设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2025|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    0 ^: @7 @4 S- R' H. W
    ' j( w' W5 n) b: t  v解释的不错5 ]* b  X8 o+ w( u+ O) d! A

    6 A) p: u2 {4 C$ `递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; ^  ~- p$ \. m: {1 H7 Q
      k9 d" g8 ^  U! P3 i- I, Z
    关键要素: |6 @, i! Z+ u. n  i
    1. **基线条件(Base Case)**
    / L3 z  H: c9 N! m/ c& y   - 递归终止的条件,防止无限循环3 J7 s5 C+ O. |2 U  U
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1: D0 J4 h+ n2 g/ U* K2 ]

    1 _# a/ W1 V+ s, [( r" U2. **递归条件(Recursive Case)**
    : w/ d. ]- T, j& t: L* P* [   - 将原问题分解为更小的子问题
    - \, _. ]/ n# o7 R$ ^* z- @& e   - 例如:n! = n × (n-1)!9 l% ?; a& y$ B. c6 I! y
    . c) W9 H, b* ~7 T8 }$ s
    经典示例:计算阶乘% G) C9 U% m) h8 S, X* F# n) w
    python
    6 g: |: Q5 w% h. Q8 Tdef factorial(n):
    - O. A3 R# q( \' G8 r    if n == 0:        # 基线条件5 }' P1 B/ P% p- s8 i2 }; A& h
            return 1' h: D* M+ s2 V) N
        else:             # 递归条件& C4 I/ R" ^5 x
            return n * factorial(n-1)) P, p! t" K/ E; P8 N9 L3 P
    执行过程(以计算 3! 为例):+ l9 r8 |5 T/ K% X/ v" t
    factorial(3)
    6 R, D. x8 w, ^- k# \3 * factorial(2)* Q0 t- m9 C) p3 a9 K
    3 * (2 * factorial(1))
    ! R1 B5 W2 A5 }6 p" s3 * (2 * (1 * factorial(0)))+ e( R1 g2 e9 ^& k
    3 * (2 * (1 * 1)) = 6
    : v9 d/ O1 k0 B4 q  Z6 k5 f
    1 h2 K% l7 q# F' r5 O2 e8 B6 U 递归思维要点
    , p' v  m. M+ A+ [, {9 Y( Q' Z1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + z& y- O& s* t8 p3 P9 T2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    * G- q* G# k. \) l* u9 E# {1 I! \  ~3. **递推过程**:不断向下分解问题(递)
    ) ]  S4 m& L6 A: w4. **回溯过程**:组合子问题结果返回(归)3 l5 r9 B5 t4 D" y
    " ?9 Q1 ]- F6 I, e
    注意事项& \$ i- J3 F# `( a5 z/ j2 R
    必须要有终止条件. r5 I$ J! ]: e$ h) K8 ~
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层); W+ r$ i' ]( }  B5 \0 [5 X* N
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    * x9 B5 C$ Y! _# Q3 u# e# h/ a7 L尾递归优化可以提升效率(但Python不支持)
    1 ]5 _( ~4 j6 m% q% ^. m+ O% q; K& W8 o7 |0 g  P+ X
    递归 vs 迭代0 |  R" I& i- z- y( a. L( v0 R! B$ Z
    |          | 递归                          | 迭代               |
    ; O$ f7 d5 k5 m, L  J1 U|----------|-----------------------------|------------------|( Q9 F9 g9 U$ }: C+ e9 L5 }
    | 实现方式    | 函数自调用                        | 循环结构            |) |( E  p- A9 `' x9 Y+ Z) c
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    & O" C2 k$ b# N. u| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |) Q/ p( Y0 e4 u! _, r: z+ T) Q
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |8 ?/ h& Q2 P7 t7 q! Z

    9 s4 m8 E& F- n2 t 经典递归应用场景0 o/ o& t- g( [; x( j* ~+ h
    1. 文件系统遍历(目录树结构)
    , ]" x9 G: s  t0 ^% `2 `! L2. 快速排序/归并排序算法9 u% I) S2 d" |7 R
    3. 汉诺塔问题, A; h4 u" ^- K1 r: l4 l  Q
    4. 二叉树遍历(前序/中序/后序)
    " `/ @/ ^& v% F& |2 U7 Y0 \3 p5. 生成所有可能的组合(回溯算法)
    1 X. i% P' \0 [  k, c5 _  C5 d* a4 B
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    2 小时前
  • 签到天数: 3166 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
      G6 T% q0 X; t$ ^5 x* z$ Q我推理机的核心算法应该是二叉树遍历的变种。/ o; G8 w  z. i; I- c: ~
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    / T7 P& \) h. Q$ oKey Idea of Recursion( P  g( y2 B& }$ d

    1 S% u& n5 T7 ]3 |8 F) DA recursive function solves a problem by:6 e$ W+ E( w: z% D+ }

      w; v  r) U$ j    Breaking the problem into smaller instances of the same problem.! @/ W) J% g: w7 N; R

    5 ]* k& G; k6 M6 ^# {0 k; D    Solving the smallest instance directly (base case).
    ( O! x  l/ ^% E  b8 j- M/ i+ c% b
    $ D8 s, o3 {7 z2 w1 z    Combining the results of smaller instances to solve the larger problem.
    3 e3 V, [) n; G6 @  T) C4 G# ]3 Z+ F6 Y
    Components of a Recursive Function
    7 |8 r+ h, i% N7 k5 X; O
    2 E1 \5 ]3 u  @" o    Base Case:
    ( h0 h- L6 d& A8 T
    / ?& s# ]7 L7 x7 E* t0 F! f) s4 }        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    0 c- U* Y( C/ r& C5 _
    , g  @8 ~5 @. {5 z( D* S; z7 m! h        It acts as the stopping condition to prevent infinite recursion.$ J; E! P# p6 _8 Y! s, D
    . U) V# }( Z: E# e
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1./ W6 x, R# n* K1 d, n6 ?
    & t# I* X3 R- c6 u2 ~
        Recursive Case:7 `3 W5 U$ B9 G+ Z! C0 [, ~
    8 a, ^* o) `' Y, P# `- _
            This is where the function calls itself with a smaller or simpler version of the problem.0 P7 t' U  z9 ^, B

    1 {/ j1 W- F: o9 d+ T2 H5 k1 _        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    $ }$ y* n! B' I0 g  k4 q* S( m5 \
    Example: Factorial Calculation
    " g& R, V2 P: x: `3 v2 ?/ t+ e3 v4 s2 _5 X& p& U6 M
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 E6 v. F( _$ d! R

    0 `4 J+ F: |4 n3 t' r) B2 \. C4 h    Base case: 0! = 1
    . u9 D8 p8 P- Z! o  [
    / d# w3 \" a6 V0 U8 N9 ]    Recursive case: n! = n * (n-1)!+ w( ]$ ?& E; o+ c  g
    * o) O+ O" N2 z' Y( e' ]* X4 R
    Here’s how it looks in code (Python):
    & M- P- m. j2 O4 r# A& K: `python
    % c; C6 y. h1 h( z3 W0 m* ], Z" z  j1 d2 m  {0 x: W7 |

    $ e& o/ h( J/ S( r$ R9 b& Gdef factorial(n):' n2 E  F, X, H0 o5 X8 J
        # Base case
    0 d/ r5 n2 U" g& f: H+ g    if n == 0:5 s- E, e" j; ?3 }
            return 1
      c5 y: o; Q2 ]9 _+ l4 T' u    # Recursive case/ ^$ R* s) I  C1 H/ s7 |/ A
        else:
    * m7 e, c, m2 N        return n * factorial(n - 1)0 p5 ?. O) ^/ p/ @
    " U* \$ S- G5 `* s" Y
    # Example usage8 n$ X1 Z/ F5 w! P
    print(factorial(5))  # Output: 120  @+ m; i9 }% ]+ v
    4 g: U; c0 Q3 E" W3 j) M; |" B
    How Recursion Works* S5 q! t% X' `9 j. {% _
    4 l) ^  X2 i9 \  q, ?
        The function keeps calling itself with smaller inputs until it reaches the base case.$ F5 c6 w1 x1 |6 V9 t6 z
    9 y- n- J% |3 p8 c& \/ p
        Once the base case is reached, the function starts returning values back up the call stack.
    + \8 d) V1 {9 o$ J8 v4 X* _0 W
    . j' j9 T* s: Z$ N    These returned values are combined to produce the final result.3 R+ q% i3 t  I* D1 W( L7 U9 I
    + z+ |9 w# n! Q- g) {# j% @
    For factorial(5):
    ) I; M% _  H. ?$ J
    % q8 N% a% @1 |1 p, X  a7 W
    * {; R3 j. Q6 {4 }2 k5 ]1 g- b$ jfactorial(5) = 5 * factorial(4)
    ! _! u3 B; K: Sfactorial(4) = 4 * factorial(3)
    / @* W# `6 K4 yfactorial(3) = 3 * factorial(2)4 ^1 g1 {6 H" U* E: Z3 N
    factorial(2) = 2 * factorial(1)
    2 ^& C# c+ G) D3 zfactorial(1) = 1 * factorial(0). D9 N6 ^' k0 O) I
    factorial(0) = 1  # Base case7 {8 O7 q  `. {

    4 T4 u- W5 y9 C2 R7 ~0 {9 bThen, the results are combined:) O3 P$ e3 e1 @# X  v

    $ q+ y( B) X/ i( a
    ) R; G/ ]9 Y: {factorial(1) = 1 * 1 = 1, u) \) m% ]+ n+ _* p( s
    factorial(2) = 2 * 1 = 2
    : R& @+ s  X* i" t: efactorial(3) = 3 * 2 = 6* i4 m$ L3 S: N  j/ R0 v9 @
    factorial(4) = 4 * 6 = 24
    & D% m9 D1 Q! M& Vfactorial(5) = 5 * 24 = 120# d  ]: ?4 Q3 t7 D2 E1 h

    ! R$ b! w7 B* N; I, ]Advantages of Recursion
    2 L- h1 j" z: d8 p
    3 e& w% F# G7 Z, F! c    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).( J$ \# J, ]8 [/ I9 a
    ) O: S4 ^# }: A
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    3 }! ^4 d1 \$ a3 {
    ) |! f, _* S2 @7 g( U; Z! WDisadvantages of Recursion- s0 R# R( m. s. O0 `8 w1 S

    . a& P; V7 T) B9 x; h/ ^& @. u    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.3 j  W$ G  _' U! e
    + g, k7 |& _& `2 @! y0 {( z+ o: G# Q
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: L1 S( T8 `- T3 C6 z4 Y8 G2 X' H
    7 F/ X+ i" ~( {* y3 }( x
    When to Use Recursion0 t' |( F: P9 B  ^7 H6 W
    2 S8 Z/ F6 ]# w  `* l
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% u# R; D  X; f6 Z% I2 K$ Q% A& o( N
    # ^0 ~9 x+ O0 A4 m( O  G
        Problems with a clear base case and recursive case.7 g6 \. a, u2 t: ~% B* f+ Q" ~; w1 l

    * M# z, C' O# BExample: Fibonacci Sequence" e7 t4 c) I+ r' t2 U: w8 W1 q  w
    ) N% y, J" _- f, {! S  c2 Z
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " J* b1 p  v, a' ]  e* C& `7 B$ O$ k, ]6 N, x4 r. y
        Base case: fib(0) = 0, fib(1) = 10 ]1 K5 e/ d3 k# F% B
    ! p& M2 y% J0 ~( T! d
        Recursive case: fib(n) = fib(n-1) + fib(n-2)9 [+ r4 n2 X0 `0 Q+ _
    0 T1 i3 Z; h0 d, E, x+ ]2 q
    python7 a$ ]0 l" \, p. h% u" u
    $ y! e4 C) f& {) v( e$ P9 S5 Z
    9 H* x  D5 i7 s& Z; [
    def fibonacci(n):
    1 V. X# p/ V5 H+ H    # Base cases7 w6 E- `6 h4 |6 f1 m
        if n == 0:+ v# x3 s' F% D' [/ h3 a
            return 0
    6 r$ C1 E2 R5 c- t# O    elif n == 1:
    $ `+ z7 V8 y" o3 ^        return 1
    4 ?( e$ Y4 s0 o* ?) n    # Recursive case; b$ m8 X6 e) ^$ ?$ F
        else:
    , h3 V1 Q1 P/ |# s& S        return fibonacci(n - 1) + fibonacci(n - 2)
      O9 I- H2 v; s* q* t7 ?1 H$ Q$ K' w: a2 d$ ^
    # Example usage
    " R0 }( R# T1 z% g; A2 u6 Wprint(fibonacci(6))  # Output: 8
    5 }+ G9 `, x* H- Z+ K3 F/ c4 j; e/ Z5 D8 K. t. W
    Tail Recursion5 r) s$ p% L: b! ^+ K  z# E, H
    ' V$ ~7 C( b8 g7 |1 f2 _
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).+ A8 d( [* ]1 \4 g. B

    ; ?4 t0 [) G8 F0 Z! D3 @' YIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-7 17:05 , Processed in 0.055634 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表