设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1861|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 0 K, V3 `1 F+ ]3 Z7 T; r

    1 B  V* p8 e. H& {6 Z0 W* }解释的不错# O* ]9 ^: B1 U% U9 G8 Z

    $ l' K% n4 g( h  f6 ^递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。1 D& v( o- B$ h7 @/ A
    ; D  S2 Z! M3 B! W
    关键要素
    ( v' U. \6 a4 o. B; @' e4 U1. **基线条件(Base Case)**
    8 w% g# X- C. G$ V" e( M   - 递归终止的条件,防止无限循环
    , S. {6 B2 V9 x/ T$ g2 S& @6 c   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1+ i' U: f! S: t7 f3 B* t. k; J

    " v/ M$ m* _( u# ^2. **递归条件(Recursive Case)**
    ( p) k6 J# A6 Y* N5 @9 S* x   - 将原问题分解为更小的子问题
    " e0 a/ s  W2 z5 @% j7 ]2 r   - 例如:n! = n × (n-1)!
    8 l9 `( V3 V4 k: q$ q
    3 p3 [1 m! ?- o3 e4 A" y9 ~4 n" Y 经典示例:计算阶乘2 R% N3 b8 d. e4 D, V* @1 y0 |
    python! r0 @& A, C% x4 c: c
    def factorial(n):- m2 n2 k9 R- Y4 F# @
        if n == 0:        # 基线条件
    4 i  t# v3 V1 \* \, M# |& B8 ~8 h: N2 o1 C        return 12 M) m9 o4 f, X3 a" @
        else:             # 递归条件
    " r6 D  ^2 ?9 Z, p$ u, W5 R        return n * factorial(n-1)
    2 _9 l. c+ G9 d% s, i5 t1 K( e- H执行过程(以计算 3! 为例):
      ]& _6 a! p( P& w) \8 \' I0 ofactorial(3)
    4 ]5 z4 Z( u! {0 C. g" M3 * factorial(2)3 L2 s; e! I  {0 L$ C4 Z) b2 f
    3 * (2 * factorial(1))0 l: }- r$ n0 R  R0 x
    3 * (2 * (1 * factorial(0))), P: ~" T( f, V9 o* _1 C
    3 * (2 * (1 * 1)) = 6
    , z. z& A7 V6 z- M5 B
    " B: A( x3 Q2 p. M 递归思维要点
    $ l3 u9 Z) G/ L7 C1 z3 W+ ^8 l5 U1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ L1 `2 U. U0 [2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    2 h  w- ]+ O8 W, V2 c1 x9 c7 x7 ^3. **递推过程**:不断向下分解问题(递)
    7 o  T5 y$ D" T! E4. **回溯过程**:组合子问题结果返回(归)
    % V# n! T3 K" |" F# X/ m) B" P' }7 Z% r9 }+ @
    注意事项. {6 t+ s' }2 g- a- b: \
    必须要有终止条件
    5 G* l7 @% ?. `9 W) f0 E/ m: \$ D5 n递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    3 ?9 z1 |7 z: {2 m+ Q- ~某些问题用递归更直观(如树遍历),但效率可能不如迭代
    # w- V) f+ A/ b. v尾递归优化可以提升效率(但Python不支持)3 Q4 H0 G1 E' s  E) c
    ' D6 H- q: m8 [) Q
    递归 vs 迭代8 ~' O* q/ F: _5 f. u  k0 T* ]
    |          | 递归                          | 迭代               |
    & W7 b5 W$ U% L4 j3 _|----------|-----------------------------|------------------|% @& u4 f4 |0 g8 i+ f2 v  |6 l0 g
    | 实现方式    | 函数自调用                        | 循环结构            |
    % M0 o; ^8 T+ s2 P$ @1 Q0 ]| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |* q' s& g- V/ X" I; C7 I
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ! G5 ^  F; z$ y: e5 q6 v" @; P| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |' J) X; W5 ]2 ]/ j. \: C

    6 ?. Q* Z$ b, B! ~ 经典递归应用场景+ q2 {* o  y  g  W* f2 g
    1. 文件系统遍历(目录树结构)
    ! k4 _- r1 j. u) G2 K2. 快速排序/归并排序算法: d& j: a) I) u! p; [: I
    3. 汉诺塔问题
    . b, D& y& }, ^* W! k4. 二叉树遍历(前序/中序/后序)# f' ?% s7 \9 b( @" ?
    5. 生成所有可能的组合(回溯算法)
    ' R( H) [- C9 X1 b- f) d! k) M+ f, K6 M
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    3 天前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    + U+ ]$ W7 s+ `我推理机的核心算法应该是二叉树遍历的变种。) u% G9 e5 M& Y
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ' ]3 S! @2 e1 b0 fKey Idea of Recursion$ {. _, m5 H5 L/ I; y& S
    0 S; {" x. ?: I
    A recursive function solves a problem by:0 l2 ]& r, e9 P7 I2 |4 [. N% v% x
    ) _7 x, [0 Y! h4 N" y
        Breaking the problem into smaller instances of the same problem.
    ( a" _- X/ |2 [
    8 L3 u2 k- F' {2 O9 N: \. f    Solving the smallest instance directly (base case).9 c: a$ Q9 O, e8 S- H: Q% R9 g& V

    * m3 B; u+ F7 V' W/ j" [: X; `    Combining the results of smaller instances to solve the larger problem.
    1 G2 @2 w3 ^" L0 k! H- ?! a! f- A% m! z8 n
    Components of a Recursive Function
    3 F" R+ G- G+ i1 q4 v1 }0 h" }1 z; F4 ~* ?! H. `- l* i
        Base Case:3 M! f: J$ a3 t: `! k" Z
    ! w  o! j# D( w' Z3 I' r& O$ @
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    0 u0 R/ f2 i* ]$ F% v: S; y+ y) G5 e8 O* R
            It acts as the stopping condition to prevent infinite recursion.+ q5 H( O, e  o; @% U4 z
    % x; E; o& \6 b* E" n
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , j, y, ?$ g  m% c  H4 F+ E) b3 }3 s! ~2 o$ o; N6 Z+ m, C
        Recursive Case:4 o0 S& k2 p8 @/ X  G# @. C. F

    & a# T& {, k. B0 {: J        This is where the function calls itself with a smaller or simpler version of the problem.( D, X  c# H2 F# V3 [% P
    ( S$ i1 g' t# b$ ?+ @7 G
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    & O' l! |& e$ e5 B( q3 S# {( E0 S+ r8 B' h# f" J+ A' e8 @
    Example: Factorial Calculation+ v# k3 x/ O; \! |& X0 t, b& E

    5 ~+ |5 p8 x9 LThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:# K- ^8 Y& r$ s

    2 }0 }2 r. G$ Q% v4 l: c  x    Base case: 0! = 10 I# D9 c, S0 l9 U# k

    1 B' q# I2 n- j    Recursive case: n! = n * (n-1)!
    2 l+ W+ Q; F/ l/ r' h/ ?
    " B# W3 a* R5 ]  c# _3 aHere’s how it looks in code (Python):* `, _  }! I4 z. Z& |. {) I. {
    python
    , F  _- ?" e( N7 K" l( d
    3 n! u6 @! t- Z  Z% H' ]6 P6 H: R( f- V& P, l5 C& V
    def factorial(n):
    6 b! |! @* {! z/ C$ T2 H    # Base case
    + }. ?" y6 T* H3 g6 }& n    if n == 0:9 b# x- F8 j- H& L& h, n& f
            return 1- D/ \9 h, v- z& k: b
        # Recursive case& L! Y! ]; d( [+ x/ n9 e. j4 x+ O% W
        else:
    ( m# i; s1 N& m% S        return n * factorial(n - 1)7 T! ~; [- S0 g* v0 n% G

    9 e) y" V& ?' Z# Example usage
    % Q7 L$ s7 t6 r' }/ I# dprint(factorial(5))  # Output: 120" e: X% G: k; ^6 w
    + B/ ?. A6 A. A
    How Recursion Works# h2 _4 a+ u% n" S; Q9 o
    ) ~6 y! d2 \% q8 ~
        The function keeps calling itself with smaller inputs until it reaches the base case.4 b' g- G: \# ~7 N
      g0 ^  W" W7 j; L
        Once the base case is reached, the function starts returning values back up the call stack.. ^" ~9 G2 T# m- q& m
    7 s, N5 X6 D4 N, {9 a* }8 Z, q
        These returned values are combined to produce the final result.
    ! b+ r4 j3 \" z9 l2 T
    ! d! t, w+ o& n/ Q" SFor factorial(5):
    / [; G  H2 ?8 z" w
    1 m5 F. M& a' S! D* ?" [' e" U' Q9 Z. w) i
    factorial(5) = 5 * factorial(4)
    . g, {) l2 V( o( A  R4 y+ k& Ffactorial(4) = 4 * factorial(3)
    $ g0 f% u6 |& {  k, ?3 lfactorial(3) = 3 * factorial(2)
    % h3 ~( S( h) S% {' z8 d) g& t) ufactorial(2) = 2 * factorial(1)
    - D% J+ v4 I$ f; v0 j$ {factorial(1) = 1 * factorial(0)
    ' L/ q+ T* c0 I4 Mfactorial(0) = 1  # Base case2 ~; L& G' V, j, f; r5 {( a

    - g* Z* b5 b4 @8 O& l" |Then, the results are combined:
    2 L# G" o% s+ E3 k
    3 k$ d; Y+ u0 X) F7 h" E; s; t% X* o% D# j; x' A, t* k
    factorial(1) = 1 * 1 = 1, `. h4 u5 \& b+ l* U
    factorial(2) = 2 * 1 = 2
    - n0 h+ e: Y* u8 w* `9 c: Lfactorial(3) = 3 * 2 = 6
    & I& t( Z: k+ |6 Wfactorial(4) = 4 * 6 = 244 y. P, h5 V  A% V
    factorial(5) = 5 * 24 = 120
    , r/ W# F8 _2 N: f5 y7 Q: R) Z
    % {! s2 H, o4 O* ]* x, H: kAdvantages of Recursion* J  x: ], j( g6 {$ n/ b# T5 L' M
    , V. W4 ^' u/ j3 n# \: u
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ; O9 s- a# `' ], {" T
    " m& I$ K+ H3 E* q    Readability: Recursive code can be more readable and concise compared to iterative solutions.! N$ x$ ^! H5 j# y+ r' ]

    + K$ \/ J7 B. O9 a" ^2 H3 W' _Disadvantages of Recursion1 S+ b% A9 ~+ ?' [. }( [9 T
    " l* E- S0 S7 k& O! n
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 |6 H+ n. u$ m1 e4 L( d* J" k5 D! C( I; P% n' q% N! Y( q& n" U
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).) a) e# P% ~0 h2 f

    ' q& _% j4 z9 K! I% }When to Use Recursion; |  c- O+ p. L6 G  S
    , Q0 [/ R* l  ]( [. \
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! [' x4 ~. H$ W  u" U
    9 v: F) a' E  P* D    Problems with a clear base case and recursive case.
    ' f0 [0 K4 Q8 l7 F3 I
    0 \1 h+ Y' M# b# @; u/ m& r! ]+ aExample: Fibonacci Sequence
    7 Z& @% _" W: [- d/ v
    : ?( A' ]5 {2 T  n5 [The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    8 w+ M8 {" }% L
    3 I7 l; H) E  u, ?  W/ Q    Base case: fib(0) = 0, fib(1) = 1/ t. R/ D+ S1 S& _1 G0 Q

    ( i  }1 O. p" c+ J    Recursive case: fib(n) = fib(n-1) + fib(n-2)- }) I4 C- X1 l% A" d& u
    5 V( f  I* E; d3 {3 r3 a
    python+ O, @  L6 Q& o8 ^( x! y
    & N; c- Y* z/ l$ A3 v  w; _

    1 H. ?0 q) U: ~4 F0 l, E; }8 cdef fibonacci(n):3 T% z, a5 B& n0 v0 o
        # Base cases
    8 V6 L. c+ w! [; z    if n == 0:
    + C6 h. Y% [3 D2 V4 c* ]  ~        return 0
    3 G6 f$ @4 f9 B2 {0 E    elif n == 1:3 X2 H$ B! s1 @2 S
            return 1
    0 Y2 t  T1 Y0 k$ U/ p9 j+ l    # Recursive case
    ' h. K/ S5 D) J$ j: R( B    else:
    * U1 W8 B4 [3 A' R        return fibonacci(n - 1) + fibonacci(n - 2)
    ; M# f) R  ?6 m$ H8 {/ T% W" O( |
      [& N, e6 v7 j/ [# Example usage, L" o$ s* w$ K; p) M9 M$ f1 Z5 r1 H' I
    print(fibonacci(6))  # Output: 8" d* e: L/ Y+ E6 K  P% H' J

    " Q" C$ s$ V+ c2 J- o1 ]Tail Recursion* e( c$ C' c$ U8 d( t/ v% A7 U: u. D  v

    0 s$ f1 s; Y2 L9 ?6 `Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    . \, \4 ]- ?( q3 A# Y# d( \- b7 Y; F
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-17 03:40 , Processed in 0.035413 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表