设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1491|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 + }  u  K# W% I1 J
    6 E4 n% [! ~" h+ [
    解释的不错
    5 [4 q- U+ ~, X/ A2 e; s3 N- l' a) \/ O3 r; @6 k# }5 I; g
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* k6 [0 h. u+ c) a; Y

    3 c3 W  ?9 X8 T5 m9 o 关键要素
    % t' ~6 p/ q1 K* J2 m/ M$ S9 b1. **基线条件(Base Case)**4 \# D( R; `3 G# B. X
       - 递归终止的条件,防止无限循环
    # W0 M' H" G5 S   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    * _' w) [$ i# J1 \* ?* [8 |! U" h. i; o+ t8 Z8 N/ H  S
    2. **递归条件(Recursive Case)**
    $ U: ~( u" }6 \/ ^8 c7 i  d) }   - 将原问题分解为更小的子问题1 D: B) q5 x) p7 T
       - 例如:n! = n × (n-1)!! L& @4 P" u/ k( i6 o

    + L& t6 e7 e. g; W3 U 经典示例:计算阶乘! v3 i- s. f/ S4 u. ^* z9 d
    python
    5 C) K* M$ ?  Udef factorial(n):
    , C5 x9 H  h/ R- g7 w+ R8 ]" u6 U    if n == 0:        # 基线条件4 w% E: a1 D% y' }% H+ ~. d
            return 16 L% `! J- r: x# L4 h. d. f8 r' W
        else:             # 递归条件
    1 |# x0 S4 R) W5 z3 A2 D( @  d        return n * factorial(n-1), P8 m" @2 n8 }! u  N- l. I
    执行过程(以计算 3! 为例):8 v9 H: r$ }8 c8 b: h* Z, |5 O
    factorial(3)7 U( S+ Y4 L+ p& q0 Y8 M9 e8 Z
    3 * factorial(2); M7 D7 _9 Y, K6 U
    3 * (2 * factorial(1))  y# |! q5 A+ V- U0 q) u. Q0 U7 Y
    3 * (2 * (1 * factorial(0)))
    . ?% K& {9 H. t  G$ V* K3 * (2 * (1 * 1)) = 6! U/ L" x- j" e$ S& U8 h" {8 e1 z2 v

    ( z! X) D7 t7 ~7 K% q$ B% ? 递归思维要点3 M8 K8 t& u& J' D
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 k! s3 C+ A8 G- L2. **栈结构**:每次调用都会创建新的栈帧(内存空间)( ~' F3 |8 ]; l7 A0 t! M
    3. **递推过程**:不断向下分解问题(递)7 I3 }/ o9 [% W+ H: Y8 P+ [
    4. **回溯过程**:组合子问题结果返回(归)- ?' e' X& X+ s1 k5 ~7 m1 j

    / k% ^7 B! M" b# [9 v5 I) E 注意事项. Y1 M# z' l. `  k' ]! S. E. r
    必须要有终止条件
    $ Z/ i( y) E; i6 f7 I& P递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    " v# k! g: f; ~# P' g6 {* n4 H某些问题用递归更直观(如树遍历),但效率可能不如迭代
    8 P8 t' l' G3 \- d/ w1 B6 |4 `$ `尾递归优化可以提升效率(但Python不支持)
    $ B8 r. m8 Z7 w  F. G6 B0 n0 R' [3 @0 Z. H
    递归 vs 迭代
    ) h9 ~" H0 V' v! y7 F7 d|          | 递归                          | 迭代               |
      a: }1 u1 z1 P+ R|----------|-----------------------------|------------------|
    ' e2 }* F( v" d0 v| 实现方式    | 函数自调用                        | 循环结构            |
    & ~% `+ q0 u! R/ E0 z: j8 t6 c| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |" A" `2 P3 F# }1 H* N# H3 Q
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ b- r3 d. Z: D+ ]
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    + G  \5 |  U* p, b
    & f# e: D# M) q$ ~ 经典递归应用场景
    2 g7 p4 M, ~0 i* H: i: T7 l. g1. 文件系统遍历(目录树结构)
      {7 h& y  p' X' M0 B" W0 b2. 快速排序/归并排序算法9 l3 n6 \/ R& g6 n' G8 S
    3. 汉诺塔问题
    4 H& [1 q0 a% `& m' O4. 二叉树遍历(前序/中序/后序)2 K/ u8 @& A1 k  O
    5. 生成所有可能的组合(回溯算法)
    , {- D  F/ j3 u/ f0 a. a- p4 |, R9 t
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    前天 01:20
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , |: s" l, k8 p3 \' x3 R我推理机的核心算法应该是二叉树遍历的变种。
    . e" d4 b! ~' Z% b( n) P9 Z7 J& }另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:" w7 B2 t! W! F
    Key Idea of Recursion
    , `5 @% p" t8 ]  f) P6 I- [$ ?& R6 {6 g3 j$ }+ d
    A recursive function solves a problem by:
    6 y$ q+ f9 \. S7 U1 p: _  o0 ]1 E' O  s0 ^1 c( H0 k
        Breaking the problem into smaller instances of the same problem.
    * A% \6 n7 ]( S" Z9 B" k7 j1 @" c$ {; M  f
        Solving the smallest instance directly (base case).
    6 o" l( g! A& y. H  p! p4 y+ v. d, V3 E  [4 L) ~6 ^1 U. `
        Combining the results of smaller instances to solve the larger problem.) ]' c: P. ]# X( c* D3 W
    * k7 U- f6 y. ^0 p) t+ q+ d' C' U
    Components of a Recursive Function
    : P8 P( N; D' R9 V1 x2 [5 m3 O8 f) K& l$ ?8 J" E
        Base Case:
    ( O9 c$ U$ _0 x8 j! o# q
    + o/ d" h7 ?' W+ ~3 H% t        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  |: i/ Y# @- u8 W, h

    6 z5 C2 r- A3 ^0 }* y7 @- V        It acts as the stopping condition to prevent infinite recursion.7 @0 @1 |+ g* _
    : D# b2 X5 ~* s9 `  ]/ J3 ^3 X
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ) J% n2 Y5 Z9 ~+ W& q; c* B, c# `" ]3 O! o8 R! n
        Recursive Case:
    , r+ F5 l1 t! ]2 n, \+ h( K$ f$ Y6 s. z5 s4 @9 M
            This is where the function calls itself with a smaller or simpler version of the problem.
    0 d; o0 B3 a: K& I: W) a0 K5 n; g$ s7 f  n
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).2 [0 Z3 p  w% \; j: A# ?
    ) l* J6 W) o. `0 B6 T, ?; A7 r3 S
    Example: Factorial Calculation* x) }2 @) A1 m0 C/ z, |

    # o; Y0 ~) l7 Z3 W- OThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ( Y' R3 T; k  E: i1 l4 M* K# R  @* c; M
        Base case: 0! = 1% x, v5 v$ V) x+ E
    0 i1 D  z! q. C$ P" d) _  _" S& t8 e- W
        Recursive case: n! = n * (n-1)!
    ( A9 B3 ~* u4 b4 w# J4 p+ X" |. w3 v+ ~! N3 D# N+ P
    Here’s how it looks in code (Python):$ `! ]6 F! p7 J6 |4 d) ~: D
    python2 r+ l: g5 A; L, R6 E' r

    # |+ ^$ a1 l. Q9 c' {& P
    : L  b  e7 G5 a/ N1 h8 Udef factorial(n):7 s0 E7 {3 @9 m- v2 m2 j0 M( p- y
        # Base case
    9 y  R% {7 \  J/ A' f! o! B) d    if n == 0:
    ! a. a! Q; p9 D' i* T7 `        return 1
    3 C" k; }7 d  {6 p    # Recursive case5 v7 L1 M0 C; ^5 M/ q* }) Z0 t
        else:3 m6 m- S' b; d/ c' f5 C
            return n * factorial(n - 1)
    1 D# e0 j, F* b" F* I
    8 D, f" a* ^. M' I5 ]# @# Example usage; F/ z5 V3 T# V6 q
    print(factorial(5))  # Output: 120
    % N3 X7 t- |% B+ ]) {6 V6 n, P) H
    1 G" p0 r0 b0 N$ y0 N) ~, VHow Recursion Works
    . N0 O  w6 F. ~) S7 `! Y" K! d9 e" g' L0 d/ T
        The function keeps calling itself with smaller inputs until it reaches the base case.: g1 T0 G1 a9 m+ ]1 ~1 o( ~( D

    3 L. ]1 J, d- v    Once the base case is reached, the function starts returning values back up the call stack.
    ! F3 L$ h: j; _) }% d
    9 g5 R4 q9 Y( {" }5 {$ q    These returned values are combined to produce the final result.* J" ]$ `6 |) k9 J
    ! _0 x2 F& u" ^6 n# X
    For factorial(5):
    % r) V2 f4 g' Z4 ~1 ~: Q2 U. a
    , D- c  H, i8 F& z+ B/ n
    ) v, [$ L9 B0 tfactorial(5) = 5 * factorial(4)4 k5 p; J$ P: H5 H9 d
    factorial(4) = 4 * factorial(3)* b1 h# j, D' Z% ~
    factorial(3) = 3 * factorial(2)& L3 H! t! B& u. `' n
    factorial(2) = 2 * factorial(1)
    * ~1 y. N5 S: V. Q# q: V( Kfactorial(1) = 1 * factorial(0)
    . O# n0 p; J) h" ^factorial(0) = 1  # Base case5 J% z% t" ~, S- W; C6 L: [* o( W

    + h; u5 u6 a+ h3 RThen, the results are combined:( I$ ^$ a) G; s4 e$ ]! F
    - g& F$ S! F5 _; p

    ! R& _2 I- n4 ~# v% Y7 [factorial(1) = 1 * 1 = 1
    6 g; |, W# h, F& Wfactorial(2) = 2 * 1 = 2
    2 R% J7 {* H5 o7 X" n0 L6 P& afactorial(3) = 3 * 2 = 6
    $ T) [: r  e, h( ^7 c  @0 `  _factorial(4) = 4 * 6 = 24. Z) X# _6 ]+ S% b
    factorial(5) = 5 * 24 = 120
    ; L: y9 E$ J1 y6 {% H' @
      b# V9 u2 K8 W, f; SAdvantages of Recursion) E% P( K4 v% e

    1 u9 e+ n# o6 u) K- D  d& ~  A    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    9 c9 n( A" z1 `0 \# y. D- `) D
    $ I  B* w2 E7 X8 n. Y/ z    Readability: Recursive code can be more readable and concise compared to iterative solutions." Y5 H/ e7 k  o( K( `2 P
    * d# l7 i4 D9 ?& E  [
    Disadvantages of Recursion
    7 N* A0 M, \, R4 C& [
    + ?% L, D: r  j$ a  f    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    - I) q) [1 _1 m# B! A
    2 V4 k( Q5 H( R8 ^& x    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).8 p+ W: X0 x* }, o4 U

    ! k- ~( ?0 V7 xWhen to Use Recursion- b+ ^2 x: a! \4 s3 O: h7 }

      o( C" e9 R0 B1 n$ D& h% H    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).5 h/ o& |# p; W9 j8 F6 @9 d2 K6 r

    : u( Z  i. t4 ^    Problems with a clear base case and recursive case." `0 D3 C8 N* H5 @

    2 ?" |3 F$ ?# g( }4 T6 fExample: Fibonacci Sequence% A  t) \# w* ]  h# z" V, \! W6 }0 J! p

    : |( B! y- Y8 ?* NThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    9 }* V& e, ~4 A6 e. i
    % x* _$ O( k: b( M4 i5 t' ^    Base case: fib(0) = 0, fib(1) = 1
    9 }4 e' E5 h, s; @# l# f: _" e, _8 R2 K: t  E/ n2 ~) H
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    9 C- l& p9 C' q+ U; i' t7 C) u( A4 V+ K% Y/ v* B
    python$ ~+ O5 o. P7 K& b; ]8 R  q: W/ X- ^

    0 y: W% H+ J& s! {5 b4 V
    + i2 w) Q6 m5 M3 X$ ?def fibonacci(n):4 Q3 t! A" h6 j% J' d6 h( y! d4 F
        # Base cases0 L  s9 x0 g. j( _' k$ q
        if n == 0:% j4 A' c0 e* X( N) B5 B$ u, D
            return 01 Q, g+ k- s4 W* _7 l: E( \0 t
        elif n == 1:
    ! @- t) ^$ i' W! C' k        return 1
    / D. K4 N, E+ p3 ?! ^    # Recursive case% p3 r+ `5 M" k
        else:
    7 A2 O7 u9 ?8 C$ _* q. C, _' @        return fibonacci(n - 1) + fibonacci(n - 2)
    1 D3 e7 |5 R2 N; k! d0 X* M
    ( ]: Z6 ]- f# |) _3 b5 e3 \# Example usage
    4 `# \( B$ X5 W) Wprint(fibonacci(6))  # Output: 84 Y' Z. V" e8 L5 M6 \6 f8 {# g4 B

    , ^$ v. g9 ~- r; b* I5 yTail Recursion
    ; e4 e) O7 j3 ?" ]' n
    : o( z7 G: S( l; L! GTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)." _! l% c+ K. ]. V, |8 A" [
    + m' q. m, j9 c1 E! M. ^4 [
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-13 09:18 , Processed in 0.032444 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表