设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1941|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 9 ~$ t7 M4 [. w3 e
    : e! g+ F* ^( W" k! ~; p
    解释的不错, h% |; n' L# O2 e

    . C5 `1 B0 q# f5 Y; ]递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。3 v* ]4 o9 }# x) b1 F' O

    " u/ t3 H  Y/ f- t7 V 关键要素- B( s$ ?: _2 l& ]! D2 T1 ]8 t
    1. **基线条件(Base Case)**
    1 g8 v1 S! ?- J  N/ j: \" ]4 g   - 递归终止的条件,防止无限循环4 a2 z" u' x/ n# T2 R" u
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " l6 k$ o" j( Y, o9 J" m# }% Z* i6 W/ b) K/ y4 p9 V7 z1 R+ s5 P0 x9 i
    2. **递归条件(Recursive Case)**( e- b6 e% f: X* I  s( l
       - 将原问题分解为更小的子问题
    8 q7 `0 \: g9 W; l8 z4 ~: u- e8 Q   - 例如:n! = n × (n-1)!
    7 g- Q. S) [3 Q1 c  i6 P. B! X7 a- _/ k2 I& L; d1 i8 C1 ]
    经典示例:计算阶乘
    ( }; K+ h! \' O7 j9 H* b* U' y7 Lpython) q3 j/ h) @3 J! s, _
    def factorial(n):
    % v. x* f, M+ u' o' z& ^    if n == 0:        # 基线条件" a( U; J3 ]% H5 M
            return 1
    9 u) w# ]4 G& A+ H( R% J    else:             # 递归条件1 l: v. L' B& i. `+ z7 E
            return n * factorial(n-1)
    / l( C4 z+ f2 Z5 G# r1 R执行过程(以计算 3! 为例):& _% q9 U9 K: k2 e/ ~) ]" l
    factorial(3)
    ) l3 R2 Q9 {7 C" y/ E. |3 * factorial(2)
    ' m) K- |# q+ T) G5 J! g3 * (2 * factorial(1)), J" K# ]3 T3 d' ^6 A8 u# @2 \
    3 * (2 * (1 * factorial(0)))
    1 b$ s/ P9 Z& b* F. B6 e3 * (2 * (1 * 1)) = 6
    * I8 c6 W2 {7 i0 H5 m+ X- G, n
    3 C( C2 q. ?, X! s% o 递归思维要点
    ( }2 h) }3 U# ~. C# m1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 W6 Z' @" b4 V5 F: c/ [
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ! N5 x2 F( E5 |9 m3. **递推过程**:不断向下分解问题(递)
    " h$ W8 B. w/ k! R4. **回溯过程**:组合子问题结果返回(归)- l0 `. V) Q5 c  x( B; [: H" F6 D

    - _/ t$ t* @7 j. ~8 I/ `: V& } 注意事项
    % ?- F- H7 ]# p% S- \必须要有终止条件
    0 a4 l3 Y! f5 \- ?8 H9 L递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    5 m0 \" _# ^8 t2 k6 D某些问题用递归更直观(如树遍历),但效率可能不如迭代
    0 F2 d5 z/ M1 R% d+ |/ {: N尾递归优化可以提升效率(但Python不支持)
    5 r9 @- w! Q; ]; ~) }6 v2 p
    ) Y# h5 U- W/ u) t 递归 vs 迭代
    2 J* \/ Q7 ]) J# m; {% e|          | 递归                          | 迭代               |
    ' `- {8 Z9 g5 e& c+ c6 l|----------|-----------------------------|------------------|1 j" f, D- [& u
    | 实现方式    | 函数自调用                        | 循环结构            |
    & N0 @& g" G$ l& o' u6 B( M  O| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    & |) ~' u1 \. |/ t; h/ D| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    # a5 Q& r! G+ z| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ' g! L/ b8 v6 L, z( A# x
    9 x0 B. K  I+ h% B3 ~! s  B# M 经典递归应用场景
    ; {; }) w7 v% `2 M: d& y) D1. 文件系统遍历(目录树结构)
    - I) z& ~* ]* }7 X8 E2. 快速排序/归并排序算法1 M* Z& {% b0 E, o. c
    3. 汉诺塔问题
    ! ?) c6 U" c" [3 D4. 二叉树遍历(前序/中序/后序)
    ' N9 g( T$ u1 D$ H5. 生成所有可能的组合(回溯算法)) z7 ^3 B) Z, V  `) t6 h  U

    & [# q6 G7 Z  c) u! W; m( o: d: h4 B9 |试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    8 小时前
  • 签到天数: 3153 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    # F8 t& e5 e8 x( L1 L: j( f6 F我推理机的核心算法应该是二叉树遍历的变种。
    $ }+ F8 Q& C7 n) G& f: `$ B另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    5 a- K4 \( n; D: @6 H* TKey Idea of Recursion
    1 x" j" x9 C. n8 d& G) X. E' I- P  C) c2 h6 t& _; B4 f& @
    A recursive function solves a problem by:! U& Z3 |7 w8 {$ ?- T# i5 c

    5 t0 M( l, D' x7 d; G( _: a    Breaking the problem into smaller instances of the same problem.. @- ~& X+ \. I
    ( y, q# f) L2 O: O  W" z& d
        Solving the smallest instance directly (base case).
    $ d  C7 a5 y% o- v& ^
    9 J, d& p: U# U$ y: Q, J/ ^    Combining the results of smaller instances to solve the larger problem.+ x5 k% u" N# a, e
    9 y7 n( R" _! V! }% p2 i. x& m
    Components of a Recursive Function# y( c: P( M7 o

    " q) o# J5 p7 E; e& _! K2 M    Base Case:0 J' t6 ?' Y3 m+ K3 }9 N# R' t

    ' }+ d; r2 v2 S: m  z9 B        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ! I: N8 @. f0 ?6 K2 `3 R. l2 Q9 e7 }! b; k# S
            It acts as the stopping condition to prevent infinite recursion.
    ( C4 z) r# _- c) A! D$ z8 V& _3 h5 y+ S& j- T
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    5 [) ~7 ^( Y* H) Z; G, T4 G# E+ m% S: `9 \2 V' ~  _  X# V
        Recursive Case:
    . N* ?* y; ]! j+ W! t2 c  |* b
    ; u- P$ \/ l6 E' b! p1 v$ F) e        This is where the function calls itself with a smaller or simpler version of the problem.9 e2 \& k, m" b0 C, ?/ [0 y/ w9 n0 S

    7 t, |' v/ J( D9 q* b, v+ |        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).- m! i# j) Q% J# E) O* ^$ x
    + U/ S# o% M2 d! Z- U4 e+ ^7 b$ t
    Example: Factorial Calculation9 M$ H3 [- ?& I. a/ T- f
    & x- d; g+ w6 |3 g9 G! @
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" I2 f7 G1 k  k4 i

    ! ?- C- H, P0 t    Base case: 0! = 1! M4 D- Q3 |" ^3 [
    : x6 M! {7 Y$ |
        Recursive case: n! = n * (n-1)!" |. ]0 G4 R- |" b6 ~  }+ b

      q- x$ H. K! H* b7 D& N" OHere’s how it looks in code (Python):
    4 m/ b; s% G; o* `1 E1 @python
    : ^. e/ h! J2 |# K& m, [) W1 p  j) W/ l. k
    . N0 a4 U( h/ K6 {" l
    def factorial(n):
    1 W5 |# R* c' N0 t0 G5 `4 _    # Base case2 I0 g- g% ~+ p
        if n == 0:0 c" E  }5 H3 H9 e
            return 12 t! [% f7 k9 H# W& i7 F8 `& C- D
        # Recursive case+ {2 f: O! G5 F; r- ^
        else:
    ' N6 A2 j# ?: |$ y, c1 Q+ m; E        return n * factorial(n - 1)
    " ]7 {! }: d: o0 L  Y  G) T% F& T' d" @( C  N, \6 w
    # Example usage& b* P6 O# ?$ C6 D4 E8 |
    print(factorial(5))  # Output: 120
    , W( E/ L/ y8 ]6 H
    2 X' G( U% S4 [6 {& ~How Recursion Works
    9 h9 A. Z" ]3 @9 C) {; `
    * O9 i9 W" K7 V. J+ G! k    The function keeps calling itself with smaller inputs until it reaches the base case.
    5 g( v) {3 G, h6 T, M% f0 I9 J# {2 K* b$ d. S; P- v4 G" f
        Once the base case is reached, the function starts returning values back up the call stack.
    * i6 q+ P4 w# O
    9 [9 I+ S& T+ G' C! l$ k    These returned values are combined to produce the final result.# |4 T; g  t& e1 U) W: n6 X

    2 q% x& _- q: _! ^8 SFor factorial(5):2 Z4 N' Z5 Q# w* T2 V1 i
    + _6 o) t5 v  V
      b. m0 e2 g* ]
    factorial(5) = 5 * factorial(4)
    2 l) F6 v" h" ^3 c. T( t9 _! t# lfactorial(4) = 4 * factorial(3)
    ( I, m" @* x1 j/ Qfactorial(3) = 3 * factorial(2)& ^) z- H; Z4 I  @3 G! r5 ]; G
    factorial(2) = 2 * factorial(1)8 V6 E6 C4 y# \9 l; V
    factorial(1) = 1 * factorial(0)8 u0 M! Q4 H( D9 o9 x2 [
    factorial(0) = 1  # Base case
    + C5 N. s" u5 B. b8 {; g
    ' H& _) M0 ~7 V$ H( gThen, the results are combined:
    ' t: ?8 V+ J3 o( ?$ s. S3 N, u# w2 l8 _  K! a$ q
    - g2 ~+ u( X- ^( U9 E
    factorial(1) = 1 * 1 = 1' S* ]6 a! _& J* j/ o6 ?$ G- d
    factorial(2) = 2 * 1 = 2
      c  H& `) ~' ^( K8 E8 \1 Yfactorial(3) = 3 * 2 = 65 K3 I5 O* z( _+ Q9 A0 Y; a
    factorial(4) = 4 * 6 = 24( m( ?" l1 O' }/ Z' `! Z
    factorial(5) = 5 * 24 = 120
    % I' B$ u& n; s+ C  z5 E
    9 b6 J0 D3 s' e* }8 L+ y; X5 ?$ q) EAdvantages of Recursion% I- `) y* o$ C, J% q- }
    " i" Q! M6 `, B# T* B  \. f
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    - v( A0 P, k, [& D
    ! ^  V( _$ |% @: k- `) Z    Readability: Recursive code can be more readable and concise compared to iterative solutions.8 D% o4 ]' p, C) h- a$ ~8 B

    6 B: J7 b9 `9 eDisadvantages of Recursion- g9 M  f) Q6 P6 y- p6 F

      i* f1 _! ]# Q( |% i; E8 x8 k* @    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    # L! I4 a# M+ H4 V* k8 U( K
    6 x9 M4 ~7 L# _) E    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).& p' K) U; v+ _. [0 y. m( e
    ( ]: k: J5 \0 h  p& L7 g. K
    When to Use Recursion
    " b# [7 U8 _' G! j4 C0 g: z, U4 F( Y3 k) p& \- v( d! i
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# [& I; h9 o* }) h! \

    $ ~- K5 L* C* j4 }* X, R$ C    Problems with a clear base case and recursive case.
    ( a2 p: z, R1 t
    , h4 X6 f; V" }' fExample: Fibonacci Sequence
    + l6 ]' o. Z7 Z1 o/ g$ h( W# v8 _, G% B# ?; \
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) B5 `; `, x  a8 d/ A+ Z: c8 }; E

    , O4 Q7 j, B5 u; b) ]# \6 t    Base case: fib(0) = 0, fib(1) = 14 M: j  Y3 Z* S9 I( m. }

      e& i5 a: o) A9 C( R* `    Recursive case: fib(n) = fib(n-1) + fib(n-2)7 B$ w! a1 j" h8 Y; t$ s1 E

    8 X! V# r$ A( vpython
    ; u  y/ y& n  y& X, ~* b* o
    8 l/ c! g# |( ^, G
    4 D; K' U7 V, ~/ E" N2 tdef fibonacci(n):
    0 E* r3 t* o( H    # Base cases( j4 d3 h9 i/ R' z
        if n == 0:
    " p/ G9 T  r4 V9 f6 I/ c0 g1 t! K        return 0" s6 @! ]# {+ X- A) z
        elif n == 1:2 j' [, F2 }3 l7 I
            return 1
    + {) }" u: X- p  ~    # Recursive case
    * m! V  r2 o  N- y7 q1 H9 j4 g5 P* q    else:  A: x. g5 f  b% [
            return fibonacci(n - 1) + fibonacci(n - 2)
    : v* `1 P; F; m* d5 l
    " V" b6 K/ i1 ?0 @9 a( t. s# Example usage: a" z7 W! Q6 m* {: n
    print(fibonacci(6))  # Output: 8
    0 o% D  n, C( J- E8 l$ C; ~. S0 r# s% |: W5 V8 [
    Tail Recursion
    * Y5 ]2 I2 y# [$ r3 \7 M* w1 @- a3 A0 U% h9 p. A+ H9 d7 B
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).: H/ u8 G+ E. ?( W

    0 v/ M5 I; E4 hIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-24 16:07 , Processed in 0.061791 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表