设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1984|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ! o9 L  I9 l8 G9 K2 E1 S7 s

    5 `% e) B- o8 J" O  z; d解释的不错* _! k3 A3 y* n& t% r/ ]& a

    , Q* n3 U* S' o, K9 j递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ' m- g$ z6 D) U6 v3 M+ T4 h7 \
    3 z: Q- C& R  @5 O0 O3 {; n6 r 关键要素( B# j) y% u4 C* ^  l
    1. **基线条件(Base Case)**4 O5 `% q7 C" o+ r
       - 递归终止的条件,防止无限循环6 J0 x; p4 W6 ^( A- x
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 12 o  E. A, w* `8 d+ [6 j$ x* \
    ( N, m& @7 l. ^+ J  E  S/ |
    2. **递归条件(Recursive Case)**  _; f: A1 C0 U, x. w4 Z% Z$ J
       - 将原问题分解为更小的子问题" Z/ S- u' u% @+ q6 d: g
       - 例如:n! = n × (n-1)!4 K8 N0 ~$ b* ]9 B

    : j" K( F* t# Q5 j 经典示例:计算阶乘
    9 t0 f; C( ^( P4 Y1 ^: \! Kpython, m# f) h. g+ Z" ?3 Y: q
    def factorial(n):& a) O6 ?2 O/ Y6 M, y- O! i2 I
        if n == 0:        # 基线条件$ @+ o) a7 ^: b
            return 11 {5 J0 s* p  w" \
        else:             # 递归条件
      }& Q1 y* E6 o" V0 X        return n * factorial(n-1)
    / ]( G% p4 Y# |; I( _* y8 p8 G执行过程(以计算 3! 为例):" i1 K1 K  P4 a2 j$ F) J" h# P
    factorial(3)
    : z9 b( e/ S4 }7 o3 * factorial(2)  e% N2 q$ T1 I( D' c( c
    3 * (2 * factorial(1))
    . h* [: t/ b; r& `" Q- t8 U- X3 * (2 * (1 * factorial(0)))
    : L+ B. q, Z! ^6 b" i, U: o3 * (2 * (1 * 1)) = 6  |; w, S' ^5 ^. p* c6 b6 B6 |
    ) h$ s7 F# k( O( Z# U  j
    递归思维要点
      @8 ^7 d* A1 e/ j1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ w) l2 f: `5 G9 }2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    5 p+ L( q4 ~$ U) a2 `6 b, K3. **递推过程**:不断向下分解问题(递). F0 ^# O/ s* M0 G
    4. **回溯过程**:组合子问题结果返回(归)
    5 c2 S+ F' I3 ]0 i& j2 G7 \. f+ p7 X: D2 C' v% j
    注意事项
    0 I. c/ m6 ]# h  p5 V必须要有终止条件
    / a: k  l% f  }! p$ D0 r) n递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    1 _) F/ r1 p+ ^2 f% v) F某些问题用递归更直观(如树遍历),但效率可能不如迭代2 V+ q8 ^1 y. ^3 Z  o0 D) f
    尾递归优化可以提升效率(但Python不支持)
    , ~* J/ ?/ W0 J  Y5 j
    7 F( F% A  |6 @ 递归 vs 迭代& t6 E; d) C0 ^
    |          | 递归                          | 迭代               |3 B0 Q* z8 E0 E6 X% H
    |----------|-----------------------------|------------------|# Y9 J  C+ o6 E% L
    | 实现方式    | 函数自调用                        | 循环结构            |
    # ^( d# [+ Q' N% f| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |" c  ]- c: U& G! V. O/ P; L" e9 G  i
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 [1 @0 Z! q. i# ]! N
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    1 Z' S/ d5 F) p; k8 |4 f. [6 G8 \( z- B1 \3 M, v
    经典递归应用场景
    * W" T+ O$ O  s; s3 t1. 文件系统遍历(目录树结构)) j8 R2 `3 W; S3 K* u
    2. 快速排序/归并排序算法
    % j" C$ l* M' ^. B3. 汉诺塔问题4 V; o) B9 R( o# l# ]" {
    4. 二叉树遍历(前序/中序/后序)
    * s& B0 W. L: J( k5. 生成所有可能的组合(回溯算法)
    9 S9 D. H, w+ Q1 w$ a! T- @& z( B& N* g
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    1 小时前
  • 签到天数: 3159 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    8 P* C0 y' T, k8 p我推理机的核心算法应该是二叉树遍历的变种。
    6 [; g& e/ d( I* ~( ~另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    8 V2 K* ~) s. g! p5 OKey Idea of Recursion: T7 E! _" B! n# Z, a9 R; T& y

    3 N' F- Y5 j( L) ~3 OA recursive function solves a problem by:
    3 `. I  K) u2 @! }3 {. t
    8 V( @0 @4 P) s    Breaking the problem into smaller instances of the same problem.
    . L) a4 l, w( u0 ?: N6 J3 u7 V! r# r
        Solving the smallest instance directly (base case).: n- a, p# O6 x/ c/ |5 r( ]

    & H% }5 {" G6 g    Combining the results of smaller instances to solve the larger problem.# O3 O% I8 j" V) Y+ W  X

    # w  f3 q) l; P1 s8 q6 J" dComponents of a Recursive Function4 v- {: y, V& s' H- E
    & `* A: }9 U* p$ {+ e. k7 F
        Base Case:) q! C. G: {! e+ T7 V) o; f
    ) _6 ?, g9 Q; y4 s
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    4 j, G! a9 H, p0 K2 v6 \/ R# T3 C) a( A4 V' J8 r, ^
            It acts as the stopping condition to prevent infinite recursion.2 p, E9 M" M+ o$ i7 L+ t6 L6 O
    7 X3 A. }+ B. S1 i$ H
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    9 I, y: R1 Y. v
    , v1 Y; h3 y1 c& _9 ]  ~    Recursive Case:! F5 ^6 H) P+ i( `6 }1 R$ {4 |3 C
    6 G$ n4 i" r* u/ u) z8 L
            This is where the function calls itself with a smaller or simpler version of the problem.
    ( Q! u3 N) c3 m9 I, _, {$ N; i: i* P1 U5 _8 \$ X; s
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).  _! ~- G3 T% M3 @

    ) p- W. x# v* N  O2 [, ~& rExample: Factorial Calculation7 N: ?. c; V2 x
    5 V' u. R* k  G) i+ c# {8 G
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 F3 D% k( M+ K- ?! O; G. p

    0 A( V9 ^+ z5 a, I    Base case: 0! = 1) D0 H0 }+ e4 t" E1 R

    5 C% H7 o$ v& _* }- U1 H    Recursive case: n! = n * (n-1)!
    / C0 }. Y! S& N* K# {# K+ g5 X+ ^0 K. k6 E2 M2 b( E
    Here’s how it looks in code (Python):
    + W$ }& M* H7 [( z$ w+ Q- T- a3 Spython
    + W; {9 G: G0 w& V- w
    0 h8 z% h% `5 I  ~7 B" F
    2 F* k& Y1 Z0 A# F% Kdef factorial(n):
    $ R+ u! X% d5 f    # Base case/ v2 l# P7 L% Y( w' }& \5 p7 o
        if n == 0:0 r" [. W) O7 v- C7 u
            return 1
    7 M% o9 |. Z1 R8 }: F' E3 v3 t4 ?3 h    # Recursive case
    6 ^7 w1 ^* Q% v3 Z. D    else:8 P( i1 b9 B: L  f/ z
            return n * factorial(n - 1)  f( p6 G4 I, E& T
    5 h  g+ Z! O) n- L3 n
    # Example usage. u1 |. Y8 o, P0 @  c- Y2 K4 K
    print(factorial(5))  # Output: 120* t& T% j8 g: h" w* d6 k6 s
    ( ~' q2 C& p% |2 ?
    How Recursion Works
    " |% h$ Q: P* |7 t8 y; u1 y5 Z2 U1 u# b7 [$ X; ~
        The function keeps calling itself with smaller inputs until it reaches the base case.
    , `0 U& i9 q! F* M5 l! v/ @* P: E9 {
        Once the base case is reached, the function starts returning values back up the call stack.8 F% C: s5 g& \5 E7 B9 ]8 X
    7 N& g3 s' P% S- ]( j) V. i  j
        These returned values are combined to produce the final result.. @1 M, P! Y5 O1 w# s5 I/ l

    0 N2 [& ?" ]0 E, J3 bFor factorial(5):4 ]* ?8 A( H" E7 `, C! ^

    0 M  P0 @, d" {) Z1 q
      f' q) v) e( _; s# g# _* E; a$ {factorial(5) = 5 * factorial(4)
    0 I1 @7 Y6 T# M, E7 E) B8 m5 r3 j" efactorial(4) = 4 * factorial(3)
    , j; `& r+ |7 M& S# bfactorial(3) = 3 * factorial(2)# |+ Q* d* B( ]8 `
    factorial(2) = 2 * factorial(1). s" ~# Z  V$ H0 k: j! ^* g: E
    factorial(1) = 1 * factorial(0)& Q/ v# y, l2 L  \' X+ i' e% {
    factorial(0) = 1  # Base case; i2 c3 j# x" T  j! r

    6 {8 \2 e# P5 }6 F+ D0 c: s2 R' aThen, the results are combined:
    % b' A- Z" ]2 J  j) Z8 C9 r; K5 C( b3 Z
    * J9 Z3 `* p3 C
    factorial(1) = 1 * 1 = 1
    2 k7 s# N- W$ Ofactorial(2) = 2 * 1 = 2; Q2 `3 r1 u( ]% m, m
    factorial(3) = 3 * 2 = 6% J6 L  R  I$ g% Z+ H
    factorial(4) = 4 * 6 = 24
    $ b4 [' P9 d& d$ w2 Bfactorial(5) = 5 * 24 = 120
    ; v# X" U& x6 s8 R' ?  Q
    ! K+ p0 i' q" Z/ `' K$ t" U+ hAdvantages of Recursion+ _1 h1 z3 `6 @  A0 K- M" }

    + k# i4 {; @, m    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)., Y: i7 d! W1 T
    ) j+ P% q& Y  h9 k+ N& Q5 c1 z* k
        Readability: Recursive code can be more readable and concise compared to iterative solutions.! s  p' C) H# b/ t! m3 ~1 m2 P

    , W$ `' t. n" c( ]+ s4 S+ sDisadvantages of Recursion
    5 N. I. c3 l/ A/ L6 I4 W9 L( m, t; V0 L
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.- X5 I3 b2 t5 u( H
    2 H" [1 C1 H; A+ A3 q
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. r5 w5 h9 d0 n( ~

    " Q- s' P" ~6 v5 G0 l2 O  ^6 ^+ [When to Use Recursion+ Z& q8 W& e: V* A) j2 U, B; P

    ( F2 j9 j& q$ g4 U- f    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    , w+ E, E4 v/ M; Z' @/ m' ^6 O( o/ U" b1 F
        Problems with a clear base case and recursive case., x( K2 j6 S- U' e% U

    , c; q0 H2 I1 `8 M/ g. a5 X8 y% jExample: Fibonacci Sequence
    8 b$ G, d, ~- U5 w% Z
    0 E$ E) o( [  _. c/ lThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, [8 ~0 ]  C, R% Y6 ~# V1 V# B* h1 ~3 t' B
    % Q$ A: t* z# h
        Base case: fib(0) = 0, fib(1) = 1
    4 [0 Z) P! t+ J. s
    ; g: E0 f1 S, j# i/ _) z    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    % `3 ?  k1 M2 }6 g3 b' Z% K7 A& `1 q! L" K4 ]
    python
    . X" g% r% a9 q( ^, b" s  S2 @: H

      M: _- a! Q7 l, G( `def fibonacci(n):& F/ l1 j9 z9 G- \1 n
        # Base cases
    , D/ N+ k- U; L2 T$ J    if n == 0:* |: ~/ F& w0 B: D7 ]- y% z
            return 0
    9 F: t) r  o. T+ b/ j; F    elif n == 1:
    6 p. X: U/ O; ~) Z+ ~& T  R$ o/ C- ~- D        return 1$ H. x# M; p( o: ]5 g! X
        # Recursive case
    ) v% m: ?/ {/ m! R, d) n1 A6 p4 N( [    else:
    9 U" ]# ?# U4 t7 c$ b6 u# P5 C        return fibonacci(n - 1) + fibonacci(n - 2)5 Y( ^6 Y5 Z7 ~1 Z1 l
    0 _; S& d0 l  {8 f  g
    # Example usage. I( K* i" |% H  L+ n- e4 |
    print(fibonacci(6))  # Output: 8! T& y% `! i/ p% F* o7 V9 |5 ?3 c4 \

    / A% A% r2 _9 [2 U3 c+ z* I" [* RTail Recursion" ], z# s8 F) L9 Z( d% k

    ' \) p& \8 s! W) k- ^Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ) N5 ?( j6 F, V: ]% y+ K  |0 O, \  n5 K' }# \/ D
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-31 09:20 , Processed in 0.060617 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表