设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1905|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ( m6 U2 `: K1 d/ q
    + x, ^3 m" {& ]1 S. p& C解释的不错7 t* E8 }& \1 ^. x
    % Q& Z8 I2 P0 @7 n3 ~8 S! f% C1 g
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    : h" S" u) V! a6 k, D* s' q
    3 ]2 D( M8 u# `1 ?/ E9 e. l 关键要素: W, {3 D# E' M& |
    1. **基线条件(Base Case)**  E/ [4 v. S6 K. e$ m% }6 `; B
       - 递归终止的条件,防止无限循环
    3 o2 X$ B. p3 p4 A4 `   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& a0 M+ S3 L! @* e5 w; V
    % V" d5 F) f: R1 b' b* N
    2. **递归条件(Recursive Case)**' ^/ U0 q3 M& i( z5 N$ S7 T: n$ q
       - 将原问题分解为更小的子问题2 |9 ^* p0 Y7 m; J8 i2 E5 z
       - 例如:n! = n × (n-1)!
    / `( I/ x  R( T, k' q% a  N" S: G; }% q6 i1 D
    经典示例:计算阶乘
    0 a% \( w4 ^0 F% f0 `* Upython
    6 B& Q' w9 E. x! d5 f& Ldef factorial(n):
    ( }' w9 F1 v- F( O: ~; A" f- i' R    if n == 0:        # 基线条件
    " _. b/ r2 ?( g        return 19 q9 Y, }) p# B* h8 b
        else:             # 递归条件
    ! E! D4 w  l6 Q$ {        return n * factorial(n-1)1 B; F5 A- X/ Q) J( A
    执行过程(以计算 3! 为例):
    ' Q9 O; S. n( @& V; Y9 Afactorial(3)
    6 a& p* k( j( o3 * factorial(2)
    0 f. f; v/ s& o1 x3 g9 }" |+ z3 * (2 * factorial(1))& ?2 s4 O( E! I8 j0 ~1 W
    3 * (2 * (1 * factorial(0))); e) C' W# I! S* H
    3 * (2 * (1 * 1)) = 6
    + R  v) ~5 A$ @  C
    5 v: ]) H9 y) y: Y$ ~! P) q. ^ 递归思维要点
    : g$ ^0 H$ j4 L" ?; |" k7 W1. **信任递归**:假设子问题已经解决,专注当前层逻辑3 R$ B: J5 y. h# B) X
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间); w8 ?6 d9 I3 a
    3. **递推过程**:不断向下分解问题(递)
    . m: ]/ x" m1 S- ?% G2 |4. **回溯过程**:组合子问题结果返回(归)
    # Y- x; L1 P2 d' R& R/ K' `! @5 a; o7 S% @% q+ n
    注意事项0 Q7 d$ y% c) G4 Z4 y
    必须要有终止条件8 I; h: V! {5 F7 P* L4 Y! r
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 y6 b- {* W$ `( z! z2 [: `' a某些问题用递归更直观(如树遍历),但效率可能不如迭代
    % M  q5 \& m7 D# \尾递归优化可以提升效率(但Python不支持)
      E+ s5 \/ Y: o/ t" \1 D2 Q3 _* ?
    递归 vs 迭代
    4 I% S% m& s. `! R5 ]|          | 递归                          | 迭代               |+ ]# C: O2 n- q5 y7 _& c
    |----------|-----------------------------|------------------|1 ~9 ?( b9 N! t. e
    | 实现方式    | 函数自调用                        | 循环结构            |$ n6 Z% P, o  H* K" \; a
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |) [5 @; i, K: v/ |5 s9 V. J% v
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ) v6 |$ c! U! r0 L1 J" V8 r0 ^| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |# D+ m0 I7 m0 D, A2 g
    1 H) r& v: u1 H9 R$ f1 }
    经典递归应用场景
    7 a! l7 z: q9 B  [4 M1. 文件系统遍历(目录树结构)- m( f' m* v, r7 v. ]9 T9 h4 J  t
    2. 快速排序/归并排序算法
    # ^( k6 f4 G2 G# B5 D/ K3. 汉诺塔问题9 Z% G% t: g9 O; [
    4. 二叉树遍历(前序/中序/后序)* S/ `, u# w% y& \
    5. 生成所有可能的组合(回溯算法)
    0 S" R- c7 V- X% `1 Y0 _. H+ o; q* h1 |% C* A# K
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 07:11
  • 签到天数: 3150 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," }1 c! v* q! |3 F9 d6 A
    我推理机的核心算法应该是二叉树遍历的变种。8 W5 m! G4 h0 }1 D3 \
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:( B: f7 ^4 p! r8 U
    Key Idea of Recursion
    4 A8 N' t" T4 g$ F  L3 k: p/ v5 H% \& Q/ a% R& g  B- k4 L9 K  Q
    A recursive function solves a problem by:
    5 t8 H5 g& ]4 z& a; u+ Q
    % |9 a( G. e# |    Breaking the problem into smaller instances of the same problem.4 P( U2 y+ X( N" M- a" g! b
    ( V0 m% E5 E2 {0 T% L
        Solving the smallest instance directly (base case).( P* H& `8 |; ]& m. Y. f

    4 I. G9 B# `' h' [& S6 O    Combining the results of smaller instances to solve the larger problem.6 j3 {/ n: m% ]3 t* F/ O
    6 u) E, L9 d# |1 i* B& x
    Components of a Recursive Function
    4 C- ?  [, X  H5 y: ^" w: `0 Z, d3 L. f2 n, f7 F
        Base Case:
    % A9 L) t% R1 ]8 J8 Q. y4 Z- J1 Q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ' m5 ]3 A: |3 n2 }7 |2 {9 M' z/ V, d( Y9 T6 X2 x" y9 z
            It acts as the stopping condition to prevent infinite recursion.
    ) G1 A7 N3 @4 f
    : N1 }/ H$ p7 B( C1 y" u' F# D3 g        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , y. ]6 @  ^8 R, k3 x3 C' u9 i. K* x+ {2 h+ ]
        Recursive Case:) i  z" i4 ~* |  C9 C

    * q0 S% k- R5 @0 M5 }        This is where the function calls itself with a smaller or simpler version of the problem.
    0 e( S4 X# }4 o- K* i1 Q0 c) b9 V5 N8 }" x+ N
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    6 l6 b9 ?2 C3 k0 S3 `; O" D% l  `+ t4 f" Q
    Example: Factorial Calculation
    - h% a3 I/ |, h
    2 I6 N+ M1 G, s* z, V* p9 \2 sThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ' r2 i! z$ N; W( A6 k
    # j/ H$ e7 d* Q    Base case: 0! = 1& M" v- Y- _3 C# A1 k: g! |

    ' E9 c  B' `' S9 p    Recursive case: n! = n * (n-1)!
    0 _0 n4 V$ g2 H( {) M8 \9 S' v8 q
    Here’s how it looks in code (Python):
    0 S. J7 N6 Q# ]0 G4 Ipython
    # l: a( @7 e% O# q$ l" ]4 `
    0 @* V" h% c$ ?: ~" o& o! x4 \) C3 ~, `7 l) ?$ d
    def factorial(n):$ u$ h$ v5 U6 E6 P. E& u7 Z
        # Base case
    % A3 E; K" m' D    if n == 0:# S: F& q1 U. W
            return 1
    9 Y& \: _; t. S& m' B    # Recursive case9 c) G! E  B- a7 N) V
        else:
    + h, u- f) Z9 _        return n * factorial(n - 1)
    ' u7 f( m' t( C+ l3 p, T6 M0 @+ `  |" s3 r
    # Example usage2 k* W: T4 Z9 w, H
    print(factorial(5))  # Output: 120
    5 B7 z2 |  z# k9 W" O
    # p; A  G7 ?/ u; kHow Recursion Works. R3 o9 Q: ~' D0 N$ n+ W8 d

    5 {& U0 B9 T2 w    The function keeps calling itself with smaller inputs until it reaches the base case.
    * ]$ M, T4 G/ h. _
    : C- ^5 V! u; T+ a5 v    Once the base case is reached, the function starts returning values back up the call stack.
    * t. V: M% ^+ O% v& M4 ~1 f( [
    " P5 I( d  n, T( W) k    These returned values are combined to produce the final result.: j1 m  u3 D/ n1 K8 \9 Y  T
    : r; W% f" t+ S( i
    For factorial(5):# O  R8 Q" w5 p. f% n

    3 b1 U9 n- \7 ^- Q3 \9 a- a( v% F- G, p7 ^2 z/ s
    factorial(5) = 5 * factorial(4)* m4 k3 P% A7 ]- d; x
    factorial(4) = 4 * factorial(3)/ V, [1 |( M% \! P9 H1 C- o. t; u
    factorial(3) = 3 * factorial(2)
    + f0 Y0 A6 a/ _+ d1 hfactorial(2) = 2 * factorial(1)
    0 s1 t1 E2 R( Q7 J5 l% d: xfactorial(1) = 1 * factorial(0)
    * y# p/ d" T' Gfactorial(0) = 1  # Base case
    3 q2 [$ J9 j" u: a1 \/ a% y
    ; G+ z! N7 G1 ~Then, the results are combined:8 r6 I+ D. D, d" A% _1 I! X
    ( a& U( L5 {% ?/ V5 r- t
    8 s4 J; J0 G. z/ a5 q" i* h
    factorial(1) = 1 * 1 = 1
    % l3 W; e3 o' w* zfactorial(2) = 2 * 1 = 2
    ! C3 Q- d0 R( H) a* m, J/ Nfactorial(3) = 3 * 2 = 6
    - G( ~1 o, }6 Q' d: J# Zfactorial(4) = 4 * 6 = 24
    4 D! Q/ u. u' g7 l4 E( hfactorial(5) = 5 * 24 = 120' m% B. E' w2 O3 ]

      \5 G3 b% |* EAdvantages of Recursion
    , v  I# G( Y+ B" ?( f; ?
    0 L6 Y7 w7 T+ s/ z" x    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
      d' q) T4 Y4 Z, v) e; u! i, B' k  {6 C7 A& h
        Readability: Recursive code can be more readable and concise compared to iterative solutions.; v0 d& b: H6 ^3 h6 r
    ! N2 V2 _5 c9 R/ J- O7 d
    Disadvantages of Recursion
    % ?* k' h0 \/ k; L. f, |+ W3 G; ]8 ]! v5 a; ~
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    * s& a! J6 c- j/ k; P' M/ s
    4 N1 E% i, a1 i0 z2 J    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    0 T% R- M8 P! Z2 n( H0 X9 }9 c/ ~5 r8 F8 S% u6 {* G
    When to Use Recursion
    $ g: h3 |7 t9 c+ V( ]" D: Y+ m' [! z5 A! Z7 c. ^3 v" F
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' t# A! M$ }' S7 l- u$ d
    - d- X# \& y# _2 M* a4 V$ J    Problems with a clear base case and recursive case.
    - ?) T. C' t/ ?, f1 p( C
    ' G9 g! d7 a. }: s3 O9 LExample: Fibonacci Sequence- {# V8 i/ q1 t/ D# A. W
    - m% _# X) \; q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:7 M( Z* N  W' |# X* A  s
    " ]2 p7 p9 O" `
        Base case: fib(0) = 0, fib(1) = 1+ j; q- J7 G" G+ ^
    5 M9 D0 I  I4 |
        Recursive case: fib(n) = fib(n-1) + fib(n-2)* c0 Z1 c' Y, Q6 h  L
    $ s6 P) A% p$ `; w" k7 A* @  R
    python
    $ s  X7 f8 q% ^. R
    ) z* ]+ M* p/ B, k6 P& y, f5 P2 f; {/ T4 ~
    def fibonacci(n):# T5 ~% H5 u# O! p. D  p
        # Base cases9 b: F6 R# U0 M9 h
        if n == 0:1 }5 J% o$ m" @
            return 0
    " F( h+ o( m# I    elif n == 1:( `4 x" f' v) }* K& k8 t* O! D
            return 1
    7 N% G% F& B( j! y    # Recursive case, P1 I$ x7 B; ^  Z
        else:' b1 l! d; }5 U
            return fibonacci(n - 1) + fibonacci(n - 2)
    0 D6 W3 X; h! B; ]+ K/ X3 F( Q6 J3 o
    # Example usage
    3 g; l$ t  P' M" D8 ^  ^$ Pprint(fibonacci(6))  # Output: 8
    0 w, h8 q, s2 e5 }+ @" P& x8 j+ x1 x+ Q" Z, v" @: s% U
    Tail Recursion, Q! y- k6 S% Y$ d: _3 B6 N

    * o( d6 s) L2 q4 ^Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    - q+ T( _7 Q3 h( z: K% n$ w" M/ n' y. q# V% @
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-21 12:55 , Processed in 0.065799 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表