设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1807|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ( K, Q0 `) i/ q$ T
    $ Z! I# {( p4 M* F- c) J解释的不错' J7 q5 r. n  O* b

    ( |0 W- s% a6 Y, R- K8 R  e( i递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    % e/ w& K$ n+ p3 H& Z7 l
    8 w( t; Y* Z/ _5 Q 关键要素
    3 g1 e2 T! i3 i1. **基线条件(Base Case)**( ?2 i' n1 O) G0 k4 C
       - 递归终止的条件,防止无限循环' P1 F( p7 M8 _( i- W" ?
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 D# B& J" M* Y) s1 ?* i/ b
    * {: U& A. L. U1 f
    2. **递归条件(Recursive Case)**9 q. `# a, K% ~3 C: F
       - 将原问题分解为更小的子问题
    5 K2 b5 A" h  U3 x   - 例如:n! = n × (n-1)!4 K% i" S( Q4 i  T
    # i, G5 `: G7 i( v3 [
    经典示例:计算阶乘) r+ K# R* @7 C4 X- I+ }
    python4 u/ J; @3 n' }" D# F7 Z+ t, v, X
    def factorial(n):
    * u* G. q- o4 K* ~4 J    if n == 0:        # 基线条件% x# C6 L) K1 |8 d# w
            return 1$ i! m  n" D% ]
        else:             # 递归条件$ {) I# o" S0 v' I9 C- w3 E" {! w8 \
            return n * factorial(n-1)3 h0 c" W5 W# P  w% H# S$ }- k, U; y+ ?
    执行过程(以计算 3! 为例):
    $ o9 F: {1 s" R* G" E+ xfactorial(3)
    / u" V+ P* I0 z( \# S3 * factorial(2)' u1 U) x  W  q% d: E9 x
    3 * (2 * factorial(1))
    9 H8 W! N+ |# c1 |9 ]3 * (2 * (1 * factorial(0)))
    4 N. |5 d2 h6 x+ v8 `5 L# V- _3 * (2 * (1 * 1)) = 64 G5 O) ~4 n* Y
    " T* c5 H/ B3 I& l% A
    递归思维要点
    ; a" K5 g0 q. R1 x( K# g3 b1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 y+ M" X! Y2 G3 j) r! r2. **栈结构**:每次调用都会创建新的栈帧(内存空间)% [" I6 `* z- m  V
    3. **递推过程**:不断向下分解问题(递)
    ) W! L8 Q6 j2 _4. **回溯过程**:组合子问题结果返回(归)
    / }1 o; o7 r* U0 Z
    " q/ S) @5 c8 @2 X. t" B+ v9 L 注意事项/ l& T6 l: G& G3 Q, l; j
    必须要有终止条件
    # Q" ^: \1 q. u递归深度过大可能导致栈溢出(Python默认递归深度约1000层)8 f. x( R7 t! ?& t/ r3 U
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ( w8 D: y- ~2 w# M  x尾递归优化可以提升效率(但Python不支持)( }7 t& ~' D% B, L
    9 B2 I: f, d0 Z3 s4 }8 A" a
    递归 vs 迭代
    5 W9 i- h! e$ x, V3 h& n# c|          | 递归                          | 迭代               |
    1 z+ r. q# I- I. g! M2 R2 H! s$ f|----------|-----------------------------|------------------|7 D' R9 ]+ f0 B- e
    | 实现方式    | 函数自调用                        | 循环结构            |
    / [7 u9 y5 _& i1 c) V& m| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    1 s" l, ~8 M" I* I| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ' ^- x6 t- ?; n+ i7 h$ n| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    , b* _9 i& g* S) i0 S; T! C  _/ S" y: K0 Z- L+ ?
    经典递归应用场景
    7 f8 F! C6 V3 \% X1. 文件系统遍历(目录树结构)9 c" k0 i" \& e; z) I4 O3 ?
    2. 快速排序/归并排序算法
    2 X; L5 b( L9 e! z: S4 B3. 汉诺塔问题
    % H. V+ G$ R1 z( G4. 二叉树遍历(前序/中序/后序)7 e/ a2 t  S- G" o2 p; b* H3 O
    5. 生成所有可能的组合(回溯算法)* w1 Z7 _( H' B' q
    / O- P: T. c/ j9 `1 t& [: e/ s" |# ]
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 07:20
  • 签到天数: 3144 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    7 ^7 z) U* t3 @# f' z, ]  B我推理机的核心算法应该是二叉树遍历的变种。
    + X* k( P% i( h- M$ H- M) u另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:+ n7 ]5 S, U+ X9 h
    Key Idea of Recursion
    ) Q. Q1 C8 z; \$ A
    , _/ e1 ?* T, r9 \A recursive function solves a problem by:' Y% `+ h. \1 x/ ^, q( \, i

    6 T# Y# o2 m9 r6 r: z    Breaking the problem into smaller instances of the same problem.
    # e4 W0 w& R3 O5 b0 A* g6 ?! Y
    ( s8 d/ f& U0 Y+ M: ]4 ^8 R4 p    Solving the smallest instance directly (base case).: s# O. ~3 X) _* N& [1 ]
    1 }2 x  p& ]+ t  f, s) j) Q
        Combining the results of smaller instances to solve the larger problem.
    - k8 C$ I% [$ M, V6 q
    : c  l9 N( @$ N9 e$ Y& w8 rComponents of a Recursive Function: M; }( h# @9 r0 B" M

    ( m" L" }3 }! w. c! F% u: m# _- x    Base Case:
    ( f1 a1 T" _) G3 V7 m9 t  i- g0 i* i4 A. f% S
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.8 o9 s0 W$ e8 \7 h% Y6 k3 C( C

    9 t0 X' J" U3 L" A! n# s6 k        It acts as the stopping condition to prevent infinite recursion.8 T# [8 c8 R0 K$ D3 v/ U1 _

    ) W" f6 I3 J+ e) N7 s        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % U7 h9 w4 j, D2 {  y, P
    4 G; Q$ y  K; R" j1 e    Recursive Case:
    7 C- L$ R7 {  [
    * |& h2 y8 I" U# m        This is where the function calls itself with a smaller or simpler version of the problem.
    . W8 C) w: F! z- \# n' w9 F- l8 G8 f& X+ n( f6 c
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).9 K( n4 W- T8 |

    % I! ?' H3 z) V  Y/ ]% C" Y5 ZExample: Factorial Calculation" x, d8 [8 U4 h& U5 t* T
    + _, ?8 Z$ C/ I
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:5 s# ~5 W# ~0 e6 \6 Z
    & d. @1 k/ j. R
        Base case: 0! = 1
    0 }" F8 F- U2 z3 _) r3 O  {; y6 P! x% m4 {, \3 y9 _% I0 ~! i) R  b
        Recursive case: n! = n * (n-1)!9 |- ~, I4 h# z
    $ x1 _9 i2 k) g* |; U" Z
    Here’s how it looks in code (Python):1 v( ~% O0 V. ~) {7 p: f$ T% y5 ]
    python! p/ ~0 [7 @. H5 D7 j

    2 F8 y4 X% K2 N3 H$ f
    : h8 k* C: _6 i2 k) {) O  odef factorial(n):' m0 \3 S& W5 ~$ J/ M# T
        # Base case
    ; J+ v1 Q) X- E+ T  d& @    if n == 0:/ ?( M8 [8 g$ y
            return 1+ ]2 N7 V& Q/ W' z8 s
        # Recursive case% n4 C; i/ W. V4 t
        else:2 a. E+ l+ f* p& \4 Q; c
            return n * factorial(n - 1)
    2 y$ Z% P/ d: c% R" n/ H& z  H
    & t7 j3 N0 Q8 R  z# Example usage
    " E8 Q* e8 Q( S/ ~& aprint(factorial(5))  # Output: 120& m# Q1 I8 u3 D! D

    % e  J! a5 O, d  C. T6 ^How Recursion Works* n0 E2 |5 O, j$ Y; S

    ! o2 e2 p5 T, V8 X3 r    The function keeps calling itself with smaller inputs until it reaches the base case.5 e* \6 W) a9 P( [" c5 B9 a

    + p- k! R8 h, b+ O    Once the base case is reached, the function starts returning values back up the call stack.
    3 d( v" j" P. E9 V, _
    + ?4 S& S/ K/ S$ j% m+ Y    These returned values are combined to produce the final result.- x' L' t) Y3 V
    ( D: m6 L( ]. ~! Z: d
    For factorial(5):0 q" y2 V5 k, M9 M7 ]/ y
    & l1 V) k4 x" S# f  z
    ' t7 w$ @5 G. V8 h) _- K% C
    factorial(5) = 5 * factorial(4)  m( J3 d& ^# R( U! M
    factorial(4) = 4 * factorial(3)
    9 u; F2 ?: j/ P; U7 Efactorial(3) = 3 * factorial(2)
    - r* K) a! y. M' c- \factorial(2) = 2 * factorial(1)$ ~8 w7 A6 t- t6 y( A
    factorial(1) = 1 * factorial(0)
    ! p2 s! h; b, z# cfactorial(0) = 1  # Base case
    2 {/ l0 D1 Y3 i) w
    . n  Y7 z7 M& j7 rThen, the results are combined:* }2 E/ p! p% h, C. Z4 _
    : [4 f9 O* t1 ^% w& S' O& v" W
    5 u6 A; T  N2 ^
    factorial(1) = 1 * 1 = 1$ C) E8 K" x6 o( S9 W- Y
    factorial(2) = 2 * 1 = 2) W! \" ~1 G! n7 M5 j1 i* `) c6 ]
    factorial(3) = 3 * 2 = 6
    " N& x4 F& W9 c" y2 ^factorial(4) = 4 * 6 = 24
    0 e9 v0 l/ |$ ffactorial(5) = 5 * 24 = 120' x4 ^  \5 X6 ^: p2 S# R
    5 _) @* Y' ?' u# v6 d
    Advantages of Recursion% X, k0 p+ f+ P

    9 H  p- y" c' F9 w, v& l    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ) U" y  u( F  S/ X4 r! S9 @- y+ h' i( E0 \- H) K1 ]/ L. I
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 p5 }2 A1 a( B+ x) Z, w5 y: {2 x: n' K* G, \* e" J+ _" T) c; J
    Disadvantages of Recursion8 e9 L3 D5 n4 q7 L4 g* o
    8 a, W2 Z( Z  [4 H0 M# v5 V9 `
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ O5 ^( y/ a3 E

    - S, e% ^" M9 {/ c4 Q& J) t. F    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 a, x. [  O5 F2 e: }4 j4 c0 B+ \% G% b
    5 v& T( q. F9 q" W' L
    When to Use Recursion
    5 u3 r1 K6 _' l9 R- y) u$ ?8 |: s: Y& W7 V; M& b' q
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).2 Q9 x) ^1 e. C6 e, R/ d
    " _; Q1 P9 l$ `  y
        Problems with a clear base case and recursive case.
    # k3 P$ P' i  g  ]* ?6 q% G3 _  s% |4 [4 c, j* f1 ?
    Example: Fibonacci Sequence
    4 n  `/ Y+ h. U' V9 B8 d( x! u$ t# A. @
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ' o9 |1 H7 g7 \# q5 V- ~3 S& f, r8 P2 l
        Base case: fib(0) = 0, fib(1) = 1
    : [2 D. K3 k3 x- N* h1 p
    7 @1 R4 P' G6 [6 n# D/ \5 \    Recursive case: fib(n) = fib(n-1) + fib(n-2)% g8 b9 w3 F: k  W3 ~. H. v
    ( [9 `7 g* t2 `8 _% U  Y
    python: q& @! n0 [) Z9 J- H- ?# M' t

    0 x" Y5 @  C/ a/ K6 S$ ?
    8 e) w* ~1 y0 hdef fibonacci(n):
    - ]1 S6 S6 D9 q& v4 E$ N+ I    # Base cases
    , p# {' g& Q$ r+ D" f    if n == 0:% z( P: D# {8 M" x
            return 0
    9 z" J8 G) I% u3 B2 M    elif n == 1:; f6 D& u/ O" C9 p7 T
            return 14 I! D* ]. t2 l7 N
        # Recursive case3 o4 \2 R( U2 p% x
        else:5 Q& L/ h5 N% @
            return fibonacci(n - 1) + fibonacci(n - 2)
    9 e9 q, D) A: X6 i; Q# K/ K% U( W( x# _+ {+ E4 z" _
    # Example usage
    8 Q. z9 d# _+ _/ O7 Cprint(fibonacci(6))  # Output: 8) l+ e* G% ^+ H+ k- b

    ; r- d% _" m, jTail Recursion" S& B$ Z8 \0 k9 k- A
    8 M5 H) g( u6 y; l  i/ h' c6 f+ N+ C
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).) R5 Q# n/ V1 B+ k5 b
    / T! S) ]% B3 I! M' O1 |  i
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-13 01:27 , Processed in 0.030312 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表