设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1720|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # K5 f; {# K* D9 a) K. g! _4 n  ]! e; p$ }3 ~
    解释的不错
    2 v: \2 P' F$ G3 \. P
    ' f* A7 t; R5 d( P; S% C/ e& d: S9 ?递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& ?4 x7 u- K. q, F2 d  }5 y7 m

    6 C4 a9 H9 b; H2 ^# ]9 ~ 关键要素! i* B5 M( }+ h. r9 s2 \( L' B
    1. **基线条件(Base Case)*** H+ d% R8 l8 d
       - 递归终止的条件,防止无限循环
    ) m9 `! c# ]7 @0 y# {; Q' s   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ! u; O3 o9 |$ D2 k: Z$ D. K8 K9 T, B# v0 p# D8 v
    2. **递归条件(Recursive Case)**) E% Q+ S( z8 O" j& d* ?- o, |, {
       - 将原问题分解为更小的子问题, _" g  o' V' }! z
       - 例如:n! = n × (n-1)!, s  X7 f% ?: _7 ^
    / R0 n/ X, h( F/ E5 J. g0 U' M
    经典示例:计算阶乘
    9 d: [' ~  ~" V" U5 D. U+ b, x" Ypython
    , B+ S2 c0 x+ s0 i# ydef factorial(n):
    2 Q4 C% a. ^* W    if n == 0:        # 基线条件
    2 T7 Y! V4 P1 _) [1 t        return 1
    6 K9 v; j3 w# j/ S2 R2 g) Y    else:             # 递归条件
    $ ~  Y* C4 U( M/ e        return n * factorial(n-1)
    * C' B* U. B3 @  v- @, t, s执行过程(以计算 3! 为例):
    & w+ Q3 d7 m! K8 n6 f" Dfactorial(3)0 N% ^; G9 z0 x
    3 * factorial(2)
    7 e4 n$ I2 i8 j3 * (2 * factorial(1))0 o$ y' f+ {9 f, q7 d) ^4 F% ?' B
    3 * (2 * (1 * factorial(0)))6 ^: s/ H6 y8 Y( T& z2 a
    3 * (2 * (1 * 1)) = 6# K: t! a  C* E& z' j
    ) v1 Y. ~% z. K% K
    递归思维要点
    9 r9 p- y3 w' K& L1. **信任递归**:假设子问题已经解决,专注当前层逻辑! v* `* K, c& ?7 X5 ]
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)* Z0 U  O0 J0 ?7 S* k- d
    3. **递推过程**:不断向下分解问题(递)* Q: D$ v( z5 F( x& G
    4. **回溯过程**:组合子问题结果返回(归), A0 x! a7 j# I# [6 K# F2 e2 l
    , b  S$ @1 [* Z3 R$ G0 ?7 o" k- {
    注意事项
    % c# d+ ]) ~8 a2 o/ Z必须要有终止条件
    % D7 K+ H1 q, f" K递归深度过大可能导致栈溢出(Python默认递归深度约1000层)1 `9 G0 J# T6 @1 [- q
    某些问题用递归更直观(如树遍历),但效率可能不如迭代  J9 G5 Q- c0 q/ x
    尾递归优化可以提升效率(但Python不支持)
    1 J  Z2 l7 x! _- B/ u, e) R) d3 d  d5 g3 J# O
    递归 vs 迭代
    ! p3 }: Y, }( m& d; `$ n9 B: w|          | 递归                          | 迭代               |
    * H2 J1 a1 Z5 m. N|----------|-----------------------------|------------------|
    $ |. m8 Y# j' Y/ ?% _| 实现方式    | 函数自调用                        | 循环结构            |4 x- A' V; o& F
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! A( R# M9 i5 q$ V6 ^1 {
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    9 ?/ g+ g% |: g3 a8 Z| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 Q/ Y' F. X% d0 {6 l( `: k2 Z3 z" O
    经典递归应用场景; L1 U7 @6 p: k& [* ^
    1. 文件系统遍历(目录树结构)9 B! _6 k2 c5 b1 Y3 w! O) Q
    2. 快速排序/归并排序算法" @8 i+ u! P- q$ [! R- R$ Q( z
    3. 汉诺塔问题
    - \/ p9 o6 J& O& r$ L# S( G: _4. 二叉树遍历(前序/中序/后序)! ~% Y# |% p0 ]' d* \
    5. 生成所有可能的组合(回溯算法)1 H# d: S) g8 d) D1 h

    . p2 R- G" d1 B% }! f! Y' ?( ~试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 15:11
  • 签到天数: 3133 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ! {) n; B6 p5 A我推理机的核心算法应该是二叉树遍历的变种。9 i8 q) B8 ^% h4 I% p1 A8 J
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:9 t5 {7 f" G" `6 n
    Key Idea of Recursion" _0 ]6 u+ S) d- M

    1 z4 y2 ?0 S: z( G* J3 J# Q4 XA recursive function solves a problem by:% b3 G9 d: z# @0 h' K
    1 u, K& o; a* k2 A
        Breaking the problem into smaller instances of the same problem.
    4 o1 O, F" k+ z) i5 [# R& x$ a7 h+ K: O4 r$ f# d& R$ e
        Solving the smallest instance directly (base case).
    . m% Y5 B7 T9 I& l& I
    % p4 V) n, D$ g3 _: |( F. u    Combining the results of smaller instances to solve the larger problem.
    / t. h6 X5 a5 E& v8 [6 ]
    - g( y4 d/ R' @' RComponents of a Recursive Function
    3 C2 v( t, `5 o( m' M- @8 J
    ; T9 q- `/ Z( h4 ^+ F6 s1 u* C! t8 `    Base Case:- e% U- Q. |& A

    : t8 ~8 i  I" j/ S1 D  q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    + }  _1 K: s  w5 [: t$ Q. ^9 t. i) t6 J2 d, S/ o
            It acts as the stopping condition to prevent infinite recursion.( `( M9 n" @9 P2 j2 y

    " T2 P4 u6 B* _/ ?- c" P        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.% q5 n" K4 Z+ h; u! r4 Y
    7 [1 ?( R" ]% v( S5 O* E8 L( }
        Recursive Case:% X6 Z" W  |2 x
    / \4 P1 j! C# x& k! j$ u3 Y( b& \
            This is where the function calls itself with a smaller or simpler version of the problem.( N8 W) H+ m% U8 M- R2 g" v& s
    - v5 |8 v7 B& m" V
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." X! m; u4 E( U' x" R, m4 ]5 X1 `2 V

    ) a; M' L) r. L0 ]Example: Factorial Calculation
    7 w$ R- q, ^8 W) ^/ T2 S6 I/ A2 R* o( v9 h
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    , A1 q3 M4 S) X2 I- h( i
    5 g2 q' j$ k4 x7 N# ?& r1 @1 n# y    Base case: 0! = 1* ~& u& m2 h0 a' w5 ]/ k
    1 h5 V) \' b6 S  B, }
        Recursive case: n! = n * (n-1)!) l2 o( S7 F1 a, f/ @6 f

    3 c& X& g# c6 y% uHere’s how it looks in code (Python):& y4 Q7 O& Q6 r" q# d, w
    python
    ( Q: d$ {/ }- D1 K$ F  `$ E0 u) n4 i9 [# g& ^
    & {# K" u) k# K
    def factorial(n):# {6 X' o6 G9 {$ M% [
        # Base case
    . ]% ^1 c3 z7 S7 l' F0 |    if n == 0:
    4 s& W1 ~, I+ W+ V        return 1
    & n* w4 K* ~, ~' a1 d    # Recursive case
    $ f% _. [8 R6 `5 Z1 M) H    else:+ `/ J3 A8 D9 ^8 r& l6 H7 k
            return n * factorial(n - 1)# K$ u, h; }/ H. G0 I
    4 f) \- v7 {  U. y1 z
    # Example usage
    ( Y/ h& G/ `! U! |% z  y2 Jprint(factorial(5))  # Output: 1201 C4 o0 k4 g! T( M  z/ Y" L
    ; p# E* H$ |. C; O# J
    How Recursion Works
    - @" ]$ M* M* t& m4 ~7 {" C
    3 `" H& N3 b  Q/ }/ y- w- K* ~    The function keeps calling itself with smaller inputs until it reaches the base case.
    1 w! [. X" b$ l6 v/ i! j  B- M$ U3 U' A7 K" c+ U4 S. H# H6 c$ ^, C
        Once the base case is reached, the function starts returning values back up the call stack.9 v* F$ P' [' U6 |0 g

    $ p# ~" ]5 X* h    These returned values are combined to produce the final result.! W6 R+ h' `# d! ~& N) T% O
    - o1 a( u5 f& w; O  I* m
    For factorial(5):
    * ]' _& t) q8 P6 D, m% w
    7 Z/ ]5 x% y- q! j5 |6 y0 ?9 `) t; K# p" w$ P& r. p% T
    factorial(5) = 5 * factorial(4)2 g, n" E0 ?. t3 S
    factorial(4) = 4 * factorial(3)0 a' ?$ ]5 A$ h, d7 c4 _5 d
    factorial(3) = 3 * factorial(2)$ a' D" R3 S/ @$ C5 K, m# I5 m
    factorial(2) = 2 * factorial(1)* i& D. p2 C' W0 C0 S/ e4 H/ _& t+ X
    factorial(1) = 1 * factorial(0)& z! E* R2 y' N7 X" S" D
    factorial(0) = 1  # Base case# [9 ~2 M0 \' y1 c" r0 e3 _: q; P

    * g/ \/ t& S. r( OThen, the results are combined:
    & x4 _+ F0 `7 p+ \- s8 `* A- }% j' v
    ) m1 v# U4 Q8 ?* P% T: i" L* T, j0 F. _! ?- N; D
    factorial(1) = 1 * 1 = 1
    $ ~8 n% c1 F0 m) u4 o/ B$ ~factorial(2) = 2 * 1 = 2$ R4 f: d/ s' l( e2 y
    factorial(3) = 3 * 2 = 6
    " N: v9 s$ |: I8 a# W) ]factorial(4) = 4 * 6 = 240 v% P+ b. `1 U& i1 ^
    factorial(5) = 5 * 24 = 120
    - G+ A: ]' x7 q; C$ k7 W  Z1 G6 b8 e
    0 {8 L( Q. ~5 I, B. n  x2 AAdvantages of Recursion
    ; B' L' q0 m1 [/ g5 v( ], y# j/ n$ d4 o! r& h- R
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    2 \/ C( }4 r7 b8 \) p5 D  r. l+ b+ {% W9 B3 Y
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    4 x/ [* @( J* l/ v5 o* j( V8 h5 s
    ( O- B" a; n" v3 }# NDisadvantages of Recursion
    7 C7 R/ A% B8 t1 V# j4 g1 `. G
    # H2 I9 `& O9 y    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ O5 ^/ \" K7 ?& E
    - o! s# S1 I/ _
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    : J: Z5 n# W$ j- H6 g5 x, g- c) E( m( ?
    When to Use Recursion
    & {: s4 b) ]8 P! T: Y+ E  R5 H/ u7 {/ h. Z/ U* R, D; v
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    8 C/ R3 D1 b5 a. j. V( z- m4 F/ w; k5 m, K1 r+ e
        Problems with a clear base case and recursive case.. x" B; U+ J4 ]4 ^3 D( m
    7 D$ r: m, H7 W4 c7 E
    Example: Fibonacci Sequence
    + E1 R' u1 Q& m8 i( |- |" \
    ; ]* `* x) j7 P; z% XThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ Q& T* _2 B& U1 ]

    & L2 ~) L- E! L    Base case: fib(0) = 0, fib(1) = 1/ T' p7 R+ _6 o$ ]" c

    # N2 p2 H8 L9 J2 E, ], ]8 G% G9 S    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    8 G& b' ]4 M& h, L  l
    % s1 A% N# f" D+ Y8 hpython1 d* y( j( B0 F
    ! u+ K( F$ {4 y4 w2 J

    + U8 E' b+ L% G* B& X3 c! c: Gdef fibonacci(n):# T7 n/ ~0 y1 m. j& i! D
        # Base cases) H5 G7 _: G, R7 a, \
        if n == 0:
    6 O4 c* w/ F) j5 |5 x4 h3 j        return 0
    % _5 E/ j( t* s& m3 W6 n" L    elif n == 1:
    # {' _/ l( ?, X7 P6 H# K* r        return 1
    & o& h" A) }! h+ @+ K. h    # Recursive case
    ) t4 X" e3 G- I. |6 B6 g# C    else:# p2 U1 V5 E2 x9 X; c
            return fibonacci(n - 1) + fibonacci(n - 2)
    " S0 C/ q8 v- m$ j" ?
    " C: P" M; ]! d7 w: y2 f8 _6 ]# c# Example usage
    ( k5 ^6 K- P- k' [/ A. oprint(fibonacci(6))  # Output: 8. y9 r: ^- F. r2 J
    4 e$ ~2 b7 i& x& s" |
    Tail Recursion
    . C1 s1 u4 I% ~6 y0 C" ~
    : [* V* @5 c. x1 K6 D# b$ pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # T4 e" X) M% @, J9 u6 R, h" }" I6 P' q: R" U0 Q% d- J
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-2 12:26 , Processed in 0.038091 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表