设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1997|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    5 I5 q' O, b& C* ~* Z, [$ T
    2 {7 |0 W- F  R7 h7 y; O( N解释的不错
    ) O3 Q' @3 [7 I6 X) K5 W8 S# l$ X& [- b% n+ t8 Z7 {$ O
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    , F/ g) R4 o/ U6 a# B. r" L" b+ p0 X  u: Z5 v4 Y. r: m+ n
    关键要素
    2 s4 l) d1 s) d) Z  p2 N1. **基线条件(Base Case)**
    8 N& B% C# F% k9 L" S0 ~   - 递归终止的条件,防止无限循环
    " r4 T! g8 q. L& k   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; {0 _5 o* t( c2 S% N# N' D# p# F7 Q
    2. **递归条件(Recursive Case)**
    - r' p  M2 ]. |5 R& h   - 将原问题分解为更小的子问题0 ^3 J1 I7 }/ o2 l' x
       - 例如:n! = n × (n-1)!
    0 H" Z2 k2 A0 Q3 O. K; a7 h6 A
    1 V' K+ {9 R! Y" @ 经典示例:计算阶乘
    0 w* }. ]* @& W" Z( s" N2 Ppython2 s# V3 v  W- a! v
    def factorial(n):4 f; j$ \  X1 l" N* E
        if n == 0:        # 基线条件! a  d. o4 k4 l6 W& U" x6 N: m. F& l9 N
            return 1
    1 G1 [( S( C0 Z    else:             # 递归条件
    . ~& ~& r+ J8 |        return n * factorial(n-1)& t- T3 [. V' E) Z0 Z) K
    执行过程(以计算 3! 为例):8 l. e6 u& u* O
    factorial(3)) J* h, J1 c4 w& b7 \  ^
    3 * factorial(2)
    8 j( X; M/ A5 ~. a5 l) D/ [3 * (2 * factorial(1))' ^# X. V% x6 z" A
    3 * (2 * (1 * factorial(0)))
    8 O8 `6 N& g3 w3 * (2 * (1 * 1)) = 6$ z4 G! C1 [, t* i( g9 }

    . c9 c# L6 z1 n/ s4 |: I. N 递归思维要点
    # k1 \1 ~) V( T) w1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    / v, }$ w" Z# k" _2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % f: X4 p3 H2 h) E3. **递推过程**:不断向下分解问题(递)2 O) w1 o7 O* [
    4. **回溯过程**:组合子问题结果返回(归)
    + m. L" c% a0 R- N: z) g% r8 @8 O
    ! w8 v  D( F. c 注意事项
    1 y7 n- f$ N! q! N% X' e必须要有终止条件
    8 d/ Q, M& ?( f1 J1 Q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)5 ?. q8 h) `9 w! {
    某些问题用递归更直观(如树遍历),但效率可能不如迭代: \$ `4 q% H  R" w
    尾递归优化可以提升效率(但Python不支持)5 U  G4 H, M+ b- G# V

    3 i4 [4 y, p" F. G( |8 ^1 l2 k 递归 vs 迭代) v6 N2 E1 Y8 V. i0 B6 C  J4 R$ T
    |          | 递归                          | 迭代               |( ?3 @* c' x+ L; e! v
    |----------|-----------------------------|------------------|3 B) _: v  m" B  Y; n1 N
    | 实现方式    | 函数自调用                        | 循环结构            |
    * y$ f  g2 ~: [0 |  v  @( O7 b% G$ }| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    $ r: B- f9 k* k2 _4 t8 @; f| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    / s' V4 n4 \% Q/ U9 ]: ]. p5 b: o| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    + b: v/ \( _( _: {# T- B$ ^
    1 m4 C. F' F2 j! \ 经典递归应用场景+ _7 _+ H  V$ o
    1. 文件系统遍历(目录树结构)
    - ~$ K0 c2 G0 ~3 f2. 快速排序/归并排序算法
    6 }2 V! R& f, s5 R& G% {6 Z3. 汉诺塔问题( C: \, ~/ Y7 N% F
    4. 二叉树遍历(前序/中序/后序)5 ~3 `- B+ G/ O. L" W5 }. K! j
    5. 生成所有可能的组合(回溯算法)* T0 S* w  s) d  o5 h
    : h3 G1 d- c0 i9 d
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    1 小时前
  • 签到天数: 3161 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ! J9 `3 v. y! p) J我推理机的核心算法应该是二叉树遍历的变种。
    ! C9 c4 Z# j0 k' }另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    / \1 e2 [% W/ nKey Idea of Recursion
    ' l3 D7 c' ^0 G$ U& I9 ]* G
    . j2 i! h! s3 e9 L4 V0 kA recursive function solves a problem by:) I# Z8 Y- c1 U( n  ^! g
    3 ?$ K: g! S0 Y
        Breaking the problem into smaller instances of the same problem.# d4 K& ~# n5 g( ?7 x
    " K9 ~3 T% ~, O2 i. _
        Solving the smallest instance directly (base case)., M' S( r* d$ Q: v

    ' p7 }; ]  d; ^) h    Combining the results of smaller instances to solve the larger problem.( h2 B6 t9 h8 L& v
    ! r* V' ^) y$ }) K2 ?* `. G. R; I
    Components of a Recursive Function
    # V1 E; B2 N. B  O: X
    ) A3 ~9 r) s1 y" Q    Base Case:
    ; ?. D6 g% e) K7 B( Z! c8 ~* ]& M* Y/ l& Y
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    . B+ J3 g; G2 [5 S: O, r0 C3 \- O) B/ M8 O/ c7 W6 e" x
            It acts as the stopping condition to prevent infinite recursion.# a7 i" ?0 T& Q( h, \

    & }! `; _: Q+ r0 j        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.% u- u% v! n' m1 X1 m* D2 i5 w  F& q2 C
    3 ], f! U; T' I8 i5 d" \7 d
        Recursive Case:
    0 O0 |8 k: n8 G: I- X  F& _9 \. j5 z- ~# Y! h9 f8 L' ?5 V
            This is where the function calls itself with a smaller or simpler version of the problem.  M$ S5 S% X  z9 _. u4 d. R+ t4 P

    3 o9 S& G  S7 O- k8 q9 C$ m        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).  A. |* K( U$ a% N* Q9 d

    7 B# H. t3 M. i# CExample: Factorial Calculation
    ( P/ C, G2 H+ `9 J6 T
    " b4 c: L+ w. O' X; ^The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    0 M% _) C% q. b$ n8 A
    / U/ Y) `) ^1 @) |1 p& \    Base case: 0! = 1: B: [5 N4 o: k4 a; G

    7 B) ?7 Y) b9 u$ q0 l    Recursive case: n! = n * (n-1)!
    9 F5 h' {5 r$ m) h" b! b) n# p8 w
    Here’s how it looks in code (Python):( m3 }8 J8 Y* W& _
    python
    $ @$ i0 P! n$ x0 K* J
    2 a% ~. `; @% i# a$ Q% q" s" C# P! Y3 `0 r% c+ y* I
    def factorial(n):
    ( e5 ?8 P/ h. S. D6 y5 M0 e5 K& `    # Base case  U" M: {8 f' m) H& P
        if n == 0:
    2 Z/ i+ P1 P) o7 Y        return 18 ?" p4 g* A7 ]$ q* }; b4 Y
        # Recursive case& J+ ?. o$ M3 O# u7 ^2 g* t
        else:
    4 n/ M# T' m1 f$ Q( M& l8 Q$ z        return n * factorial(n - 1)- _! S6 {3 X# r( k) f) {8 x

    ) A" O7 q; v" I6 k# Example usage- b+ n, F  S; a2 f$ M
    print(factorial(5))  # Output: 120
    & E& f+ n( m* x& g3 T9 W, U
    5 Q# p7 @4 b* ?" l; C7 ^How Recursion Works
    8 M! @7 Q( R8 f' T. m. j
    * C; [5 C% T  E# D' X6 o    The function keeps calling itself with smaller inputs until it reaches the base case.
    , Z$ s4 @1 I; B
    : M0 X: g* X- q    Once the base case is reached, the function starts returning values back up the call stack.
    0 W# J4 ?8 J$ u; j6 d8 Z; T9 ~6 y# r2 T( Y( g# l
        These returned values are combined to produce the final result.9 C( X& H, |' K6 X0 D/ G3 v% _

    ; e7 B& z; o$ y: q6 Z+ |. ZFor factorial(5):5 o, N' i$ i6 m+ o9 C# z( L& c

    9 W2 `4 _' p' z* [* K& h" a5 x6 v( e6 e2 e0 ]' t
    factorial(5) = 5 * factorial(4); {# _+ E9 n5 l' T& e
    factorial(4) = 4 * factorial(3)
    3 N; K8 h" [6 |- j5 ~7 xfactorial(3) = 3 * factorial(2)
    8 O5 C) {7 @2 ]/ u% Hfactorial(2) = 2 * factorial(1)
    ' F- d9 t) ?4 D3 xfactorial(1) = 1 * factorial(0)0 e* I" q! H' e0 ?4 k9 V- p! m) P9 y
    factorial(0) = 1  # Base case
    . P" d6 B( [. V) W1 f3 C
    2 u. P6 S  ]  x0 h* |0 IThen, the results are combined:
    ( O9 O+ D, x; j" u$ e( b% }6 ~! l  g. R, }

    3 w$ c8 d) Y7 T! u% }" ~& ~factorial(1) = 1 * 1 = 1
    6 G5 ~& {/ Y' u5 {7 A/ L9 c/ f$ xfactorial(2) = 2 * 1 = 2
    6 h& |9 M( `. X2 I. J: b' I# L  _6 rfactorial(3) = 3 * 2 = 6
    ( E: G' ~$ e; f, T5 X' d; v, {factorial(4) = 4 * 6 = 241 c( K1 e1 U; h
    factorial(5) = 5 * 24 = 120! e9 H9 O$ ~; ~, J% J' t& O

    ! ~# T; |4 U# d+ N- F5 Y3 mAdvantages of Recursion
    * B. V3 Q2 e1 A- a' R$ f! c8 w# ^, A6 h8 z  T" ^( w6 h. g$ }" L4 L
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ b! ]. H0 a6 O2 R  p

    7 `  N( @9 c. e( S6 k    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ( Y, Y: d, Q( a; T2 P
    1 ]9 B# }$ M1 q8 e+ mDisadvantages of Recursion  A/ ]1 `0 W2 u# p

    9 o% n. n9 h+ f* w    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion." Z  Q: N7 H8 M- m2 P* s

    1 I3 {9 F# u3 P4 U5 J2 V    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 i# `# `: T2 [; E) \0 N, N# j1 E1 K

    : n" {! N2 i& G) H8 ZWhen to Use Recursion0 Q9 I, O) R2 [* i" E2 O
    + P7 J8 {: e2 @# ]) L8 t' }5 u, {2 S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).; A. V/ w. E7 y: b. [0 f3 v

    8 l$ l& l( v: k4 ]    Problems with a clear base case and recursive case.9 X' P) Q& O7 {; R
    . o+ R( T) W/ h' }
    Example: Fibonacci Sequence
    : h& f- |  H1 i9 h8 M/ p6 m
    . e( k. L5 n" c, e* Y6 _3 TThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ( U& ?: P( U" X) I: s; n
    0 ~' U6 J2 }, m) ]) j2 I    Base case: fib(0) = 0, fib(1) = 18 s* x) d2 @! ^4 ?& E
    . X4 [9 u& Y1 w- q+ z
        Recursive case: fib(n) = fib(n-1) + fib(n-2)% U! P5 w9 r3 Q

    : t2 b9 |9 Y- `* ~3 c1 gpython, \; [6 S: y8 X+ [( D) u! A

    0 L2 j. e4 r) r5 `  R- Y' y" @, s* n/ r2 b, A8 B$ D9 [" M
    def fibonacci(n):7 W+ t* Z1 n$ @
        # Base cases
    3 X  q7 T, r. ~6 t+ r    if n == 0:. B5 r) g  {; P3 y1 k* c1 e
            return 0# ]# d) P4 [# Z4 d: i9 k. w
        elif n == 1:
    ; X" V, g# B3 G! D. r3 I3 n        return 1
    0 s" _) t+ d: G# S+ t    # Recursive case
    3 r& u( @, }4 H. `) y    else:7 ^6 S" H6 L+ r0 n
            return fibonacci(n - 1) + fibonacci(n - 2)
    : s" A" _2 D7 d: Y( y% m' N$ a# g* [6 X
    # Example usage
    7 \: K5 F# ~" s! y* bprint(fibonacci(6))  # Output: 83 O0 {) Q, I! D* k9 H! b1 Z

    - Y' [! c9 j3 |6 y9 \0 d% Z8 LTail Recursion, L3 ?+ [& H- a+ v$ C8 d& I8 ?
    9 @0 x" B5 h8 g6 d3 t7 z5 M. N
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    8 l8 w- w9 x. |8 y4 {4 d+ m7 T( j5 D' T# X5 ^! B2 P7 i. K" J. f
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-2 09:32 , Processed in 0.075818 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表