设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1990|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    0 F; L9 _. c& w! A  h, [! M% v+ b; u
    解释的不错& k" a( [( O8 P) t4 l& Z1 E

    0 z; J& r! R! n8 g! N% B* q. S. p' c递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    " u: Y, Y! f( ^! l' \% F) ^0 }9 h/ t7 @3 A2 F8 X: G# B. N
    关键要素% A! L! c' K* o1 a* v
    1. **基线条件(Base Case)**
    7 k8 T! |" u# Q- E   - 递归终止的条件,防止无限循环0 M0 |& u) H5 |! c: o7 ]
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, q# F9 K( G( }) D" C. Z) X1 c
    5 C7 t  s$ F, F5 V# w% @" G9 T
    2. **递归条件(Recursive Case)**
    " f2 i- S+ {# b7 d; j4 W   - 将原问题分解为更小的子问题
    9 Q9 m$ Q- T0 Y; N, Q   - 例如:n! = n × (n-1)!  ^# K3 J6 c, m1 g5 B' ]
    ' U% H& f7 E9 X
    经典示例:计算阶乘
    5 H- i5 l2 i6 ?python
    ; G& k$ [2 C2 p5 _% zdef factorial(n):$ J& e% a1 N* R
        if n == 0:        # 基线条件/ K: D) L8 a0 M' T( q4 @9 i0 u: \
            return 1
    1 [# V% |) E6 d% C7 p- w; X1 f    else:             # 递归条件
    3 X! b2 L3 Q% R# r6 z9 h, A1 ~        return n * factorial(n-1)
    & n' y3 {+ b) m; c* W0 X5 v6 k执行过程(以计算 3! 为例):
    ! X  a  ?0 n; `* a% p( Qfactorial(3)
    % X# Y5 @- h6 E3 * factorial(2)
    1 B8 ^1 ]2 u8 j9 @1 |! r9 `+ W3 * (2 * factorial(1))
    # C, J( {0 c: A( _2 v3 * (2 * (1 * factorial(0)))
    . f" V2 J& p, F: z0 D9 g% ~7 f3 * (2 * (1 * 1)) = 6
    ( f% f/ C- b: w# H
    ! m  n. V( A3 e5 g! g2 q 递归思维要点' J  H5 o4 }. y  H
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑' R7 g. U2 L( z# h6 S0 e+ `! t
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& M/ }" u& {# l0 }
    3. **递推过程**:不断向下分解问题(递)) i3 x& n% H+ b( Y& I# ]3 l
    4. **回溯过程**:组合子问题结果返回(归)* V4 }7 k1 b; l
    1 ?4 o/ m+ x+ S' N" R
    注意事项/ E9 R+ O' y7 r8 o+ c% h
    必须要有终止条件$ s# ]* s# {6 {7 e
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    - Q! M% Y$ l2 @某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ( Z4 {& I! s; o' P5 f尾递归优化可以提升效率(但Python不支持)
    & Y, g6 `5 a4 W) |1 m
    9 i: H( K( r5 Q0 h. g 递归 vs 迭代
    7 }% N% \$ ]/ _7 Z|          | 递归                          | 迭代               |$ V8 E! V1 |* D$ v0 h5 Z
    |----------|-----------------------------|------------------|
    8 K. w6 R  v6 `* r| 实现方式    | 函数自调用                        | 循环结构            |
    ; o' W9 m! i/ Y1 E; O2 ?! d| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ! T: J& F9 n  ~0 z# O1 n7 e| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    6 N& J+ v% i. X; r: i3 @| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * d0 n9 [1 ^" t7 P' X' y0 }* j) e4 [4 W$ o) }* s: N
    经典递归应用场景5 Y% i% O4 R! j
    1. 文件系统遍历(目录树结构)
    8 M7 T+ G1 E( w2. 快速排序/归并排序算法
    3 H- a0 X% C9 R5 ]* @4 a9 |4 ~3. 汉诺塔问题
    / \1 G0 k- [/ S* Y: g( U1 C, Q4 f4. 二叉树遍历(前序/中序/后序)
    # [! p6 R1 v8 G* T, Q3 h5. 生成所有可能的组合(回溯算法)
    6 `. q' Q$ T  r4 f0 P- [
    ; R) Q1 F/ a. C6 d, w试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    5 小时前
  • 签到天数: 3160 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    * o+ \% V7 S. O0 p* T我推理机的核心算法应该是二叉树遍历的变种。
    1 W4 k$ Y) V& y* G7 G% V另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- N' |' Z1 n$ d2 N" J4 G
    Key Idea of Recursion
    # N& `8 t* h. ?9 K& U% X9 \" C$ p6 d% n4 j& ?
    A recursive function solves a problem by:+ {& R2 t5 Q- ]$ E$ O  k

    9 x( d& @+ V% t+ E" |* J3 \* I    Breaking the problem into smaller instances of the same problem.
    9 d6 V& @5 ]+ f- f( x& ^  _# {0 R5 @, k7 R' d( ~
        Solving the smallest instance directly (base case).
    " b; w$ T3 Z  ]9 y9 W8 K8 b7 j# y! F
        Combining the results of smaller instances to solve the larger problem.. s; R4 x, I* D3 |! W0 g! ^, Y* f
    5 @  \# d& @2 u1 ^$ d! u: c
    Components of a Recursive Function9 k& C4 S3 U* `- d6 {/ l0 v

    ; R; @  ?4 J- m    Base Case:
    ; f8 a- V: ]7 A$ [0 ^
    ( M2 {3 q+ J' Q0 T; i% F6 f        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    $ l' F  h5 ?) W# s' W; o% i9 q' D/ X) F6 S' R) n+ M% C2 b0 w
            It acts as the stopping condition to prevent infinite recursion.# R  T! W) f5 k" G$ v
    # D0 d- B- r! L; _2 g/ ~6 i6 f/ X% g
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.. e) r. i7 o2 q7 V& R
    . b% Z$ m# F6 U- g
        Recursive Case:
    : ?6 v0 Y& x9 Q! }- f$ X: C7 x. @3 P- @0 s. i4 R+ z" a
            This is where the function calls itself with a smaller or simpler version of the problem.) X) `: s6 s$ Z  W% U6 p+ |2 A

    0 s( H' d9 {8 g4 d& T- p        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    1 m, V0 _- N6 ?. R" f
    4 Q5 s1 V9 i' S& a: t* o4 xExample: Factorial Calculation
    " A( z3 ?( k8 m3 g) F, s8 k. V  }6 h3 ^2 k- ?4 x* t
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    9 S, k3 ~& c7 ^# L6 \: T7 N$ A+ Y3 l$ ~. u) L( C1 B
        Base case: 0! = 1" A: ]4 e+ H4 u/ H: \' [" H9 X& b

    & ?. T. v; {2 ?0 m5 y: P. D    Recursive case: n! = n * (n-1)!
    2 a  k7 M3 B4 N) I
    - B, |0 g7 s' K9 o8 O: _# F4 wHere’s how it looks in code (Python):; K0 Y- ]+ `' J) y: ]
    python# ^" c( r( s8 N: |9 [. C% t# ~
    ) w# ~/ U: Q  ]( R1 }) R
    ' b! ?* U( _8 N
    def factorial(n):6 y" f  D( j2 b4 s8 j6 U
        # Base case
    ( A- g  k6 z- V0 s1 R  C5 J    if n == 0:) C' M2 ?# x( i. q/ I
            return 1
    : ~/ S  U; f  U: t    # Recursive case  H( T4 d7 Q2 j9 \0 K$ ~2 X* a
        else:
    ( d) j$ ~: b6 E( r$ B7 |  c        return n * factorial(n - 1)  h" w0 j! i5 b" P! I% D# \9 b
    & P3 M2 n% }: ?9 p0 i
    # Example usage
    ( Q2 F* V: a5 a$ e. Wprint(factorial(5))  # Output: 1204 T2 ~9 _( V; @4 F* g

    8 A8 b6 m+ c1 R0 {( C/ LHow Recursion Works
    ' ?8 Q& K) H4 d; V( i1 }0 }& `( Z% H( h6 b: f% B
        The function keeps calling itself with smaller inputs until it reaches the base case.
    . d8 f$ l0 _  i! [  `/ j' m
    ! \$ L* h/ h: `$ R, v3 v, f4 A  T    Once the base case is reached, the function starts returning values back up the call stack./ `9 e" U% O; J6 N* V
    3 z2 F1 f+ ?! Q+ M: r5 s8 o
        These returned values are combined to produce the final result.
    8 s! N6 H+ v9 h; K7 b$ x( x& ]; r4 L& ^
    For factorial(5):& ~! C& r1 z3 `
    ' D' x3 E3 m& k9 ?: o

    7 I3 q, S9 m2 E1 v$ _factorial(5) = 5 * factorial(4)" |( k  R$ ?) ?
    factorial(4) = 4 * factorial(3)
    2 z- j& I/ L; l- P; V+ ]7 K  a; Kfactorial(3) = 3 * factorial(2)  i* j$ b" _1 k: |4 m
    factorial(2) = 2 * factorial(1)
    : L! p0 {0 U3 W, _# A' _factorial(1) = 1 * factorial(0)6 Y. N- }* T# ~2 k  ~( @
    factorial(0) = 1  # Base case
    1 a4 u  V: @9 f0 _; V) p+ q5 |: M0 }  f2 i# `
    Then, the results are combined:
    9 c- h0 q4 N' b/ t7 _
    ) L0 r# m3 U0 i5 I( A
    # i: V) j* m' k' `( x1 J9 v% p4 \factorial(1) = 1 * 1 = 1
    & Q+ M/ H, c( ?' m$ [8 Qfactorial(2) = 2 * 1 = 2+ g% k2 Y5 g. A6 Q* O% _
    factorial(3) = 3 * 2 = 6: s- a7 k. N) |+ a. p
    factorial(4) = 4 * 6 = 24" }, E% A+ |5 U6 F' r
    factorial(5) = 5 * 24 = 1203 i; r6 i8 E  |3 N- _

    ! ?. b5 g. A0 I# h+ m& aAdvantages of Recursion
    ) {! Y) M0 H$ _" V' T% \2 Y3 K# T3 P8 X7 Q0 N) K
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 G3 Y0 u2 }& i

    : x& e) c3 e( G* K& M4 [9 N    Readability: Recursive code can be more readable and concise compared to iterative solutions.# o1 ^* `( \/ O
    3 s, d8 [4 }7 E$ L5 M0 G
    Disadvantages of Recursion/ `* ~' Z: ~) P

    ' |3 o' E- m. W  i" r    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    * N  S: _; W( @
    ' `: I  y# x, @  v! @    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).3 A, H. l! |% w. h3 g# n9 J0 \7 E
    * j$ o+ c7 n; P; J  r* i  T: R
    When to Use Recursion9 v( x* ^: t9 c# w& U4 p' z# z
    7 K2 H) m. n1 n
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    $ ?3 e3 }/ h4 z; ~  P9 r! E: T4 X& G
        Problems with a clear base case and recursive case.' K+ j* q1 i: r( S* F: T: p! n

      L& J* K% p* A$ ]Example: Fibonacci Sequence. A6 j. a6 Z- [: C/ ]5 @+ V

    + n$ K# w: v0 X! B2 J$ ^% WThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:0 g  {9 b% b  m. d- i

    ' z0 ]* Z3 C3 G$ W6 c0 z; ^    Base case: fib(0) = 0, fib(1) = 1
      _% H+ }  J' z$ M7 ~5 G) F( G9 V' T  E) U/ ]4 r
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    8 B5 g% Z0 y9 G; C! B, s+ d! t: |, f9 u4 [
    python' M" p0 P' w; |
    4 J2 Q4 T0 a, i" A

    6 e" C. _! [5 ?def fibonacci(n):' @" Z& J7 b- J3 \  U* {4 Q6 s
        # Base cases
    & h* P/ |9 b9 z* \- u; J0 T3 h5 J    if n == 0:
    1 G' n, p! p) N$ `+ `- {5 f, R        return 03 v' O) i' J( w6 w8 o5 B
        elif n == 1:/ H& V# D+ V# j* r# [# K$ o
            return 1. J: D  u) `9 {
        # Recursive case
    : e) ~! e6 `0 G6 P; I# K1 l% N. @    else:0 Z! p( o" H+ C3 S/ ~
            return fibonacci(n - 1) + fibonacci(n - 2)
    $ g' r+ h& O' u; n5 q
    + x& H# \0 @; _  {# Example usage
    ! M4 c' u. S2 @) D7 K7 }3 Eprint(fibonacci(6))  # Output: 8# |3 v8 `- s* y2 w3 _, T/ Y
    ; A* j; l, o: V0 b8 k) f! Y- k
    Tail Recursion
    ( Y4 ~% N( p; V2 n8 K6 q% Z1 u) _1 b' a
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).' a4 r( D4 N7 _2 O& X
    2 p7 c8 ~' l3 j% L
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-1 13:58 , Processed in 0.056660 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表