设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1433|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    $ f2 [3 B5 {* _
    1 h4 ~2 A1 H) D" c2 [解释的不错
    ( @. M5 d( o1 e: z
    / o% h; f# ~2 ^1 Z# y3 `0 A递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    . g. P/ E, s- o2 ?; K( N$ s- q/ P& f# |- h' p0 ~8 D0 w5 M
    关键要素
    ) X5 K8 }! A- z! r3 Y5 P1. **基线条件(Base Case)**
    : m; ?; D# e! h3 u2 D1 M   - 递归终止的条件,防止无限循环
    # d  b7 M" X5 f   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1# A" N$ p6 u' l3 ^% J

    # U6 \  _4 K. S) h3 @: [- M% J2. **递归条件(Recursive Case)**, g5 H% M: u& [  k2 |# |: U" ?
       - 将原问题分解为更小的子问题) Z$ V) h# A$ I* k8 A: B/ q# x9 w! |- W
       - 例如:n! = n × (n-1)!: X+ y: C# a' z0 V$ m. u4 M0 W7 r- ]

    7 g) W+ J$ k; z+ k& v( I9 z, j 经典示例:计算阶乘
    9 A+ d* H" z5 w1 xpython
    1 [/ e1 \$ m  f* i" |, E  ?* ddef factorial(n):
    & d2 E1 _* @3 q7 i3 G    if n == 0:        # 基线条件
      A6 M; p, y1 ^+ c  J0 r* i3 X( z        return 1
    . I* n* f3 a- {+ u    else:             # 递归条件
    8 |5 {$ {5 x! b+ M% q        return n * factorial(n-1)
    ' k, V! {( B; p执行过程(以计算 3! 为例):
    ; v/ g) y( L, G2 i' j: hfactorial(3)4 X4 L6 y6 ]- ~. K
    3 * factorial(2)2 O( h* g' u- n4 @. O" z7 o! X
    3 * (2 * factorial(1))
    $ A6 M& W: ]; R( i. Z3 * (2 * (1 * factorial(0)))
    7 x5 a9 c+ X# N3 t- Y4 m3 * (2 * (1 * 1)) = 6
    6 n% W8 o+ d* O( k- t
    : b" L, C* c2 c- E 递归思维要点, ~2 F% E1 d' `% q
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑& b2 w' P3 F# k! p8 T$ {
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    1 J2 {1 `6 \% g$ A* t# |8 P7 |3. **递推过程**:不断向下分解问题(递)
    ; y6 M2 _7 q8 L2 l* a) Q% h4. **回溯过程**:组合子问题结果返回(归)
    * f2 K* \* E( @- ]
    $ h1 R1 W- k: A" ~ 注意事项
    ; j, J  G9 b. J5 v& m必须要有终止条件( Y$ ~, X8 H5 C, ]8 J- I6 D) Q
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)! ^3 j& z( {+ \! A7 B& U- r. m) x
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    0 D$ s, J! M2 v: B尾递归优化可以提升效率(但Python不支持)+ q* ^! M% c2 o9 ^8 w7 k
    8 \- t3 r7 P( a1 N: m, S& F
    递归 vs 迭代
    7 a6 k9 _9 \0 D- k$ X|          | 递归                          | 迭代               |* H8 t9 S( u% U  @
    |----------|-----------------------------|------------------|
    4 {# y$ \  U/ y9 [: z* c& ]& T| 实现方式    | 函数自调用                        | 循环结构            |& Y& V+ F1 I* _
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    % R, p9 \/ k5 a/ A( j3 m7 n| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |( s" G9 l& T  T, Z9 D
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    " O8 m4 }! A2 g* P% Y' p- c- c0 ~& M' J( K; Q- g5 x
    经典递归应用场景
    " ]" e+ s& w! _2 m! T1. 文件系统遍历(目录树结构). v9 @# X& c  I
    2. 快速排序/归并排序算法
    1 M6 h/ }2 R1 P* C$ A2 D3 O3 I3. 汉诺塔问题) x1 P9 I/ Q* v3 `9 H
    4. 二叉树遍历(前序/中序/后序)
      `  J+ R7 I! n7 U3 p/ [5. 生成所有可能的组合(回溯算法)1 Z5 j4 x  e$ j. J

    * o$ L7 u- P) C0 w/ f试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    15 小时前
  • 签到天数: 3113 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ' ?0 \/ L. G- N. W我推理机的核心算法应该是二叉树遍历的变种。
    6 E* r/ j0 {2 c9 @另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    , Y# F/ j" [- NKey Idea of Recursion" p5 M  @# w' D/ C5 {5 c/ T! X
    ( Q% s3 X+ ?' c7 R) O8 S. e
    A recursive function solves a problem by:
    / l2 |9 s! a1 A  _. W) o/ f) h& V, x. v* s% S  D
        Breaking the problem into smaller instances of the same problem.+ p- R- m4 I; m. I5 m# }

    , A5 o; Y" Q/ Y" }2 E    Solving the smallest instance directly (base case).  R2 D7 g4 @9 i$ c
    3 n! I# y4 w, y( x+ C* G  S$ ?
        Combining the results of smaller instances to solve the larger problem.
    ; i6 O+ N- |( z( E; K2 _
    9 p' I# @1 l% [1 k. g1 ]Components of a Recursive Function
    . U% F( a& \8 a- |
    ( Q) k3 s/ [  \5 y    Base Case:
    5 |# Z4 _7 k0 t/ {1 x% v, W$ N
      a* |! u" d: s        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ' K! h& R% I5 J4 L2 J
    : ?- u8 L( r) p        It acts as the stopping condition to prevent infinite recursion.
    ; a% C+ g; S1 F+ C8 t
    + A7 b, Z; [2 s6 b        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: T4 b- a6 Q+ p3 T' `% T/ m4 y# z

    4 ?, ^5 |. U9 }+ z! f9 P    Recursive Case:$ j! Q' t$ P. t$ v' j! {+ E% F

    ' E+ s) b4 n' P) [7 u        This is where the function calls itself with a smaller or simpler version of the problem.4 o" ~% M# {* z1 O8 X3 O5 x; O

    % x" L. K" u9 O& {* \( i2 J        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).- E, j+ s+ K0 u2 L

    8 T* A: ~3 N* Q5 Y9 gExample: Factorial Calculation
    ( P, G  Q' B" S- N
    8 J& ~7 I$ B+ T( F7 `3 ^The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  b- y0 |$ Q; P: F+ M
    8 x0 z8 }# S- Z1 @- [: y$ O
        Base case: 0! = 1% k- @" e# b/ x0 F, I
    # R4 H: R# A$ D+ r! o& e
        Recursive case: n! = n * (n-1)!6 P% y2 l$ `& A. |  X' N6 C
    7 T8 O) o2 b: p3 W& O6 T: V
    Here’s how it looks in code (Python):
    5 C3 p- ~9 p* R$ B$ j. L5 Z! Tpython* {# \: ]% r8 Y* o) V; j
    1 p) T9 D5 y9 S( c% w% M( n
    - e* d4 Y( b: K. o: c+ T
    def factorial(n):
    - R( r0 A; o/ O    # Base case$ G+ J, _7 C) o* X
        if n == 0:2 Q* D6 L4 b0 N4 e' K$ o
            return 1* ?) ]8 L. |- c! }% A2 |
        # Recursive case+ G. R; M8 A  ^3 L6 t1 A) a% R
        else:& K3 y+ C; v" @& K- j3 x7 j. L/ D/ `
            return n * factorial(n - 1)& w, ^1 Z9 l; x3 e2 m

    # Y; V5 Z* B* R7 ~2 ^/ e1 h9 h5 {3 A# Example usage
    ( @- B! ^5 ]+ D0 \2 k6 g: X' xprint(factorial(5))  # Output: 1206 l& W/ _+ A  s( c3 L3 z

    % X$ ^. Q2 x) n4 W: k* N2 YHow Recursion Works
    $ k2 P- t; C" Q( Z* W, [, i& d" w' j6 |
        The function keeps calling itself with smaller inputs until it reaches the base case.
    / K7 d+ _- `; ?5 N) O7 z- @- x/ R# e+ x" _
        Once the base case is reached, the function starts returning values back up the call stack.+ ^* @$ y8 n* C, l; S# L( y3 Z, U
    * w2 x; s# m& d, _7 W+ ]1 c# s8 {7 ]9 l
        These returned values are combined to produce the final result.
    # e6 X) w+ Q: h5 }3 H# o0 ~  h# U2 t  X4 |8 H
    For factorial(5):
    # O- B3 {3 ]$ s; Y( s9 a% @0 S/ H$ D
    1 F8 `- {, j  D6 }8 W6 W; c
    / r, `3 b. K8 }- Ifactorial(5) = 5 * factorial(4)( b5 k0 c2 }2 Z$ V* Z1 K
    factorial(4) = 4 * factorial(3)0 c; W& e5 e5 |: M1 q* F* n6 ?+ J
    factorial(3) = 3 * factorial(2)6 [2 m. B6 R8 ^
    factorial(2) = 2 * factorial(1)
      L; A3 s6 E1 v" v# lfactorial(1) = 1 * factorial(0)
    $ N9 C2 D8 ?1 V; f9 C) I% jfactorial(0) = 1  # Base case0 }3 e, Y/ e1 m9 n

    ; x8 e3 e3 l4 s: A+ _Then, the results are combined:* n- [% v1 r% O

    " @7 k* w' C6 D8 E5 {, ?  K. S+ U. o
    " D- G' V2 W2 R& yfactorial(1) = 1 * 1 = 1
    2 G1 ^' \& O1 ~& v3 B( Yfactorial(2) = 2 * 1 = 2
    : m( E( [0 A6 V, O. J3 mfactorial(3) = 3 * 2 = 6/ F2 h  u" f# S; Q4 ^2 v. @( V* m
    factorial(4) = 4 * 6 = 24
    3 o! m! `' D* X! W+ Ffactorial(5) = 5 * 24 = 120- v/ z! i6 L: `5 e7 v% E) y* ~
    6 r  z& H# X5 h
    Advantages of Recursion
    9 I& J! U6 v% }9 ]; X1 V7 o8 w4 ^  f( h( w/ q& ?
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).  g0 p) @1 w$ F7 h0 s
    7 A! }6 F1 X9 Q/ r& w
        Readability: Recursive code can be more readable and concise compared to iterative solutions.7 m) l+ n$ q. R9 _. R

    & L4 Y. [% {0 ~& H  vDisadvantages of Recursion, e, [! ~4 u& j; F
    3 E. U8 D5 l3 o3 v9 E, L
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ; m# j" P4 C4 ~& E; N- z, S: y
    3 X3 `) e: D( I- x+ d) @1 |. @    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    0 b  ?4 L0 ^5 N0 L4 k5 I( Q- b7 P6 e9 k8 @- k/ L
    When to Use Recursion7 U0 X+ ?4 X0 V% {3 d

    5 r8 @6 ^  T+ w    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' t; @2 d, R" B2 y: }
    0 p& ]+ N: g7 d0 h2 Q1 h/ L    Problems with a clear base case and recursive case.
    ! m5 |! f# T5 v) F/ m
    # G$ F+ c0 Q: v4 I0 G, x$ g# l/ E  kExample: Fibonacci Sequence2 N7 W+ ]7 H3 P" n
    1 g- D& p6 S7 m+ ^8 P: }& Z- d
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    4 C# L" L8 e' I/ d) e% |6 Y+ e
    + f' J$ X% T0 E  y% ^( Y0 R    Base case: fib(0) = 0, fib(1) = 1. l; k9 j3 x1 b- I7 p/ D
    - ^9 ^2 s4 }! u+ Y4 A/ ^
        Recursive case: fib(n) = fib(n-1) + fib(n-2)- ]8 q5 v4 L( ^7 `- j
    : p# j, V9 ^4 S2 V& E2 h8 `
    python
    : N7 \3 ]2 T1 _/ d9 T2 u2 o# a/ N, [

    2 t4 q2 B# M3 C" [8 K- Ndef fibonacci(n):
    " o8 |' d$ M+ t    # Base cases
    : D& t# h  X' T7 ?: h    if n == 0:! E  ^- ?5 C* u- I" b  v2 k
            return 06 m+ N9 x7 H8 T: k
        elif n == 1:% z) A' S. C# o3 [3 P; N
            return 1! R+ d0 w/ b! E: x
        # Recursive case2 m( q( R, _5 u/ L& {$ x1 ?/ @
        else:3 y* o+ ~  f7 S7 o
            return fibonacci(n - 1) + fibonacci(n - 2)
    % S8 E2 _9 N, J. j* m
    9 W* E% A; B$ K6 m) S# S# Example usage8 L7 \7 D  E. P- H
    print(fibonacci(6))  # Output: 8, G$ g( L6 T  }1 y+ N4 }. q7 x
    - e$ O9 F& @6 s0 O  L6 {" O
    Tail Recursion% M: V+ H/ j: W; m* j  u; C9 a- L
    ) c8 f4 C4 J7 f8 \& ]% G' g) @' e" y
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / u, C0 A5 A7 y; t8 |3 x7 s0 _% \2 w+ y
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-9 22:30 , Processed in 0.036186 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表