设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2027|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    & n/ A+ o! j' B: p: ]8 M3 |6 u. S: _
    解释的不错$ ]" w8 r2 J( Q. j2 ^1 M) h  S

    1 M/ |7 k, r7 V% o* B递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# j/ K  ]4 B0 o3 E1 G
    . |2 Y2 x2 ~1 b5 v8 A
    关键要素/ \$ d  Q8 M9 G6 F( M6 e, o
    1. **基线条件(Base Case)**
    6 ^& K" Q6 E1 ^8 K9 B  j1 o' A   - 递归终止的条件,防止无限循环
    6 r- i9 Q! B8 H* L) Q; I   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 18 X% b5 w* L, @3 m( W5 p

    3 S9 J& I6 }9 i3 Y( R/ t2. **递归条件(Recursive Case)**
    6 B2 V- p6 _+ h+ @1 P, }   - 将原问题分解为更小的子问题/ h5 X, ]1 z4 ~+ `6 V6 c
       - 例如:n! = n × (n-1)!
    & d% e5 Q' Y" P" h+ \  ?. d. x' y# \1 P5 h! p0 l/ p
    经典示例:计算阶乘
    & Y+ f) h3 k2 L, r6 b$ T# Hpython
    6 w6 l. ^+ g& Z) Fdef factorial(n):
    " ^! |$ g( f9 b" L    if n == 0:        # 基线条件
    + e# z! D  m: _+ O: B2 g        return 1- _$ p8 L0 u) ~$ h
        else:             # 递归条件/ J0 I3 @" M$ i7 T  _/ G
            return n * factorial(n-1)
    ! T, y1 u8 r" H2 d( [6 E3 t5 M执行过程(以计算 3! 为例):
    ) S5 `# e$ }3 P( ifactorial(3)
    3 ~* C) D9 R% P" p$ z0 x) y+ t3 * factorial(2)
    # A& ~3 h: N# {3 t: L4 B3 * (2 * factorial(1))
    + f6 I; l, v) I7 _3 * (2 * (1 * factorial(0)))
    " [$ z& v' v4 \3 * (2 * (1 * 1)) = 6
    5 x2 i: d4 }: y
    1 }+ s! {& w& s 递归思维要点* u  m' c0 a/ J8 ]
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑* D& j0 R- k: a9 j+ w
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间); Q1 |: T5 H. I2 ^9 R1 B
    3. **递推过程**:不断向下分解问题(递)
    ) Q: y% X5 B( k  @% J3 D7 ^4. **回溯过程**:组合子问题结果返回(归)
    2 @$ D* t! L! s$ E* T$ z: ?) \' z  C3 X
    注意事项
    * ]6 |/ X7 c7 G( f7 `必须要有终止条件. ?% s+ ^9 u4 L/ R8 F9 f
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 L% c/ F( ^0 o: j* r, p7 p
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    $ O' B0 o; W# D1 d2 n& X5 z" ?尾递归优化可以提升效率(但Python不支持)" \! a/ L& A0 ~2 W. J! `4 v
    4 S* K1 W- p% E$ k" _
    递归 vs 迭代
    7 b3 S; E" s" S5 c- D8 R  L6 Y+ S|          | 递归                          | 迭代               |. c) Z* v: g+ |" F0 E* G
    |----------|-----------------------------|------------------|
    9 f9 F1 T3 H, @- P| 实现方式    | 函数自调用                        | 循环结构            |
    . G. C3 m$ _7 a7 W3 x8 a| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |0 a% A, K" j3 e) a
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    . g* M3 O3 n0 t9 F| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * R+ ^: `+ M) ]" a/ y% {5 c
    1 A; @" `6 z2 j- O4 J 经典递归应用场景. _! a! J6 F) D1 d& M, B% m
    1. 文件系统遍历(目录树结构)
    + X7 g- u, n, u2. 快速排序/归并排序算法
    : A$ `. O' H( e" _7 x% b9 G3. 汉诺塔问题
    ! Y& Y0 r. T7 i9 f4. 二叉树遍历(前序/中序/后序)1 f! o' j; N" M" t
    5. 生成所有可能的组合(回溯算法)
    ( {! L* h1 h  o4 N; O
    + V0 t1 v/ T- j. g9 X0 D* X$ a试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 14:17
  • 签到天数: 3166 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,0 Q" B. Y9 f$ j# c
    我推理机的核心算法应该是二叉树遍历的变种。8 }9 F. n  K  m( t9 k% r2 y( b% j
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' X6 N/ {3 y' ^/ |( o5 X7 e
    Key Idea of Recursion2 u, k4 ^0 B* X- Q
    ; h2 W% r( m) f
    A recursive function solves a problem by:
    ! h. n1 q  ~* V& l. L5 \  I, h, O$ y5 U* i7 n
        Breaking the problem into smaller instances of the same problem.% v7 j5 R9 N2 ]$ A

    ( J! x! k8 w- g2 ~* G    Solving the smallest instance directly (base case).9 x  v8 o4 \1 G7 U

    6 m7 V! S1 e' P' _/ C    Combining the results of smaller instances to solve the larger problem.
    7 `9 O) _* b9 o0 X2 q) h( U, ^+ z/ a. z
    Components of a Recursive Function' @. e) P- L# Q/ k
    ! [5 G! C$ @3 y& y+ l& b
        Base Case:8 K' J  g+ w, i2 T* q5 ]* r
    ' M& C5 ]# M; Q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    8 i/ u6 `0 q! w% G4 H
    4 g1 x: A7 ~- }+ _$ m/ I: j        It acts as the stopping condition to prevent infinite recursion.! Q; t- w* ^' Q5 c% O1 R# o1 C/ K

    # R0 n. O$ x( Q8 \" l; A* S        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.& K. v6 C7 `6 ~7 C- o
    0 Z0 E6 g; h% q1 r8 l5 t
        Recursive Case:3 d- g- |$ C0 Q0 I, s8 N, a
    ( D% E4 z9 q  M8 `: R$ A8 }
            This is where the function calls itself with a smaller or simpler version of the problem.! K# s- X- u6 N3 j) @

    6 E5 X# [  g# H* u. n8 H& [        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ C2 k* I0 _& c- L

    ' M# P! T9 w7 ~7 I7 p# Z9 aExample: Factorial Calculation. i8 k: O1 U: i# @+ l

    - E3 r' D) M: W8 p" bThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    , l- B8 N( B; {- `0 z* u+ e- D7 B; Q! ^0 m) P; b
        Base case: 0! = 1/ a, O  H' f4 e' N

    1 `5 D) K, w8 W4 o2 ^    Recursive case: n! = n * (n-1)!4 F: ]7 Y( `; E7 T) e: F% T! w
    2 v) J, p8 F. k& F' n5 m! r
    Here’s how it looks in code (Python):
    0 |$ M4 C+ X2 U  x6 _1 X* {python7 I' l" r" s0 s2 T) K. S& ?0 q
    " a  P$ G7 T; I7 f9 A

    / b" T3 Q: X  t5 N/ n& }; ldef factorial(n):' q9 q( E- _' g0 y! D3 @
        # Base case! d8 A' z% G7 K: |/ v8 A
        if n == 0:
    6 t# H4 Q/ r0 X1 j; ?9 F( F) b        return 1' W5 T" p- Z/ Y+ h
        # Recursive case
    3 L. Y+ ~  X0 [. g* P    else:
    ' |& a9 _5 r, m' T# L2 m        return n * factorial(n - 1)9 P" k& Z5 @# G) ^) I

    ' g9 l: i: o! `, @, y8 R# Example usage
    - G$ A5 x/ r, ?1 ~5 _print(factorial(5))  # Output: 120
    ( ?9 w0 f. j8 H1 _1 R$ h5 r9 `+ W3 S& ~( Q% I  p. d2 ]2 W
    How Recursion Works& W% Y* ]  G" e& A3 l6 E7 C

    / T! G7 A( m+ }; X; `- o    The function keeps calling itself with smaller inputs until it reaches the base case.0 F! ?% g5 j$ T9 Q9 s1 F) ^. _

    , z6 S3 [5 o; Z- M    Once the base case is reached, the function starts returning values back up the call stack.
    ; r) H8 M! b: v" m/ ~. a" V# A5 k; i7 S, {
        These returned values are combined to produce the final result.
    0 X/ U5 B0 C. Q9 z/ F
    0 w- J* N6 ^- jFor factorial(5):
    + s* x  B# {3 P( k1 y$ @" d( H7 I* U( ~' T
    1 z! S) x3 z! J5 O2 S7 m
    factorial(5) = 5 * factorial(4)1 W4 E4 k$ R4 U. z: F
    factorial(4) = 4 * factorial(3); s0 y8 h  W/ K" W1 S3 j0 B
    factorial(3) = 3 * factorial(2)% K7 y! `4 w) k. b9 o
    factorial(2) = 2 * factorial(1)7 R7 z4 q/ R5 G, j& c
    factorial(1) = 1 * factorial(0)
    6 F' c2 [; E. Rfactorial(0) = 1  # Base case
    * d  `4 o" v9 [3 P3 M' ^6 k* s- w: m8 P# c/ Y( }
    Then, the results are combined:9 ?% o6 H- M' e2 }) L; v2 x- D

    8 _8 C6 |2 M* p9 u4 ]
    4 K4 \! z$ t& A1 ^1 L  yfactorial(1) = 1 * 1 = 1( c' }: h* G1 L- O! }, k* j
    factorial(2) = 2 * 1 = 2" b! x1 [) G- d$ m7 _4 {
    factorial(3) = 3 * 2 = 6( h" F. x' \5 B& r5 N! B
    factorial(4) = 4 * 6 = 24* g, p0 m) X; L+ X
    factorial(5) = 5 * 24 = 120# y7 }! c6 A# {6 {
    ' {) @7 t9 F# n; P& i2 [2 F! v
    Advantages of Recursion
    . r  T: J; j! C& h7 M+ y1 n  t& \4 ?' z2 W4 t
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)." [; Q$ j6 `: k9 A
    2 a1 J) t) ]- f$ y! ~! k1 M
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    * |" K7 e& d5 S1 b  X1 c- e2 j
    ' d6 h4 K' f$ y  Q! Q% `% p5 }$ S! l# KDisadvantages of Recursion
      L5 }; ~7 D& I% U
    $ M# B2 H+ S) e    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.( O# K: @* a+ a, r+ K: }
    $ |8 m+ M* d" y8 E5 y: s7 q! D0 S
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! Q# n: M/ L. b! _) J$ ~* ?  f9 `# O* L6 v6 _
    When to Use Recursion$ ]2 R, y% a. I# a

    8 O- d5 s% O' e    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    % j: G$ y# E* Z- l6 k' Z% K1 x! Q  P3 N& v# i
        Problems with a clear base case and recursive case.
      U% Y, R  i0 y4 X% j( ~: F/ l; Q) V2 h
    Example: Fibonacci Sequence
    , ?9 N8 D- o0 a6 C/ s1 H5 v
    + L1 b5 T2 N0 `+ }The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:# W/ m' g1 n% \5 Q* j: W
    1 Q) \( o) v, }7 E, B
        Base case: fib(0) = 0, fib(1) = 1+ x$ u3 i  c+ O. D
    4 n' q! Z6 _5 H9 f, C1 B; j
        Recursive case: fib(n) = fib(n-1) + fib(n-2)0 F" Y" v; c! a8 f: d
      x, {0 E( f& ]1 a. q  \
    python
    ' O, W7 h% I" O1 |  _' x
    & b4 ?% d7 F+ m3 _: r2 P9 |# L
    7 M+ ^. @6 O3 Fdef fibonacci(n):
    , `1 {3 C1 Z) D$ u! A$ X5 [    # Base cases
    : H/ c( [5 g) \  d    if n == 0:
    ; K1 N% n9 J3 v        return 03 D  }% P0 U, B" m* p
        elif n == 1:
    , {; n# j; ^1 @, W( F        return 1- l3 s' x+ t4 q9 W& Z
        # Recursive case
    ( {# ]* ]/ [" s; \: [0 m    else:- j$ @1 i' j$ {1 k' B2 a/ Y
            return fibonacci(n - 1) + fibonacci(n - 2)
    ) Q# P- o$ [- f; b) j; A8 {3 k) @7 Q
    # Example usage
    2 C6 C( I2 _  w# _print(fibonacci(6))  # Output: 8$ Y7 b2 Z# V, C. ]/ n
    * G8 C* v6 M6 {; h1 d* _7 u; e
    Tail Recursion4 l9 t8 u- P$ c0 m8 m; E

    3 Y+ W. g% Z7 Q8 n  O- ETail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    9 S4 S% Q' r: l  ~2 @. M' @) L6 m4 |$ p5 W' g5 E
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-8 00:30 , Processed in 0.065532 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表