设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2042|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑   j1 |/ g' c' G% h8 T5 ~8 y

    ; E* O; b$ X; Q7 p解释的不错- R$ R/ W# E4 Q- X* T
    7 T$ h3 o0 E" m* L. R
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& S4 l) C/ F1 X2 r$ e

    4 C: [4 G! u: n( A 关键要素
    ! s( b4 |) z( X( W2 [8 N0 J! ]1. **基线条件(Base Case)**/ W, V& [5 K6 a( i
       - 递归终止的条件,防止无限循环
    & v2 l3 w( @1 G. {- c% o6 T   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    9 L& a' Y6 j  Y8 w
    % {4 ]) x- Y4 b+ i. f9 M2. **递归条件(Recursive Case)**
    5 D% ^7 S  @( I0 n* X, y   - 将原问题分解为更小的子问题& F$ p" e3 ?" u" c
       - 例如:n! = n × (n-1)!+ @: t& D* [/ D% O

    2 r7 T7 q& r2 O 经典示例:计算阶乘
    * y% m) ~! i1 F) Dpython, R7 Z+ [  M) t. \% Q/ k1 D* U
    def factorial(n):
    ! F0 c& i, `  q+ Z& N1 _) v. g7 e  {    if n == 0:        # 基线条件. a' ?* t4 q2 `  Z& O( ~
            return 1
    7 \9 s% h8 a) A* |# Q    else:             # 递归条件/ W! T8 |, V  R
            return n * factorial(n-1)
    : r4 R' L) k2 L; ^- n( f/ i0 u+ V执行过程(以计算 3! 为例):
    4 r! ~4 s; |7 c2 v& Nfactorial(3)% L$ W2 Z+ U( q
    3 * factorial(2); H4 `2 l- [( ~
    3 * (2 * factorial(1))
    + C* R* e& L' T1 b3 x" ~* ~, o3 * (2 * (1 * factorial(0)))8 U% B0 m/ O7 k' R# P) P9 Q
    3 * (2 * (1 * 1)) = 6$ n6 @9 w5 X. @! L. r

    ; V% }. _; I4 [& C0 _$ g( t 递归思维要点, @, }. j1 u! X) b
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    / q  a0 X* s# w* }0 `2. **栈结构**:每次调用都会创建新的栈帧(内存空间): L9 f: m# x" o$ e3 |+ Q
    3. **递推过程**:不断向下分解问题(递)
    $ m) B, Y4 G1 F2 {4. **回溯过程**:组合子问题结果返回(归)
    - }! x" m/ w( _3 P( v
    ' Y( Q* @2 s5 W$ H0 C 注意事项
    4 ~/ P9 T8 `. L! c7 m必须要有终止条件2 C7 E5 C+ r3 Y7 ?* |
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    * b! \4 v. e, R2 ~某些问题用递归更直观(如树遍历),但效率可能不如迭代+ n6 d* S( b  q# ]+ @
    尾递归优化可以提升效率(但Python不支持)9 Q  g! L6 G# n* j
    - r1 h) u2 k, s0 w( s' m$ E
    递归 vs 迭代
    ) Q& s1 j+ w5 q& r0 {|          | 递归                          | 迭代               |' @) z* v  |+ c# P9 d5 w
    |----------|-----------------------------|------------------|
    $ R' n9 W9 w. F- r0 j# n5 z: x- Z| 实现方式    | 函数自调用                        | 循环结构            |/ {3 D5 W# J& M
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    + m1 Z0 `$ z7 |/ s% W| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    6 r4 _3 D  u& U8 h; t| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    " P" j9 \+ p6 E1 R* i# A4 r& j% B
    $ d2 Q  h# P( V, ^" \9 b$ ` 经典递归应用场景- {9 P9 |- t# F$ u- z
    1. 文件系统遍历(目录树结构)$ ?" h4 y/ J' a; z2 h, E# M
    2. 快速排序/归并排序算法
    ( F8 W  m: y, a& @" s; P$ k' {* I) I3. 汉诺塔问题
    * Y0 M6 B5 u6 S) B. H4. 二叉树遍历(前序/中序/后序)
    & r$ |$ n' Y' V5. 生成所有可能的组合(回溯算法)
    # k+ D$ j! f. b3 |# r' c( z7 V$ P1 i& H
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    6 小时前
  • 签到天数: 3167 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ |2 t4 U% i4 _% N3 B$ k9 `
    我推理机的核心算法应该是二叉树遍历的变种。
    ( T) B. p4 e" M3 W# ^9 @4 ?% Z# t另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:$ @9 o3 m6 |3 Y7 H7 s' u  _
    Key Idea of Recursion# u& i3 }! [1 H" t) P
    - ?8 v2 \# J5 z2 \
    A recursive function solves a problem by:
    : S4 S( C% J3 _5 k9 `; {& ~) Z7 ?# |) j6 I; y1 f
        Breaking the problem into smaller instances of the same problem., W- W. K, {" ]- w" S& W/ J

    : N8 w1 Z: l4 |9 f9 r. R* M5 d    Solving the smallest instance directly (base case).) A5 ^* {$ v5 U$ c& V$ d. C  k

    8 g6 a; j5 `8 ~1 a( @" b    Combining the results of smaller instances to solve the larger problem.! c) @6 c; r0 |- u+ V/ l
    - ]1 w5 t  N* F! W
    Components of a Recursive Function+ ]% M! _( v6 V8 U7 u- v
    9 g' v1 z8 U6 p& W* i: w" v
        Base Case:
    , U4 H, h9 ~3 C# Q: k( q% `( l; n+ d4 j6 ^* f/ Z7 }
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.0 g3 y& r; i" v0 f
    4 W. S, S' ~' c2 u3 K  L  ~
            It acts as the stopping condition to prevent infinite recursion.- D2 b) d# z0 o1 l! z
    " n; L7 v5 H8 h1 S8 J
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & f9 K: E6 J$ A! C$ y1 M5 A: a; s1 C, H6 L0 Z' z- d
        Recursive Case:
    8 z$ P, Q8 |% k8 J5 A# U2 r. l3 X# i/ `. v' M) m
            This is where the function calls itself with a smaller or simpler version of the problem.
    7 F1 o9 E& n6 Q% W# G
    $ M/ A* d0 W" d& A4 u0 d- H        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ z4 ~* p. M, N' A& W2 P
    , {5 \1 Z# C+ K1 l3 E- [
    Example: Factorial Calculation
    ) R3 C& P1 y" {" a  H* a6 s
    ) a6 `# J( j" n3 k) @/ Z/ `' h; Q8 qThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ; [. p" X" E0 A; P  ~% E  m
    3 f& ^0 y) b: U( Q; j    Base case: 0! = 10 Z; ~& P6 O( J8 Q# m. w

    " v* x3 W6 X  @) |, E  m& R    Recursive case: n! = n * (n-1)!2 ^( `! _, |0 z. d& A9 t
    9 K  P; @0 h' ?0 T( g/ F
    Here’s how it looks in code (Python):* d; J( T6 m0 a( h8 S
    python
    9 }3 W8 Q6 C/ c+ K' ~+ W9 k
    9 [8 J1 c7 i) W& |1 z, y- y
    7 y- S" k7 P) z- ]. Cdef factorial(n):3 O' J, b1 B. M1 p
        # Base case0 n& F1 h2 G* |+ M" ^9 H1 {
        if n == 0:. N! y1 z& F' k
            return 1
    8 `7 D2 k! V6 j7 S) |0 H$ d  Y    # Recursive case, a6 G+ s# S1 ^/ s
        else:
    1 B& ]3 K0 B8 E$ P  G# A, X3 @        return n * factorial(n - 1)
    ' A! A/ `6 ?6 M4 c: u
    " J; J, {: q6 i# Example usage! {0 I4 o" f  ?, {8 E0 i$ P
    print(factorial(5))  # Output: 120
    ( N4 @* s- F0 J: g& [
    ; @) }4 f. K  ^( jHow Recursion Works$ z( d5 W# X& b
    # {3 y1 l* i3 Y% X! }8 t
        The function keeps calling itself with smaller inputs until it reaches the base case.: {& R, B5 {) z. [+ {$ B& e& |
    / _4 w: L- O# \; J: x$ G3 ^
        Once the base case is reached, the function starts returning values back up the call stack.
    9 e' N/ D- l' u0 o# W$ y# k
    5 s3 k' i" O- Z3 b    These returned values are combined to produce the final result.$ U5 p% `, i' S$ f" y5 c+ ~* G
    ; Z! B; g6 n' i  H/ j4 x6 }
    For factorial(5):  l( H) h1 r. w9 Q% \, d+ _, b
    6 H% u5 n; D8 L! q& S

    9 T2 P  W9 y% c+ W2 e- ~# bfactorial(5) = 5 * factorial(4); g" i) i# W9 j) ^* u: f6 |: w* A
    factorial(4) = 4 * factorial(3): T; @" C$ Y6 Q0 B( s- a
    factorial(3) = 3 * factorial(2)
    ( r/ }+ I( n% j8 `factorial(2) = 2 * factorial(1)
    2 W* R" f' P6 {; ~" h% k; Rfactorial(1) = 1 * factorial(0)3 F9 r( V0 O" w8 j
    factorial(0) = 1  # Base case
    8 R# r. l" W# K. Y6 k! e$ }% |& J9 ^% g$ K2 I
    Then, the results are combined:; U2 e$ J: U- s, r! d; l
    ( s! w, u& @3 `
    9 u' M6 n, D, h, u- }
    factorial(1) = 1 * 1 = 1: k$ X$ s* W" y1 W( q0 s) T, a
    factorial(2) = 2 * 1 = 25 b( L5 n; h/ k+ J7 @  z' p; p
    factorial(3) = 3 * 2 = 69 O/ v5 y/ O- |! W7 F0 P9 |$ V2 ]
    factorial(4) = 4 * 6 = 24
    ; y1 s7 Z& k+ F$ {factorial(5) = 5 * 24 = 1205 i1 W4 Y' f5 @! B! h) N: P

      \% P7 M% Q1 y9 ]. \Advantages of Recursion
    1 N1 g3 d* _+ U7 N! c  t' g
    * {9 ?0 z0 }, t    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ' C2 q  k) M1 F7 O' ?. _! t
    % Z, z7 A6 v' S- [' }9 i0 t4 Z- Z    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 q% Y1 P& M! `. }
    : Y" p! y1 e% `' j1 l0 RDisadvantages of Recursion
    8 D9 W& K6 _& Q
    6 n5 A- Y; Q2 {2 J& I, z3 \1 z+ A    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    , V4 h- ~/ s" j+ o$ g0 K1 m, w
    / l" {- z- p0 l  f0 @    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    / r4 a  H6 m8 N0 g5 ^% V6 X
    ; d, `) l! t( L+ W' o- PWhen to Use Recursion  O3 i2 n" [7 f. d9 y& c3 s
    8 B7 V0 ^  Y; A) `2 [
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
      s' E" t3 J1 N: j: d, O; j1 G  e; i# O; C: E* u7 {
        Problems with a clear base case and recursive case.9 T/ J! R  y! M9 e" O% `1 ]
    8 N7 ~( E+ n! v) }4 c( g
    Example: Fibonacci Sequence0 V1 ~0 v  a% p2 d& J" F1 U5 c
    8 y/ M- s' R' |6 k! a
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    + X6 |% Q9 w6 \4 A$ k7 `1 C. p5 d6 d' h; u$ W$ l0 z9 v
        Base case: fib(0) = 0, fib(1) = 17 }( g; I7 j& j9 S) V% U1 n

      N, P4 a5 U' g- o5 K1 z$ L    Recursive case: fib(n) = fib(n-1) + fib(n-2): d: }  |% \8 Q- R
    8 J/ z3 y8 z  ^% D5 C
    python2 ]& l" p5 M1 O& g
    & j, Q2 d; x' n/ v

    ( J1 N5 ?  }$ j& J1 C; fdef fibonacci(n):7 X. U- S$ T- ]5 b
        # Base cases1 m* t: q' g5 l- j: W
        if n == 0:8 d$ ]- Y9 o! z6 q/ Q
            return 0
    . M) B5 z" W3 R$ l2 U    elif n == 1:3 a; N) U9 V0 ]/ ]: d& h
            return 15 Z5 D7 h4 v) z( q$ {/ F
        # Recursive case4 O" O. }$ d3 L# c8 I$ z% P
        else:) H6 h% t$ B5 H3 @  ?3 ^
            return fibonacci(n - 1) + fibonacci(n - 2)
    0 Q1 d! ]: Z  d& A* W$ J. P. e5 k
    # Example usage
    , j- y4 s! A! U& m2 m- F4 z+ g* ^print(fibonacci(6))  # Output: 8
    & B( ~' q. f" Z( `& F% C/ J
    * v4 V) d: D' {$ T4 @1 dTail Recursion
      h3 q; s3 \+ }+ u- D, x$ i8 [+ L, T$ }& X1 ?
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    * V# s% b2 q- P8 Q! `. a' F2 U; R# Z# p- P& N
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-8 16:25 , Processed in 0.058544 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表