设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1911|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' P1 J1 r% t3 D6 s% @* V

    + J# ]2 a( `+ L# f解释的不错
    7 F- J( @0 n) E) \; e
    % C, i# W  Z6 v& }递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ; c) P) Z0 r+ j& w- I9 R! E  e! k$ ^, \
    关键要素
    ; R# f4 e6 l$ f6 l4 @1. **基线条件(Base Case)**" @! j- S) C4 g! q
       - 递归终止的条件,防止无限循环) n* }" a( w7 d' S9 b: }0 f
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    % M, o' C$ e2 C' v) j- i, n9 G  F; \" {) P+ C* W" k& J
    2. **递归条件(Recursive Case)**: i7 v/ K7 ^  i/ V
       - 将原问题分解为更小的子问题
    1 ]9 l2 D" h5 c8 p   - 例如:n! = n × (n-1)!  q) Z" e$ a9 g. U! Z9 k) m$ Z
    ( j: o' K2 S- o0 d
    经典示例:计算阶乘
    & Z1 I2 k$ y" h5 z* {python
    + w' s2 P7 a+ kdef factorial(n):
    " }9 L" W) x! ]" _% o5 G3 p    if n == 0:        # 基线条件8 J( ]2 ], n, e6 l9 N
            return 1
    ; N& \& m+ m# p# h$ z: h, h    else:             # 递归条件
    ' T+ X' ~. ]# q8 x8 ?% `        return n * factorial(n-1)' n& X5 j5 P* z7 a9 v) t: Q
    执行过程(以计算 3! 为例):
    # ?  M: E2 w" h5 p  v- G6 w1 Cfactorial(3)' ?3 b1 n6 o* X1 J1 M' \
    3 * factorial(2)* t! ]6 Q) x' p! W7 i# ?
    3 * (2 * factorial(1))
    5 k- m. j" [9 W0 T1 U6 r3 * (2 * (1 * factorial(0)))
    3 P  M' K; {, \) P) I3 * (2 * (1 * 1)) = 68 e/ U' T% a) |. o5 E

    1 [, {) Y6 Q4 `. B  u' d: {$ p6 X 递归思维要点
    7 `, d( x; w* i% N1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    0 m  }& s4 S. I+ G; e2. **栈结构**:每次调用都会创建新的栈帧(内存空间)2 s7 g7 o' R/ |* k0 a& n/ Q8 N
    3. **递推过程**:不断向下分解问题(递)$ @) W9 i2 k7 M" g- u$ T; |: _
    4. **回溯过程**:组合子问题结果返回(归)
    ( k( D7 V9 [- x9 n9 N' P; i$ n9 ?; y
    注意事项; e: J! K7 t  F* X$ U) S5 m: R
    必须要有终止条件2 x9 v4 _; h+ y  S
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)/ g5 w1 {" H; q# |! N1 L
    某些问题用递归更直观(如树遍历),但效率可能不如迭代6 p! }8 \, ]/ w( O
    尾递归优化可以提升效率(但Python不支持)
    % }1 ?8 Y7 l/ [8 [: ?' M; B) g' F) {" u& Y8 |
    递归 vs 迭代
    $ B. X9 C( @- B|          | 递归                          | 迭代               |$ c9 F* T. `4 R
    |----------|-----------------------------|------------------|$ e5 X* M5 d# c0 z
    | 实现方式    | 函数自调用                        | 循环结构            |# {0 Z& O, }- N# u
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |: c6 [2 h) v8 n# X3 y. Q7 s) E0 @
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    . N6 s7 x1 a/ n$ T  z, j| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; E5 x/ P2 d8 k/ `  @
    7 l0 Y6 m. r9 ^) c/ l* ` 经典递归应用场景
    2 H1 n7 y- g2 X0 k1. 文件系统遍历(目录树结构)2 {& `& s5 H/ g$ `! S; V. l" d
    2. 快速排序/归并排序算法
    5 O) U% ?: {: O2 d1 G( X  i3. 汉诺塔问题! q: E" w+ t  E$ S  Y
    4. 二叉树遍历(前序/中序/后序). F4 [' q% G! O( z
    5. 生成所有可能的组合(回溯算法)
    $ C9 u" j4 b7 d7 W$ x8 E* a' c$ v, Q; Y4 d: T; }( q
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    前天 07:11
  • 签到天数: 3150 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ! W2 m/ X' w! W" R4 y5 x我推理机的核心算法应该是二叉树遍历的变种。
    - Y  c# C( e) Z. O* `  w另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:+ j  ^. _% H1 p$ S! n1 r
    Key Idea of Recursion  X/ g+ {1 W& i9 Z$ b) W* L+ V
    0 ]3 F- ]3 ~: e( W+ q4 }
    A recursive function solves a problem by:, E2 U+ B: i0 w9 a* Y4 W
    7 y/ S2 N* Y% ?3 X; l1 @) b/ t
        Breaking the problem into smaller instances of the same problem.1 q' H! L* F# E2 Z
    9 p6 U5 ~9 q1 Y5 Z/ @& N
        Solving the smallest instance directly (base case).
    * J% v& V" u* S( w- H5 h# M8 u% @1 A+ c% I. Q8 B+ @; e" e
        Combining the results of smaller instances to solve the larger problem.
    7 F" j. c. Z* G' G* E+ t: C. Z4 J5 z8 ^% L% a; H9 _' I* w0 _/ J1 S6 y
    Components of a Recursive Function: W& i& C1 g- T$ v

    / E/ Q, R( @. X$ \# m( {' o    Base Case:0 M; p7 T3 [9 q- W/ U

    $ w9 I0 s( k" X+ ?! b1 p$ y        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.4 c$ }; x) U$ u; Y% W# T8 M

    " o) V8 f, d8 i5 l' B        It acts as the stopping condition to prevent infinite recursion.! a/ h5 O- x6 K

    # |, c3 ~) s5 C$ x9 d; u$ \        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % a+ U8 p; L  ~6 c  _- X; G) L- U9 j8 B- K& v* \( C1 _- r
        Recursive Case:
    / s" _, w1 C# [$ o9 Q" V
    % ?# e0 s4 h1 t1 G, g        This is where the function calls itself with a smaller or simpler version of the problem.! J$ P8 w% t7 |) p

    : z5 t5 o+ |* G$ d3 V        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    % i7 \8 w, L! \) g0 m7 t, _4 \
    / ]% E* m! N% P3 VExample: Factorial Calculation6 [& o7 Z  V9 F( _, E
    - E/ b% q0 {9 f  }" X
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" Z# E0 o! E1 k' r* b5 n& P; t

    " Y1 x# t& Y* B; c- ^' Q" i1 _% I$ P    Base case: 0! = 1( ?9 P4 j6 s: F  A& l6 j
    ) a9 P  R+ |. Z4 O. g1 q
        Recursive case: n! = n * (n-1)!) n- Y; `7 ?  a, f) z

    / B5 u6 x$ B5 MHere’s how it looks in code (Python):
    ' ?4 ?  t$ K& P( Bpython- C  m* T& E! B; A+ y
    2 _$ W* ]0 _3 \7 x0 ^

    0 X9 a) U+ Z# L. [, Xdef factorial(n):1 t3 X9 r' R/ B8 s
        # Base case* U2 L# k) E4 b; B! o
        if n == 0:" {5 j$ J8 i$ f5 E$ j& k: A
            return 1
    ! b4 B  J  U7 ]  V% ]8 ~    # Recursive case0 A3 r; }; o; w4 t  \- _# z/ n
        else:" x2 }) p1 [1 q4 g7 C9 V7 u
            return n * factorial(n - 1)
    5 g# W* f2 \) u# \2 w) X6 e; u5 G3 }! O: Z+ v
    # Example usage+ ~* A% ]6 b8 p! D( w4 N0 f
    print(factorial(5))  # Output: 120
    0 K# j) U" `  n. {% o
    - L. ], d, u4 h  y6 _% y- iHow Recursion Works% S0 D& Y( r5 ]: h
    7 K) c, b5 ]! G7 {1 N$ f( A& ^( x
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ) L4 o/ Q, v+ O0 T: {0 n! N3 G$ }0 O& B" Z
        Once the base case is reached, the function starts returning values back up the call stack.
    & \+ Z% F4 H* ^5 c3 I4 a  I0 X( U! A: \+ K( ~" B9 T2 B2 s
        These returned values are combined to produce the final result." F+ G4 o& A. ]5 f

    9 I. j: W. b7 }& }3 j! U# OFor factorial(5):
    1 Z* G2 x( |( O" G! C
    9 H5 h% {2 e, _9 N  F% G1 M! \
    % Y4 p: T6 l: h! u7 F% B4 wfactorial(5) = 5 * factorial(4)
    " _) @- C- [( q0 T7 ^factorial(4) = 4 * factorial(3)  h- e( S# Y4 e/ y7 I! `
    factorial(3) = 3 * factorial(2)
    + v( g* Y& A# ^1 Q; H- Ifactorial(2) = 2 * factorial(1)
    7 b" V# q( k# H- u. g# wfactorial(1) = 1 * factorial(0)' s, |& \3 `8 M! q& b0 o. v
    factorial(0) = 1  # Base case
    0 c2 v  i! x7 d: W! }6 V( ?. q3 P) T# g* h9 F
    Then, the results are combined:7 n% p; N( a4 Q5 I: n

    1 C2 s5 F% m& ^/ k# B! j/ [5 H
    , O; a; p0 Q7 ^' s* S& m1 l0 Cfactorial(1) = 1 * 1 = 1+ S" l; Q* h1 s
    factorial(2) = 2 * 1 = 2$ K! `) B+ e* r! t. l+ F$ \
    factorial(3) = 3 * 2 = 6
    * w6 G+ h* l$ Y8 Xfactorial(4) = 4 * 6 = 24" \! K, o' B; n6 h" s9 D( \9 g, r
    factorial(5) = 5 * 24 = 120
    4 P: _" b0 ~) H- p* @8 l+ Q) u9 L$ v/ D/ ?- j- p+ J0 v2 N
    Advantages of Recursion; i2 [- Z, U7 Y+ \3 H6 `# e2 A& c

    5 m1 w( h* X- i    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ r1 T: @6 \" B4 ~8 F
    ! w& w3 e$ S7 ^) {/ e
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 V7 T, Q+ q- z/ g4 w* ~' ^
    ( s9 I% R* j- Z8 V. EDisadvantages of Recursion
    - |0 b1 b* J4 [6 [" D8 w% A+ y, P) u& N; X
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! q+ v- p& V* ]4 ^8 }" Z
    # M9 O% B! j& f, a5 _8 t: F# B
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).7 q5 n  \) Y; G0 i6 E
    5 A% F$ a$ e% T
    When to Use Recursion5 o4 U( l' X- s" T

    $ f  A) W; j. ]  X# _- [5 Q    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    * Z/ C4 d/ M- G3 W' s- Q4 R0 }" X( C5 P
        Problems with a clear base case and recursive case.
    ; a+ M' m6 B  {4 S: R( D) t- P1 G
    8 p* i% t/ @: M- E. o( ?Example: Fibonacci Sequence
    9 l! D% _' p0 `' f# W
    ) b0 w$ d3 i! H6 t9 a& j4 YThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:7 U( [' ?4 ]2 d7 B2 F* r, X& A
    ( L, b) n8 i* W3 v
        Base case: fib(0) = 0, fib(1) = 16 o+ U- p& {' Y, O( B

    2 {/ k. b- s6 c) ~7 B; ^    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    3 r: Z; D$ I: U: ]4 V% Q; j- N) `8 a; j1 I) a9 A% x& k
    python5 i  q* M3 |( I
    8 t+ e: N3 N; E4 _1 @

    ' u9 a  J! f8 ^" l5 l1 X& Idef fibonacci(n):. ^1 a) ^1 b* `5 L
        # Base cases
    8 i2 i2 t; _" |* A& P5 Y    if n == 0:4 p. a( Z* ~. k" W1 t, Y
            return 0
    4 ]+ G/ s1 b, V6 A6 f. s0 r; |3 L    elif n == 1:
    # @/ V  @5 r& [9 A( x        return 1
    5 @+ G3 I8 C% h    # Recursive case" f1 d( J7 t% z( e& B; e& O8 o( {
        else:$ Q6 O% V1 g7 f
            return fibonacci(n - 1) + fibonacci(n - 2)4 W5 j5 x0 w0 z+ L( l0 Q. }2 k
      h& c. e3 e6 F! e# s
    # Example usage3 [6 H; O/ e. z$ o' x1 r* s5 G
    print(fibonacci(6))  # Output: 8
    1 Z3 ^% S3 P' r+ k: N9 M2 b6 ^" z" T: f! g. v- U* k0 W
    Tail Recursion5 p* d; k+ c: D: e  E$ W! I
    * x8 o5 O! G* I% e4 e! z* G
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).5 `1 Z" b; q8 K9 O( l2 M1 R8 \3 x$ F

    0 f9 }6 W$ G) _2 p* d) v! B  J6 QIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-22 03:58 , Processed in 0.059612 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表