设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1306|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 / J! c2 n9 Q% e8 y( A# \, f
    & q3 o& Z9 m( j6 i
    解释的不错
      J6 P( c" H: V+ ?# e9 [0 i& i' ~/ |( s1 ]; w/ ^7 @/ ]' {6 q
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - u7 o* f! z! ?
    # o" {5 v0 X- [ 关键要素
    0 d4 C, S/ ^& I. u2 F1. **基线条件(Base Case)**& y* P, C# H. ~9 x/ w# O
       - 递归终止的条件,防止无限循环
    : T- Y3 s. r* Q- |4 m3 b   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    & a0 W& G+ O* C" Z2 Q5 f5 {& \- Y8 j1 w  x2 A# ]4 [+ |( l
    2. **递归条件(Recursive Case)**
    ) d9 V2 Y9 s0 `3 ~   - 将原问题分解为更小的子问题' X" T3 N  k; t& n
       - 例如:n! = n × (n-1)!; _, O6 @& K2 z/ ~, ?

    # D8 Z" X$ P" r 经典示例:计算阶乘% _2 o  K7 u) w1 p2 t. M
    python8 ~) z6 s8 j' p6 A5 z% D
    def factorial(n):# O4 ~9 p# G7 j; U
        if n == 0:        # 基线条件& E% @2 x! `5 A+ f( r. ^
            return 10 X7 r& E$ V* B2 T# F- z6 {. R
        else:             # 递归条件
    ) u: [6 Z2 j' u, B- x$ C( ~        return n * factorial(n-1)
    1 L4 h! y7 k0 ~$ c执行过程(以计算 3! 为例):( Q% o! C' ]* ^* @: f
    factorial(3)* `" R- B+ C, ?$ s7 f2 h
    3 * factorial(2)
    ' {5 Y- L5 j# s  S: o  A3 * (2 * factorial(1))
    ! o3 o: u7 M; W. l# N# G2 l3 * (2 * (1 * factorial(0)))) g, N8 h( q- c
    3 * (2 * (1 * 1)) = 6( ?. C1 k, ]: F" K* {7 ]' s

    7 u" h7 k1 \: a, i4 G 递归思维要点) U) p" |1 V9 D  ]& |+ C
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑/ V$ s- w+ _, r( F" z1 w, z- r3 p
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    8 Y  _. A, v0 B5 G3. **递推过程**:不断向下分解问题(递)
    0 ^7 X; [+ E2 W- |+ }4. **回溯过程**:组合子问题结果返回(归)
    , e) h- ?; \5 {' r1 G/ U
    / a) g' `( J! N8 S( ?3 a) R 注意事项% C9 t9 M; Q  l
    必须要有终止条件, c: b& l) g1 R# k1 c6 b3 `2 N
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层). G! j  h$ b* ~8 @. _0 \4 ~8 ~' J3 [
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . l2 T  M( h6 n" @& d9 J5 `- ~0 X- Q5 A# f尾递归优化可以提升效率(但Python不支持)
    ' B6 P* l# u! b9 F% F, x  b
    ( P: D! i* N2 Q$ K0 ^ 递归 vs 迭代/ |1 I; M" _* f0 j) G
    |          | 递归                          | 迭代               |
    * M7 u$ ~9 g9 I+ l4 V* p|----------|-----------------------------|------------------|
    % X& ~6 [( `6 ^7 }| 实现方式    | 函数自调用                        | 循环结构            |% E% N% H) {5 t$ }  J" J& W
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! D* f( l- u4 x  y$ N: M/ X) K
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: o+ x4 Z1 j/ d& z' m* C( s7 f
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ( A+ c% E/ C' h2 N6 T
    ) X' X# ]  i* ?: Y 经典递归应用场景
    9 U; }% x$ f) J: r1. 文件系统遍历(目录树结构)- Y; B) _! g) D) I0 l
    2. 快速排序/归并排序算法
    . Z1 L, F" l7 `: j+ `" K3. 汉诺塔问题9 T5 q: l$ z& v& c- P. X; ?
    4. 二叉树遍历(前序/中序/后序)
    5 P& g9 a) _3 y' b' E9 o5. 生成所有可能的组合(回溯算法)& ^' Q, h3 r& {+ P
    + O6 v, O( @% J
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    半小时前
  • 签到天数: 3107 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,- \4 h' z( W6 {. \. [
    我推理机的核心算法应该是二叉树遍历的变种。
    : U1 T6 x, S8 v3 a$ I! d另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:4 x& n5 D% Y; v8 w5 |* D1 T- x
    Key Idea of Recursion( Q0 g' }5 O: o. E/ H: C
    $ U6 @. t7 u3 ~# j% `! {4 J
    A recursive function solves a problem by:
    4 I* O6 B/ T, g0 K% X2 A% b7 w% k7 V5 h) E, d) L
        Breaking the problem into smaller instances of the same problem.
    . k5 g  R$ R, l3 |- v8 c5 b, r! U# e( e5 s! f3 b
        Solving the smallest instance directly (base case).
    + [$ V' K7 {! F9 \7 B& P$ \9 @" ~1 u, N: L: l
        Combining the results of smaller instances to solve the larger problem.1 t# G. J$ e  L$ ?8 Z

    " m& ~: F* E  KComponents of a Recursive Function; g9 M0 q( Z0 \4 T+ k, [5 |# v  X: X0 g
    4 ]2 p( ]4 ]* q
        Base Case:, e' c' e0 z) n* @3 q7 i+ a

    8 K  C; p2 w1 n        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.) c9 T% g; g  [! e

    ) C: {0 B( A$ ^+ \& o  Y        It acts as the stopping condition to prevent infinite recursion.$ \- i( z* Q& \* R  d1 p* i9 n
    7 Y! B4 L9 I. O/ w* v; N
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : n; A5 z0 o, G5 h$ j1 H6 N$ k, S* O4 I& W  f
        Recursive Case:
    ' {2 q( U& |% {' @
    * x% {+ m2 L4 A5 h+ Z        This is where the function calls itself with a smaller or simpler version of the problem.
    $ x  \/ f  m7 `. Y9 j/ B8 Q
    2 p: W- c; b. j) b        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    . ^& m$ U: V1 i$ q7 J" ?6 [
    0 v# W( X- @6 ?( z% g0 w3 v2 pExample: Factorial Calculation
    ( p+ {  T  p$ i4 U
    1 C: T" h$ G: dThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:' z3 L; }3 r% z; J
    : P; Z) f5 s2 a& Y, c# _: k
        Base case: 0! = 1
    ! L3 O* l' I8 g5 l2 G# u# q0 `
    * c1 R" h! _( k/ I    Recursive case: n! = n * (n-1)!- z& e$ B2 q7 u) g

    ) a2 Z' I6 r3 V1 tHere’s how it looks in code (Python):; b6 W  V4 r* c2 ?. h2 v
    python) w& e. m; d2 {+ u2 t0 [, D  y8 V

    ! [2 M/ ~  ?9 J5 k- ^1 i6 x: S, A* m4 H4 f! ^2 N
    def factorial(n):
    * [2 H8 y. |9 p& e    # Base case' l4 N' C5 j- h9 G. b) r% E
        if n == 0:) K3 D- ^( E4 o+ M9 \; T& x6 W/ J! @
            return 13 o5 K6 e9 ~/ [' I1 B
        # Recursive case
    ( j7 s) O4 C* k; l6 S) X+ N    else:
    ' ~& M+ @# w' J; }/ a" M5 d        return n * factorial(n - 1)
    / ?5 Q" z; A% x. R* k3 d/ t! n9 K9 `& Z
    # Example usage! W9 e9 g! q' P1 v; g; ^
    print(factorial(5))  # Output: 120
    ! X8 s4 I7 i! D* I+ ^8 m! f  o4 b, k8 T* W4 ?8 S
    How Recursion Works
    3 i  Y* h& ~& h
    9 K% n; }0 D/ j0 k5 Z. K    The function keeps calling itself with smaller inputs until it reaches the base case.
    ; o# F* V" Y3 Z/ x, F
    ) G; n$ ?; I1 t0 r2 q0 H    Once the base case is reached, the function starts returning values back up the call stack.8 \, H; X! ]. Q( e$ G' L- t

    2 j1 v0 o4 D- Y. |$ B# q7 _    These returned values are combined to produce the final result.
    ( j, C  E2 ~' p  ?" F
    - S4 D) ?4 X9 n+ t8 KFor factorial(5):
    ' {6 O7 E' T' P7 u! y
    ; k" z8 W) d6 ^0 T# J9 t5 ^; [# T& r! ~
    - j; m) o7 A% c  {5 n. ]% O. _" V% Tfactorial(5) = 5 * factorial(4)
    2 T; k" X* i" T1 A7 }! p- \5 F# lfactorial(4) = 4 * factorial(3)8 S. m) N$ {" k; U' ?
    factorial(3) = 3 * factorial(2)4 d6 q& I7 Z9 g, m6 `
    factorial(2) = 2 * factorial(1)
    - _% N# H; h1 t8 O8 G  kfactorial(1) = 1 * factorial(0), {1 }$ O8 d/ g! I, a. }0 ^8 j2 a$ M
    factorial(0) = 1  # Base case8 C, b$ e6 p9 ]* e6 v4 @+ T
    # f8 w: ?  ]. i0 [6 e- I
    Then, the results are combined:7 Y, O3 p' x  A0 u) c' }3 A

    % I/ p7 a( J& m) z) b8 K' a2 i" \0 [' B/ R2 s2 P
    factorial(1) = 1 * 1 = 1& z8 p$ ]& V$ H2 P5 B) ~8 d; q* d
    factorial(2) = 2 * 1 = 2
    # G( K6 b* }, O# d- xfactorial(3) = 3 * 2 = 6
    0 d) t' H! T9 c) efactorial(4) = 4 * 6 = 24" O  A( T+ g8 ^0 p2 P
    factorial(5) = 5 * 24 = 120
    , V& h+ L0 C" ~) y8 B* S0 x) \' g# {4 D% b: i; X, W
    Advantages of Recursion
    7 M; C  ?  g& y3 L6 {) I2 e& a7 d' c9 }7 Z( F/ R* K3 ?# i1 [9 [
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).* V; w0 ^( K. y

    7 s4 T6 q6 f7 o2 I8 k' c1 B    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    * h: v9 k3 t. W! U  r, X) e: }
    ) Z; c2 \& h2 A; kDisadvantages of Recursion
    : b% [1 E' y* L" b( p- D% W7 J6 g$ `
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.. h4 N  N+ I  W' ~$ x# _. x

    $ P* _5 h% `$ B0 W/ L4 ]2 H& X    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* p: F: `. U. l9 A$ j

    $ p0 B; g' K' \6 C% HWhen to Use Recursion9 `' t- u+ N; x6 p9 u5 c
    . Y% ~4 B) K# W. s
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ) c0 f7 ~. r0 o1 P
    ( F% |8 D7 ^" @2 v$ r% z    Problems with a clear base case and recursive case.. b1 g# e) D+ K' q6 Z

    " Q8 Y8 |6 Y, ?, {0 |Example: Fibonacci Sequence3 S$ W* f$ n6 {" @1 M6 _* V2 N# d

      ^- W  ~- Q  w+ WThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:4 H8 m# j" \& ?$ l5 a; _

    0 h: p- e" X1 b1 f7 P+ S" `  P    Base case: fib(0) = 0, fib(1) = 1
    2 b3 L7 \5 k/ H4 P3 ]& ?3 l. [6 n/ o% Y
        Recursive case: fib(n) = fib(n-1) + fib(n-2), f$ k1 V2 l: X& A
    2 p4 w1 w# c( e- k
    python2 s" d' t. q1 V( R! U1 }

    8 I* t8 @1 b3 a9 O8 h; h0 W
    9 U! t6 j" O9 C5 [def fibonacci(n):% {# d# w; W! D. Q9 d# f
        # Base cases
    ; K4 m. O0 R  K5 `' h    if n == 0:( T1 E$ R1 R0 I# z1 s' D8 s: Q
            return 04 h& b1 s& P' P
        elif n == 1:+ U) a3 [) [" t; p" |
            return 1# e1 L+ r5 K3 I1 f
        # Recursive case2 L. W8 u+ X) C  R4 k) x
        else:: A; c9 i# N# w8 V5 K1 ]
            return fibonacci(n - 1) + fibonacci(n - 2)% B; {& |5 C' q5 n6 {. h

    1 l) g0 y7 z1 ?: Y; h# Example usage
    4 o' P* D( a! ]$ h- q6 {print(fibonacci(6))  # Output: 8+ ^$ C# X  K0 A- K* j- Y
    + k8 C( }; Z# Y1 m8 e7 {
    Tail Recursion4 t" q. `- |1 I0 d% M- r

    ' ^. |8 L# u- M0 }8 ATail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. G6 V8 V; ?$ Z2 _6 L) \
    $ ~1 ]4 t* D5 V0 P$ B' M/ e$ ^& }
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-3 13:04 , Processed in 0.031071 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表