设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2084|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 " ^% u; r5 q0 ^/ m. D% p

    " o, Y" w; B# u0 I解释的不错
      p2 `2 k# J/ U
    + a. c" n5 F" f/ d* p) F递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 H9 y% {/ l; F5 W9 ~+ ~) z
    ( V+ ]# \: W( f/ g9 i' _ 关键要素# ?3 S$ o" o. U( D) J: F3 z/ d
    1. **基线条件(Base Case)**
    ( k3 V6 K- |( h5 K6 M   - 递归终止的条件,防止无限循环
    , s$ M& V) O! n   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    5 M1 Z! V$ J$ Z2 i
      w' d* t4 r9 ?+ ]8 b2. **递归条件(Recursive Case)**1 z  Q% N$ O  q* G: o9 g; ]4 H: q4 i
       - 将原问题分解为更小的子问题
    * G2 j6 e& J; U; z8 @" w   - 例如:n! = n × (n-1)!
    8 W4 U7 S2 S3 W7 z2 y# L. O2 H; u
    1 H7 U4 l# N' y  ~8 Y 经典示例:计算阶乘% u3 C/ n" W: @, @/ B( L) `
    python4 ?- Q. m" g* a2 q5 }. p
    def factorial(n):) B/ b9 H2 G7 i& [- A& k/ M
        if n == 0:        # 基线条件
    1 U# x, O( h6 A- U2 l; a) L        return 1
    & e& L! o5 K. n* ^, W6 Q    else:             # 递归条件
    6 G; L. b% o& p. Y4 l5 y        return n * factorial(n-1)
    0 Y- g: U8 Y5 l) Y  Q" Q) ~执行过程(以计算 3! 为例):9 `8 o; K/ E8 V: x- l8 _: Z7 u4 j
    factorial(3)6 ^0 ^6 h8 X6 V( m7 ]6 h+ |
    3 * factorial(2): Z- Q, F( B& M2 I
    3 * (2 * factorial(1))
    ' A, ~3 G& r& {  D0 ?3 L3 * (2 * (1 * factorial(0)))# K% u1 V; T0 n) J2 h4 [8 [, E7 m
    3 * (2 * (1 * 1)) = 6+ j( r+ E) i) i* Y: Z! P6 M

    0 R+ `4 k, u! F- ]0 s+ N 递归思维要点
    - {  \: @& O9 V4 I# D1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    # h0 Z$ O/ S- u% ^/ t3 F3 D' N2. **栈结构**:每次调用都会创建新的栈帧(内存空间)( N4 z: o7 W4 G5 U) H% B; w
    3. **递推过程**:不断向下分解问题(递)
    % m' D$ q& E8 u  U8 Q1 O4. **回溯过程**:组合子问题结果返回(归). q- Y  l! s6 I( x
    6 e- Y7 p; N& O4 b, w5 M
    注意事项
    ! m7 M$ Y) c' [3 O4 s必须要有终止条件+ |5 Z0 Z9 D2 Y8 ]) K# x# H
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    8 ]8 |/ ]8 {! |/ _某些问题用递归更直观(如树遍历),但效率可能不如迭代5 d0 L( g+ k3 x; {8 w
    尾递归优化可以提升效率(但Python不支持)& w# H6 m* N0 K! x

    ! J7 N( c$ u8 R5 Q- N, _ 递归 vs 迭代4 C0 `" Z) h3 P% @# E" `
    |          | 递归                          | 迭代               |
    . l3 [& J$ `  s0 F|----------|-----------------------------|------------------|- T' N9 A! @; I0 B1 c
    | 实现方式    | 函数自调用                        | 循环结构            |6 s! C( D$ b8 `4 o& H8 G! d  M# m
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |( C" v9 Q: M$ P* ?" @9 k: t
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 d1 l0 O* j) v| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |7 U! H( K5 f/ j9 R1 G0 K6 }

    6 _. `, g; ?  h) u* t! K 经典递归应用场景
      h* ?  y! X! }9 d- i; ~) ]2 ?1. 文件系统遍历(目录树结构). N# _: c. \. ^9 }( |3 Y
    2. 快速排序/归并排序算法) ^3 C6 y6 I& O0 g6 k9 Y
    3. 汉诺塔问题
    0 r, b; D. J& ~9 X$ m4. 二叉树遍历(前序/中序/后序)  N1 v5 N8 a  ]. ]) X6 v
    5. 生成所有可能的组合(回溯算法)5 q( f: G9 C0 j7 ~- |+ H/ Y

    ' d' v9 ?4 ~; k" D$ H! V2 m% ]试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    5 小时前
  • 签到天数: 3173 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,% |1 h0 B7 F8 t2 D. g! J% Z
    我推理机的核心算法应该是二叉树遍历的变种。
    8 L+ r# j1 j( V4 ]- U- W. W; L7 z/ W7 c另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:4 h$ ^5 P4 i' Q) B; L% a, y+ D4 N
    Key Idea of Recursion
      T- y( B- t6 l* v+ W* Z' {
    / d0 x: v# _2 i0 O( g; J' bA recursive function solves a problem by:
    ; F, o, v) }( [' M& J. r/ c7 T
    ! ?" P  d6 @6 Z4 [' e( J8 I" h    Breaking the problem into smaller instances of the same problem.% T- k7 Z3 @3 i) T1 ^
    : t9 N$ u" c# E+ t
        Solving the smallest instance directly (base case).
    ) J- T% E  q3 `9 a5 Q4 \1 s* \9 w& }6 v  B6 k/ K
        Combining the results of smaller instances to solve the larger problem.
    5 k0 X$ ?& g* ~; `8 ?* Z  d% C9 N. Z, m0 b+ s: N
    Components of a Recursive Function
    9 \' j8 u* K+ \! [; O9 n6 ^2 ?5 s) p; b( B
        Base Case:
    " b9 |  ?$ A4 [6 r, E  \1 U% r3 P
    & I/ n- I& j0 o) \% L& l. n        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ) Y8 x! ]  Q% w" L! w. X
    + v5 k+ U7 n: }. \2 `( V        It acts as the stopping condition to prevent infinite recursion.& {# V, n8 s  k' B. K1 j
    ' `2 t3 w( y" H6 @6 J
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    - N4 g& Q: L3 ]5 V' q
    $ f9 M6 d- D1 }# L  f    Recursive Case:, U) V% |# z9 V9 B4 t

    + O3 V9 v/ \! D& X# a: w        This is where the function calls itself with a smaller or simpler version of the problem.
    0 F, B& @; b$ {9 T6 Y6 x# `4 W" @# C! ?: s7 d+ ~; x; [/ b( H7 G
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: H' `2 b. |8 b  \2 G
    ' H9 `' l7 [3 N* B$ n/ S
    Example: Factorial Calculation* W9 L. v( R# z
    " Q* ?3 u1 B1 p& {
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ; O/ v; S5 g' A
      s  y1 b, @# n& [    Base case: 0! = 19 A  j9 R5 q, I/ U1 b
    0 ?0 p+ W, H# U+ M4 ~+ G
        Recursive case: n! = n * (n-1)!
    : P, X& o! Q9 D( L
    7 z+ z" c% t9 k& ~/ eHere’s how it looks in code (Python):5 n# u$ m* c6 K' H1 h
    python
    $ D& I3 ]. R- i6 E9 f! R" _! Z' P% y- x* x' ~
    - ?0 s0 K8 R- F) l; |
    def factorial(n):8 X# g. U* l& Z, h& u
        # Base case
    * ?; Z) e& N. p! ^    if n == 0:
    / l& u1 {( ]' K        return 1
    9 m- m& Q$ O: p" P; y5 Y    # Recursive case+ q5 K8 t& t% m4 N# X
        else:
    " L" q7 o7 ?2 m0 |6 V0 i& b0 o. z! S9 ^        return n * factorial(n - 1)" M# s4 ]8 x3 N
    ) C% S$ e' [/ v; n+ k4 c
    # Example usage
    - }; D& o" O$ N$ Mprint(factorial(5))  # Output: 120
    ' L9 h7 `4 P% u' V- ~
      w" a" j( D4 C* KHow Recursion Works# e, M. D7 u8 k' n

    - j5 a; h9 C  D- G0 [! K; U' `    The function keeps calling itself with smaller inputs until it reaches the base case.$ Y: e# B, }7 s

    $ N+ F* |" s/ C/ c& W    Once the base case is reached, the function starts returning values back up the call stack.
    - k0 z+ J( o6 m6 h% y' z( U
    0 l' ], B2 M3 c) i3 O! ]    These returned values are combined to produce the final result.
      W- {( B$ o6 T0 e
    1 ^* o4 o2 W% ^For factorial(5):
    6 G5 T; E- W& T( @3 z
    1 {% O& z4 E. ~3 g/ [0 q' y0 G! R& ^, d" V% X( s: u4 r- Y& z
    factorial(5) = 5 * factorial(4)' F7 H1 G. R) r3 I
    factorial(4) = 4 * factorial(3)) O  R2 \. y( ~. Y% M" f
    factorial(3) = 3 * factorial(2)' A0 K: k' {0 O9 J9 i
    factorial(2) = 2 * factorial(1)
    ; _* P7 W* k% n4 P6 N4 [' G2 R4 Hfactorial(1) = 1 * factorial(0)  i2 i% E$ C6 S) x# B
    factorial(0) = 1  # Base case+ i+ T* N3 F! E6 g, N

    ) P" E' B3 b! R  W6 aThen, the results are combined:2 a0 `  ~1 H$ U# R- @% t

    + Y, _6 a8 U9 |7 f) C3 h3 O$ _/ w5 M$ p' N& A$ G0 _) o+ x# q
    factorial(1) = 1 * 1 = 1
    2 {, R  w  i) c. U+ Z( k) ]3 Q+ ]factorial(2) = 2 * 1 = 24 s' p/ Q' J0 j* A7 j
    factorial(3) = 3 * 2 = 6
    2 l* z' b1 e' yfactorial(4) = 4 * 6 = 24' P! i7 f# B; o- p) T
    factorial(5) = 5 * 24 = 120/ n) }" C- F8 _

    : M3 m' d0 o7 K* BAdvantages of Recursion1 Z! [8 }, k: g. L" R# m* d
    * Q9 ]/ Z* a5 R( m( P
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 z8 t3 I, |$ P2 Y, W& \# I5 v) |3 S8 b* R2 ~' M" V2 ^( B
        Readability: Recursive code can be more readable and concise compared to iterative solutions.$ {" [5 W: y0 J5 a3 E8 M

    * E5 e3 U+ l. a4 H- g1 qDisadvantages of Recursion( V& A2 T+ k& h  [/ J, L3 D6 A
    8 G4 T& y6 p" s
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ( V/ e) W5 w3 f: h% c8 @; [# P
    8 Z- }) O3 ?% z. O" h8 |; K5 O    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)." n, Q, ^' ^4 I. `% S

    2 g9 G2 N. o4 p& B7 WWhen to Use Recursion' b$ v5 n9 x: o% h$ E/ Z

    . i2 ~7 E. T" x3 I9 U) @    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    # a& D3 N% F5 C' e/ ?
    / l  q# z( C* [+ ^* U0 u. a( A( Q1 z    Problems with a clear base case and recursive case.
    $ i" G: o" w' T) O3 s. P$ j5 h5 J$ F: V/ ^# O2 ^6 k5 I" r
    Example: Fibonacci Sequence( W% X# T. {' f: j5 }4 S

    8 I) R/ r# ?* W1 u) r6 ~The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " M; h) {2 r( M# o3 q1 R, h4 H" `/ N! \9 S* p5 n% K" P$ H0 i# \6 A9 x
        Base case: fib(0) = 0, fib(1) = 1
    ( j9 H5 g) b7 o& G
    / S! t7 ^7 n  w0 g8 I. w    Recursive case: fib(n) = fib(n-1) + fib(n-2)/ d8 C+ q4 T' G6 g2 |6 ^, s7 H4 _

    8 L- n( U1 n, {3 W" Fpython
      F1 \; Y, h* {8 d6 I2 B
    $ }5 M' K8 k1 E, s3 B$ o7 e; x
    " S& D. N7 R2 Ldef fibonacci(n):
    1 Q5 g; ?) ?1 E6 S+ K/ e' ^6 c  Y: w    # Base cases
    ! v9 d, O5 V+ L, N8 Q    if n == 0:
    1 q) T# t& Q, E( H        return 0
    ' C* U% ^( e; S2 b% n- N4 N    elif n == 1:! B. p3 m- E$ o: [3 m
            return 1# l: k+ s) {0 Q, y; X+ D6 w6 m
        # Recursive case
    - o9 i2 p1 R3 U9 ^# h' {8 e    else:
    + I3 i# E5 o- |# o6 g        return fibonacci(n - 1) + fibonacci(n - 2)9 J) I: l" o5 t3 ~; G& }! F+ Z
    , L1 h( a! R0 B( {# C2 e
    # Example usage, h. Y3 |$ e5 u3 P8 O3 q9 N
    print(fibonacci(6))  # Output: 8
    9 s. @2 }" _" W9 d& Y& }  ?: H2 K+ I4 i" w
    Tail Recursion$ ^& Q1 x9 ?# y( z3 v! P3 [4 G' E
    . O/ S( _" A6 I% T( q% D
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    6 U- R$ O( d9 H* j3 W( [5 D5 t. i) r  ]
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-14 16:26 , Processed in 0.057316 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表