设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1148|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    1 l8 ]8 k' t; g* W6 q
    0 S  L# z& Q" u$ p2 F解释的不错
    ' @( F% n0 D' S0 j
    6 L5 T' z0 J* p递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ! P2 K& G' p  d! `
    ! f1 h9 n/ ?$ j4 \- l' P7 V8 u 关键要素
    + ?9 c4 m- p3 i. g! Q$ q& Y1. **基线条件(Base Case)**8 j, |  i+ G2 a: }% A/ K' a
       - 递归终止的条件,防止无限循环0 l- K) v8 o- e. q- F4 s) p
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; p+ ]  l, d+ Z4 v/ \
    : P# F1 k. e( ]2. **递归条件(Recursive Case)**3 m' w( m& M& A! J
       - 将原问题分解为更小的子问题6 l0 I, m% s5 x5 w4 Z! V
       - 例如:n! = n × (n-1)!' D( C* y0 ?  [. d) D; J+ f
    & }# ]  s# {$ m5 t, d5 _" V+ A0 E
    经典示例:计算阶乘1 t. O6 K0 A% u6 t
    python5 b, E& C. Y$ f* v1 C
    def factorial(n):4 p7 r7 }( M2 Q4 [& S
        if n == 0:        # 基线条件( e  h9 H2 N  N0 d3 q, t+ x* G
            return 1- m( _, u# p( ^. u+ [3 W- Z
        else:             # 递归条件4 i  ?7 y! z( b& p1 f
            return n * factorial(n-1)
    ! q( I& @; D9 J* M$ k  O执行过程(以计算 3! 为例):
    $ k- G+ R8 i% B# T: Dfactorial(3)
    & W! `- Y$ p* Q' N  n3 * factorial(2)
    $ A+ m# U9 I0 f+ ^3 * (2 * factorial(1))
    5 k% Y. ^# x0 k( o5 d3 * (2 * (1 * factorial(0)))
    6 f3 N8 w) [' Z% q% `6 F) O$ x3 * (2 * (1 * 1)) = 6- D1 F; d6 @4 n4 l
    1 P" Z- V  P6 T# ^. h
    递归思维要点4 e: u7 R0 E( N' {9 c
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ b8 u, Z& X" k) e$ g+ Y% I9 P2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 @& ~' A9 b; O+ I
    3. **递推过程**:不断向下分解问题(递); k. j; ~; p2 e+ Z9 S- C
    4. **回溯过程**:组合子问题结果返回(归)" U1 G& i7 C; F, Q8 E: G/ {! x3 l
    6 m* N  E$ G. Y! g; ]
    注意事项
    ! e! E" f# k  M4 ]必须要有终止条件
    0 Z5 [7 Z- q/ t: r  Z6 I递归深度过大可能导致栈溢出(Python默认递归深度约1000层): b- n! h$ u+ o2 h7 i  d/ F
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 N  @5 K6 _6 ]尾递归优化可以提升效率(但Python不支持)
    9 c1 y% a4 S& q  |1 n5 K1 y' l2 s9 t0 Q  s! Q0 d6 s
    递归 vs 迭代
    # }0 U' t) J9 e1 D$ f|          | 递归                          | 迭代               |6 q. `. S6 G( U- j' K2 `
    |----------|-----------------------------|------------------|
    1 [" |9 P/ A7 [! U! `$ I4 y| 实现方式    | 函数自调用                        | 循环结构            |5 u# J  N3 Y+ J
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |- J/ c9 q; G" L5 B
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |9 }5 w0 ~6 V* `9 e
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |2 B; j$ `. O( P
    " R0 n( Q/ z  R- M* t4 p
    经典递归应用场景& b8 ~4 g8 L0 ?2 F5 w: @% A
    1. 文件系统遍历(目录树结构)
    2 W; k2 s2 Z! i/ C0 z) f/ K2. 快速排序/归并排序算法5 j4 ]# p( c! }
    3. 汉诺塔问题6 g) z. Y- X' w4 x/ v
    4. 二叉树遍历(前序/中序/后序)% ]0 e( K' p. W
    5. 生成所有可能的组合(回溯算法)
    9 F6 d3 H* B/ m, x8 C4 X
    2 O$ e  U+ d; {+ k' E试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    11 小时前
  • 签到天数: 3101 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , k5 \; @' D2 c) s5 E: D1 ]我推理机的核心算法应该是二叉树遍历的变种。" l7 V+ z1 f+ M* U' ?5 [
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 u/ @) p2 w$ E" l: f/ t, k
    Key Idea of Recursion
    # J' i+ j5 r+ e7 U( U7 O# c  i' Y7 K+ s
    A recursive function solves a problem by:! Y  d. q+ N- ]* s
    ) V5 e% v$ v5 t6 W$ ^
        Breaking the problem into smaller instances of the same problem.
    ! ]* m; C3 r/ a. Q* a& c0 h
    & F8 W+ c* B. G4 _    Solving the smallest instance directly (base case).3 R% s1 B2 D5 T* L" }, q  e+ m, [
    5 |, v5 q; K+ Q: a- b9 \
        Combining the results of smaller instances to solve the larger problem.. B6 Z$ D' Q& E1 l

    # p9 N. ~$ h! U' B$ Y2 HComponents of a Recursive Function
    / q2 f5 d/ u& t  w% ^
    : u/ w+ n( g: X    Base Case:
    0 A! f# t- W: k; O9 g
    / C. O* g  E8 l' ~: \1 r9 d        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    + x5 v9 F* D! {3 X3 [- b, h9 V( h2 m, d$ [) T& i
            It acts as the stopping condition to prevent infinite recursion.. M9 S( q# e2 y# ?

    ( J+ {( d8 y* P+ T5 F* Y  `7 T        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; s: G' U+ Q9 e  p
      Q( q0 I1 d/ C6 V9 ]
        Recursive Case:  S4 a- z' @; H8 E% o& V

    " A; W# Q. @; U2 g        This is where the function calls itself with a smaller or simpler version of the problem.
    7 v7 p" l9 o8 R/ v) j% H& V5 }7 b) x; s+ G7 m9 a5 k! L3 ]
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).& C7 T6 c0 T. j9 T" x: W5 P+ V

    ; Y2 Q4 w$ _& J0 zExample: Factorial Calculation
    & U8 A. t. O7 S0 a2 a+ m, T# v) m& l  t5 j
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % M& b: D! P) D8 e, H8 F' c9 i3 I
        Base case: 0! = 1
    ; p8 W4 @8 D4 A- @: p. m+ L1 `) c0 ^2 a/ B) f
        Recursive case: n! = n * (n-1)!
    7 Q0 {9 e: T' }, D' Y
    2 t" ]! s$ t0 W. L' }* n3 _Here’s how it looks in code (Python):
    4 u% R, `6 C7 `0 lpython
    / V9 E3 @0 P. |2 u+ c, U: l6 t6 E+ i. v# o7 B0 T
    $ e! Z0 S8 v: b3 R, F  z1 u$ O
    def factorial(n):& `6 \) x) I% S" i8 V: ^
        # Base case: T  x! k' G; C" A
        if n == 0:% y5 |' x8 o! a7 B# W* I! \& _
            return 1) I9 m' x4 g1 h" N; I6 h: v
        # Recursive case
    2 m. m' w( a$ w$ K' Y: |    else:8 n4 v$ Q+ [$ z
            return n * factorial(n - 1)
    . o% E9 n, D0 r: q
    % a/ `; U! E0 \" T% j9 x& F# Example usage1 d/ G5 n+ q" Z# `* @  C6 ]# r
    print(factorial(5))  # Output: 120: t3 z8 i+ x& p4 C! q, b$ J. d

    , z. r. A- X; JHow Recursion Works8 F' j) T7 W1 M! ?5 B1 [. d+ D

    + x8 u, V, @6 Z3 K: ~! e# k    The function keeps calling itself with smaller inputs until it reaches the base case.
    / p9 b3 S: h% U: L
    " a& b6 [+ j: G7 U9 K6 ~1 f# Z    Once the base case is reached, the function starts returning values back up the call stack.9 }7 H1 r( ?  V( _5 u6 |. F' ~
    7 C( p4 O& t; x3 n  ?
        These returned values are combined to produce the final result.
    3 ]! c* a. e$ f9 a; O# l8 x3 V2 ]" A2 B! V9 z! Y$ _# t
    For factorial(5):
    " l1 _% Q" Q) C7 C1 m+ o# }
    $ j8 V/ P, ^; Z% P5 E) U+ H; R5 F, [3 f5 V9 S4 R; H7 K
    factorial(5) = 5 * factorial(4)
    + {5 O2 x6 A' g) I- Z/ lfactorial(4) = 4 * factorial(3)
    ; i( L+ z8 ]( u6 Efactorial(3) = 3 * factorial(2)
    4 x, [( }/ H3 T2 m) ^# bfactorial(2) = 2 * factorial(1)
    , x: g1 e5 L. X4 k; E" W# Hfactorial(1) = 1 * factorial(0): Q8 W" d4 z$ G0 E8 z/ D
    factorial(0) = 1  # Base case
    4 Y# t2 |2 v* P: @* _3 ?9 S1 E* J
    Then, the results are combined:9 u& J- m0 P: A$ {! r$ C( g- v

    ) G0 D1 x% Z/ z# E- |4 H* R3 ]8 ]! o, t% t" x( R
    factorial(1) = 1 * 1 = 1. A; Z0 m4 _8 r
    factorial(2) = 2 * 1 = 2
    9 r" [7 l. o4 T4 \9 Cfactorial(3) = 3 * 2 = 6
    , ^  ?; T' v: z  J$ ffactorial(4) = 4 * 6 = 24
    & g4 L4 r' ~3 g1 W5 s8 g3 K- bfactorial(5) = 5 * 24 = 120
    * R  l; K2 _  m* P8 B. a+ P
    + O  l& J5 d. {* e" P, X! x6 nAdvantages of Recursion
    ( ^3 _8 q, ]; T. {6 t; N
    5 H& J, ?7 M! o. ~9 e    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! T  U$ ]% i) s, d. Z

    " J! H$ u: H; F& [' G  z: _    Readability: Recursive code can be more readable and concise compared to iterative solutions.0 k- B* S0 A: M  {

      M/ Q9 K+ u0 y* C, uDisadvantages of Recursion* |( W2 Z6 D% M+ C  K

    - t4 i  M: p+ e, }* U, w) c    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 T0 E' N  ~$ ]+ r0 F+ Y, I
    $ S* s! o$ k$ h4 P% \/ l$ s3 k* z/ J    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).$ u( `( w2 z. g2 K, c' Z$ \" a
    ( }% P& V, Z! ^
    When to Use Recursion
    % M& u8 y; d* P" ], b, ~8 d0 e# P9 `: Y$ I
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 {$ t2 g- g" p
    : O. D4 ?' j; o% r7 L    Problems with a clear base case and recursive case.) x, v1 }; d4 y' c( C) X2 K$ Y

    % \$ V9 `5 N4 ~3 `  \8 QExample: Fibonacci Sequence9 d$ ^) q4 `  z% Z8 u

    ' ~! F# S( p8 f! m* w' `The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    - l" o' l+ J* P1 y
    & X0 o" d1 @$ r! W' K5 `    Base case: fib(0) = 0, fib(1) = 11 V. O; n  d0 T7 f+ t
    * m) j  |) U! I" c1 y* j* |; \
        Recursive case: fib(n) = fib(n-1) + fib(n-2)  `8 X& q5 Y; x, n. ^0 `$ b4 n

    + f* i- [( t: n! w$ o' A8 Vpython% _" }7 D# l, I; J

    , V8 E. _( K7 F" n8 I8 d9 M0 X/ d% e2 o( l8 \4 B
    def fibonacci(n):
    6 `, ]  B! T# @5 x% D+ i* u1 u    # Base cases
    . Y$ L( d+ M$ Y3 i# A* L9 H    if n == 0:) U2 s) E2 m7 Q% ?& u' E+ z2 v. ?. g
            return 0
    0 l' R6 _5 G/ f7 @6 @3 ?    elif n == 1:& X- ]9 D% o7 S  v* @) @5 x: g
            return 1
    3 H& [. i& X* T: l7 L: j2 M    # Recursive case) F: u8 w  ^$ P$ y; L8 x
        else:
    2 D( g) c0 F  ^* B        return fibonacci(n - 1) + fibonacci(n - 2)
    5 B  ~9 I" m3 u- C) d( c" l( A7 k3 j
    ; `1 A" N# j7 w. a4 E0 B# Example usage+ N% r/ `! [. |
    print(fibonacci(6))  # Output: 88 l; }9 t4 X0 [3 l% B" V( K
      l; g5 l! r! x7 t( J5 w; U
    Tail Recursion
    4 C# I  p% L; a! G; g0 y
    . |; R' @6 P3 G' _Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    8 E' C" n' _. x  x8 T
    / @, ]4 Q- Y0 T4 XIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-24 18:19 , Processed in 0.030982 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表