 U3 C: p' t  B; i
    python) F& @6 e+ h# V6 Y6 s
    ! a$ |- h# O/ f6 y, _  p, W

    7 m% z5 _  W" b# }1 |8 C6 b% gdef factorial(n):
    . m$ z6 I, U" }8 J+ ]    # Base case. ]( _$ x6 }" i" y2 u" d# P
        if n == 0:
    - N& F$ ^4 Y& z0 E5 F# t) b9 Y        return 1
    # B% h3 ~$ c* y8 E/ p+ S    # Recursive case5 z) {0 @3 i; g. s( e
        else:
    1 R" C0 i  A# u1 o3 W$ }        return n * factorial(n - 1)
    - T  ~+ e3 C/ ?8 l5 o+ j: i& R% z4 [0 q4 g) _/ P" ]9 v0 R
    # Example usage0 q5 `- V5 b; x. Y$ Q. I4 [
    print(factorial(5))  # Output: 120( e. n, p1 B7 y/ h/ \, H  J! i: r2 V+ x

    . l" L3 B; j; U( F! [# V" lHow Recursion Works
    $ @- T. @9 ?  x/ d& g- h
    * o: z1 E! e% q8 B/ x# ?+ g" q; ~    The function keeps calling itself with smaller inputs until it reaches the base case.
    2 f+ P) n( |% z3 X- B$ w( _7 l# e1 Z/ a/ h4 Q
        Once the base case is reached, the function starts returning values back up the call stack.
    . G7 ~. ~  Q9 D0 j+ J( f5 o4 {9 f( O+ a! v- e# K- q8 x
        These returned values are combined to produce the final result.  s- D) }. f; c; [# Y( r
    ' X2 s; W0 j8 o) z  m* U
    For factorial(5):# y4 ^8 D9 H& b/ U0 R, p

    # U- Y' n  j# x9 @
    2 B  {. D! Z" h' V$ lfactorial(5) = 5 * factorial(4)8 |2 _' O- C0 g) d
    factorial(4) = 4 * factorial(3)0 T0 J! k$ c. b9 F+ `8 j1 S/ @
    factorial(3) = 3 * factorial(2)8 K8 D$ Q) ^- {
    factorial(2) = 2 * factorial(1)+ J- N4 E" \  k8 T9 k- ?
    factorial(1) = 1 * factorial(0)) K" o0 I- O( x! `  F( T- F
    factorial(0) = 1  # Base case
    ) m5 ]- D. d: R% |3 M
    / N+ U0 x! s3 t( B4 k( M2 DThen, the results are combined:
    ) q- A1 k2 x- f  h+ ~; @2 _, s( M! ^0 w' ^

    4 R" G- ~) [0 q3 Yfactorial(1) = 1 * 1 = 14 N% n6 h4 g/ Z, x2 k8 D
    factorial(2) = 2 * 1 = 2) W0 ]) x3 E" @' N7 |
    factorial(3) = 3 * 2 = 69 r$ B1 }8 u  ~* s3 g+ k
    factorial(4) = 4 * 6 = 24
    / L3 c0 M  k, s, H- _factorial(5) = 5 * 24 = 120
    - I$ R+ ~% f. Z8 |5 ]( m" m# E% |1 ~5 ?
    Advantages of Recursion
    ) n; O1 D) ~3 ]! b- N, H. U% w! Z6 c. P" f; @7 N- G6 q2 e
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)., X/ Z$ Q1 Z8 P* h; g
    1 Z. f6 u/ M/ g" Y; `' S8 T
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % x* z7 E+ ]; \: Z# p, T0 I9 R) x
    & g6 L# y& Q; X* ADisadvantages of Recursion* Y( [& O; n( k. R* ?+ H1 h
    6 H( W, v0 R& M- y/ J
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 q- J1 _; m2 ~8 q8 h

    1 Q8 j7 K( s) S( d$ e- ]' W1 _    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    9 E& R$ s  ~9 f1 X/ F8 y( V6 u2 I/ `. e
    When to Use Recursion3 c& o) C# U+ `6 C7 O5 d

    . \1 U) K4 J+ h2 ^0 }    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! @8 x8 g1 z  V  A8 R" k. K" W
        Problems with a clear base case and recursive case.
    % q  F: c% p9 g
    . A# ~+ ^1 E5 P' n; {0 lExample: Fibonacci Sequence' u: p3 P* |; B: n
    / c0 G6 _1 B0 a) L# S
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:! t$ w( [* X7 t# t

    - O. @7 |$ Q/ P! ?! x% p    Base case: fib(0) = 0, fib(1) = 1; D) [' u/ o- R9 B

    * a- J9 h0 X0 E" E8 l1 J, R    Recursive case: fib(n) = fib(n-1) + fib(n-2)" O- Z/ W5 G! K6 b% R
    # ^# J) z1 C0 {
    python2 ^( W& d' a7 U4 ~

    * I- k) {6 X& Z% V' w& ?, N) c+ a
    def fibonacci(n):4 w  f0 W0 g: x4 J
        # Base cases! _- @4 S3 G$ v1 L" _
        if n == 0:. E  z9 g7 p7 n
            return 0% j9 b9 Z: `9 J
        elif n == 1:1 J7 I) A$ ^, D, d' |  I/ C+ _- P% E* o
            return 1
    7 `& ]2 I7 `/ @& w, F; ?    # Recursive case& O( m. ]* L4 i! \
        else:5 p) d: B& B! X+ V
            return fibonacci(n - 1) + fibonacci(n - 2)
    3 Q+ G8 B% s6 N
    + A, a+ m' N% S# Example usage8 y/ i4 d! R& W/ ~. \/ z% t# B  C
    print(fibonacci(6))  # Output: 83 b3 ]1 {" _& h2 Y2 A; {) @/ w, ?" A$ v
    ( B0 H( k% g% t3 s$ ~
    Tail Recursion
    " U  x) T6 @8 }2 C0 ]
    , f8 Z1 P3 J* O# S/ v. Y0 `Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ! k! f- j5 R$ @9 D' l% P
    2 n$ G! l! M6 E" uIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-16 14:38 , Processed in 0.058909 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表