设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1777|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ) z4 k, }+ F% V- `
    9 A! U9 g. {# Z
    解释的不错% _. |1 K7 Y* O4 w0 ~

    6 d0 B' }. ~/ U  z. C; p递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    # l" m* E2 h0 V/ S" b% b! f* R; r3 y6 L' X
    关键要素
    ' L- y( N$ @: j4 R1. **基线条件(Base Case)**
    9 j7 A( u4 e2 Y( W! e. \- O   - 递归终止的条件,防止无限循环% q; @) t. M! _7 \3 g
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- W9 Q1 H% ~( [. J
    + N* x3 c9 h: |. D' @* p6 k% ^* L
    2. **递归条件(Recursive Case)**- O& M8 q( L- E* j9 E" g7 x* \
       - 将原问题分解为更小的子问题5 x- ~& G6 r0 E: ?8 k4 z
       - 例如:n! = n × (n-1)!
    * l5 {2 b/ j+ u! c9 J, t* @9 p6 u
    ) U$ a; |" H  e- f( ?! z; | 经典示例:计算阶乘
    % Z2 d7 C0 S; m. `- S- epython8 `" R, o! M' X6 u- B5 d
    def factorial(n):! B- x8 W8 g2 d; Z+ b5 t9 k
        if n == 0:        # 基线条件1 r! J  ^5 Y' A" j
            return 1
    / q) I7 z: l, {' m, e; V7 F    else:             # 递归条件; Q; u! I* ?6 b$ Y  S/ W2 I: p
            return n * factorial(n-1)( F8 T. y' ?$ G) J1 T
    执行过程(以计算 3! 为例):1 P( ]4 ?# l) L; g
    factorial(3)3 F. V6 E/ B2 N2 H; m# T
    3 * factorial(2)
    6 @4 p0 S+ ]# V( c9 |3 * (2 * factorial(1))
    4 b* z7 Y- Y3 D% X% o& X3 * (2 * (1 * factorial(0)))
    0 D/ x: f# y5 H( N% {9 m3 * (2 * (1 * 1)) = 6  j6 b& Y0 f. m$ }) S( T

    / e% r4 f0 E5 G 递归思维要点+ w9 }/ u( v9 r, e4 H3 A, V9 D
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    9 @  A8 m! H( a0 l% K. f2. **栈结构**:每次调用都会创建新的栈帧(内存空间)1 }5 r" U# e! _! {$ R! _" T
    3. **递推过程**:不断向下分解问题(递)
    ( {/ g. V1 @* n- F) a. O4. **回溯过程**:组合子问题结果返回(归)
    8 X- n8 N7 ~" U/ r8 Q/ |5 J; e8 d- c6 f3 V' C2 h+ U7 A
    注意事项* F, r+ [( Y' q3 r4 c# l
    必须要有终止条件
    $ R* z" `" W1 X9 ~( Q5 R递归深度过大可能导致栈溢出(Python默认递归深度约1000层)8 w% S) q2 q; V3 v
    某些问题用递归更直观(如树遍历),但效率可能不如迭代  e7 d  O2 ^- w4 c2 L; D# l1 M2 _# N
    尾递归优化可以提升效率(但Python不支持)/ R: `- F8 _% b" H7 p( Q
    & f+ f; M% P( \3 b! h, w( G
    递归 vs 迭代- r: g' l1 l$ ?* D3 A1 U& o
    |          | 递归                          | 迭代               |
    * ~& L! Q! C0 j1 e; t1 @|----------|-----------------------------|------------------|& Y' [( O  _8 A1 o0 @0 m
    | 实现方式    | 函数自调用                        | 循环结构            |
    , X# f, J5 J" m7 U0 K  l4 D| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ) c9 z; R6 O9 W+ F. C| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    0 t$ Z8 l5 B& K5 L5 B: o8 S| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    # w# ~- j: T# p# G' x& ?- t* n% k, {; L8 |+ K
    经典递归应用场景7 J+ T9 b8 J, F0 s1 O
    1. 文件系统遍历(目录树结构)- l3 |! l% a" {9 O$ ^5 |
    2. 快速排序/归并排序算法( q; u4 Y, e- p' p4 m
    3. 汉诺塔问题
    9 B3 Y; t2 i8 m9 f4 q; G6 n& C: {  `- Y4. 二叉树遍历(前序/中序/后序)
    4 p6 Z/ p$ D' b5. 生成所有可能的组合(回溯算法)
    ' F6 [6 {* r4 `
    # g9 h2 b/ a. ~/ F5 H试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    9 小时前
  • 签到天数: 3143 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ ^8 Q: a9 t9 ?, n4 o6 B1 o) }8 l; g
    我推理机的核心算法应该是二叉树遍历的变种。
    , f6 q) ?  ]0 m: V7 o另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:3 T, Y2 K1 r  Y0 C$ P1 B
    Key Idea of Recursion6 |$ ^- Q3 r1 w, ~/ H* V

    3 z. ?0 y1 v8 u1 D7 D: y) b# a  ZA recursive function solves a problem by:
    , O6 S0 P% U) `. f! I$ d; v2 @; V3 o
        Breaking the problem into smaller instances of the same problem.% B" |( l# C( z% i+ l6 Z+ c
    - r* Y1 }+ a7 D7 K  [' i6 d3 t
        Solving the smallest instance directly (base case).
    - ]) P9 V0 i/ E+ G5 U! Q
    ' }- a! l+ p& B- N7 i    Combining the results of smaller instances to solve the larger problem.$ F7 n* e( E$ t' l; v, ?* C9 P
    , q8 O& x  {; v, u# W! ~
    Components of a Recursive Function
    + r, I! f0 m% E, I9 y
    ( c1 j/ `8 N( j. w0 m8 r    Base Case:5 S$ K" W5 ^  D0 S# W  g

    . M) A! l4 V  V5 P        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    5 o6 D7 b, k6 E& [4 M
    & ]1 ?9 W4 c+ G7 ?9 ]        It acts as the stopping condition to prevent infinite recursion.5 z( _. ~) ^) `) M% M3 l: R" L% s

    ; m, Z9 f+ h; ^3 u        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    # m( e7 U9 T" q* w$ ]+ x% {6 U2 f& O# U7 Q
        Recursive Case:
    ; v+ ^5 g+ [& W6 y
    " V( [% k5 e9 D5 |% i# T        This is where the function calls itself with a smaller or simpler version of the problem.
    2 `/ i4 N/ y* B- B& k& h: X
    ( ~2 Q; O( N% D% I1 ^1 B        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ! m2 k# ~  ?* Y" @0 H! U
    & R' B# [  g* z4 S, F  TExample: Factorial Calculation. H- i4 h: ~0 l, E

    / m6 s# |# _! I- N2 HThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    + p3 s5 ]' n) v2 i2 f) g: E1 d
    $ t: n, y% h# R- @7 M    Base case: 0! = 1
    " }' @0 c$ V0 f/ k4 P5 F; K9 [
    3 E. z4 Y5 _# M. w, J* ~; B    Recursive case: n! = n * (n-1)!
    0 e+ j7 I6 O$ c0 S& A
    2 ~) Y' Z4 F  {* z, d7 ?, GHere’s how it looks in code (Python):
    % }3 c, v, J( f2 r4 Xpython0 x  D7 U0 T1 y' H% r0 M" D
    : Y- x9 e5 d  v% k6 e

    1 n+ r3 v* h* Y! X2 |def factorial(n):
    ' n( o  w6 c. t7 e7 f1 m6 k    # Base case$ C  V$ t9 Y1 @* K. C7 r+ f7 [" |
        if n == 0:4 i. U& c9 a! q/ ~% y# I
            return 1
    : S, a4 M' ]3 E( k! Y" R5 r    # Recursive case6 D' M% I* j' J) c* ]6 w
        else:0 J: r2 j' P; y& L  v
            return n * factorial(n - 1)
    . T. A( A3 P# d3 h4 e9 M+ h8 J0 i6 \
    + ^; j3 ~+ u3 `" m8 k' K5 U3 B! z# Example usage
    7 L% K: }% b8 V  z6 G  ~3 l6 _print(factorial(5))  # Output: 120
    & I! V0 M0 j2 x9 }0 H: s, b
    0 h/ d( M# Q: U. U2 T" E7 T2 J8 AHow Recursion Works
    ) P, F6 i  I5 `, u  a1 t
    5 }/ j; S; B6 I: @7 b7 u8 s    The function keeps calling itself with smaller inputs until it reaches the base case.4 [" J, @& `2 [

    ; e$ q" u# U. ]8 b3 ?    Once the base case is reached, the function starts returning values back up the call stack.  u: F4 Z3 z5 U) K# |0 }7 r
    : k# o' q0 r, B) `3 y$ e' l1 s+ y
        These returned values are combined to produce the final result.
    . L- V% D/ j1 M: x# R# p
    - ?* }" P3 w- \For factorial(5):
    ' k, h& U- p! h% y6 p1 w$ W0 w% E1 {6 u. o0 X1 g2 U' l5 A
    $ `4 }1 L4 ?; a
    factorial(5) = 5 * factorial(4)
    * d8 n1 u9 t4 c6 ffactorial(4) = 4 * factorial(3)
    6 |9 e+ Q1 L+ s2 t, G2 Cfactorial(3) = 3 * factorial(2)
    # ]* M0 [  H$ V( cfactorial(2) = 2 * factorial(1)
    7 P3 g3 I, {2 B2 Z, J8 H6 @% Ifactorial(1) = 1 * factorial(0)& O3 Q# ]% C! J" j. a- t6 V# [
    factorial(0) = 1  # Base case( G2 d0 j; W% r$ \
    2 T  v' r6 {3 u/ ]# G5 R
    Then, the results are combined:
    , ^& C2 S2 o# y( X. Q% b6 r- G. h- W" Y. S$ P
    ( \# G9 R1 i$ |
    factorial(1) = 1 * 1 = 1
    # u+ k- p6 j. @9 B7 }9 u" o. ^factorial(2) = 2 * 1 = 2& X2 ^8 e% h3 K6 g1 v( S# p
    factorial(3) = 3 * 2 = 62 A8 p9 z8 }+ Y; M6 s8 P( c( [  x
    factorial(4) = 4 * 6 = 24
    ) q; q% _0 |/ `' b+ lfactorial(5) = 5 * 24 = 1201 T( v8 {2 g* p8 ^% n

    . k2 ?, U$ o9 u" PAdvantages of Recursion
    ' `0 k1 h6 s1 K6 W, |' I$ N( S5 J1 _2 H' Y- q, s: q8 i, U: g
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ y# ^, X/ K+ B2 O6 R* ~
    , `- f" q# X; X: s* w) H
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 O* l2 e4 ^; A. C* [
    0 S' P1 n# l' l# j3 i' i8 p7 @Disadvantages of Recursion( _; s: C! Q; E  k# l' d  e! d  Y* |/ a

    . d' s+ L; }$ i: J    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      W( P; ]- {- l6 j5 A) X7 H! X5 V; G& o8 e' C
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: [- W+ D% v* b/ {, S

    2 `8 s  N! v. a* h) H4 lWhen to Use Recursion: J. J( B  A+ I* h7 N! v

    ( p2 m: A7 g0 i% j+ B5 ^    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# y8 p' F* p2 n
    + X; I3 r, ?& [( `7 p. m
        Problems with a clear base case and recursive case.& Z# }6 C& E9 p, c) ]3 o4 Q  @1 c
    5 J, i5 [4 Q# n* g
    Example: Fibonacci Sequence0 {( L9 i! `, Z# A1 ^
    / G8 L  r6 B9 N' U
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, D# \( u7 r( Q& J8 |4 L

    8 s' {6 E: C  Y- h- J2 Q1 w+ l% C3 Y    Base case: fib(0) = 0, fib(1) = 1
    - v$ X9 S2 ^# Z1 r' x
    $ w6 b) A3 ~7 p- [    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 m. f3 _9 y2 c  d$ E8 V) P2 H9 q' ~
    python8 S' \5 J" R9 I: w0 q  E* a8 e
    6 N  l! A( {  n  C5 O
    1 ?  y  Q1 b6 c4 v" j" L
    def fibonacci(n):* i! ~3 q8 Z; E5 h5 B* w) g7 {
        # Base cases
    ( [8 q' |0 g; S! U5 l    if n == 0:8 ^: v2 M" [: N( ]/ u! k
            return 0
    3 D& k6 |( x  U% U4 v' q    elif n == 1:
    $ \+ ?- A. z& G3 b5 o! G6 Z% s+ b        return 1- a- f. u: p4 F, N1 a# q* u5 U
        # Recursive case
    / E' O/ o5 y- I. @2 l    else:
    5 N# W" W, [5 e1 ?5 ?: [        return fibonacci(n - 1) + fibonacci(n - 2)4 L6 k; X; ]$ _- g# j

    0 ^7 F2 q0 l0 X' c1 L4 k+ i0 D! N# Example usage
    1 t3 g* {2 ~( [  N1 l5 hprint(fibonacci(6))  # Output: 8
    ) J5 [  c1 |; K# Q) @* q4 U4 J  v( a0 g. G$ c: _
    Tail Recursion2 G* i$ C  k; ^1 \$ o

    5 l& x; T6 w. e9 bTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).% L7 @% k1 ~: D0 H% e

    ! p1 Q1 w2 Q! I: r, rIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-11 16:32 , Processed in 0.048339 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表