设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1888|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    1 f8 f; ?* c. w# ^! x. O
    " }! Z* R0 P3 @- d& X解释的不错
    9 h: e- Y0 [) o3 R. f  V8 T2 s7 x7 B- I  |
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    0 ]' Z1 |' i/ {3 g( _; [8 a1 n5 b1 A3 B. X, w: U8 Q/ s
    关键要素, [! g3 ?1 }' `; P" Y
    1. **基线条件(Base Case)**
    ) I. g: y7 p( x, \   - 递归终止的条件,防止无限循环
    # d: r. I- |6 [- y2 k1 U( d& v   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    * K+ i( N# j% R$ `* @8 `9 F& \! ?7 p0 V6 ~% t7 n7 K1 ?$ g
    2. **递归条件(Recursive Case)**
    % [9 T' b( n8 @! I$ q   - 将原问题分解为更小的子问题+ D1 e5 G$ O$ l3 W/ Z1 p
       - 例如:n! = n × (n-1)!
    , j; B. C( G4 \6 i2 T( J* B7 d% p1 ^. W) ]- x5 X
    经典示例:计算阶乘; c( ~0 i. @: n& Q4 ?
    python
    9 i% b, }! t, L# }3 k7 r5 k8 u. rdef factorial(n):9 O  P; I  h* m- Z! [8 Q+ U. @
        if n == 0:        # 基线条件6 ]) z% o- X  A* i
            return 1. e9 ]4 u& w9 k" _4 `# @# H: j, K
        else:             # 递归条件
    9 n' _+ n" h/ N5 w8 |) S/ |        return n * factorial(n-1)
    ; B2 n. `' b" p( V- R$ h) J( G# h" E% _执行过程(以计算 3! 为例):, F: S2 d( Q1 C4 P: D
    factorial(3)
    ; ~/ y7 a- k( T9 k- S7 m3 * factorial(2)( m. Z2 h& |# W1 r' ?5 \$ p
    3 * (2 * factorial(1))& b; t' _8 m3 E1 i
    3 * (2 * (1 * factorial(0)))
    6 B; ?/ h9 C# w6 ]3 * (2 * (1 * 1)) = 62 N! H& Y1 c; q& U( E# R" }
    ; m, d) G6 U5 L/ T6 N
    递归思维要点& ~7 ], C, A$ R; K5 I
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑& ~7 h1 V. A% H. f# t
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" G, L- _3 r7 F: J* o
    3. **递推过程**:不断向下分解问题(递)) f& P/ W/ E# h* }/ r7 k$ V
    4. **回溯过程**:组合子问题结果返回(归)3 n8 n: `  l/ R, G6 J9 s; `  v
    * y* V# t9 `* Q
    注意事项
    7 L3 l7 ~/ j- w% E2 J1 ^" }- M必须要有终止条件) C' M! O  U, Y7 ~. B
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # p. V# N# @3 c0 [  L& D! H某些问题用递归更直观(如树遍历),但效率可能不如迭代
    - C& R: p) m' @尾递归优化可以提升效率(但Python不支持)# q+ q9 a+ \% ^/ y: T0 @

    + A9 m7 N* {) I 递归 vs 迭代* S+ D) q$ S7 R$ h4 t. E2 z
    |          | 递归                          | 迭代               |! ]( k) Z9 {0 R# V% T; p
    |----------|-----------------------------|------------------|
    2 n! x1 G$ p- m4 S0 E" z| 实现方式    | 函数自调用                        | 循环结构            |
      ~  w7 v: r. S( F2 z* I& P; T2 B' ~| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 ]  J0 M- g- Y" ^# |3 a| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |% g$ h- V- B* f* M
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |7 z/ D6 ]7 q$ a3 E" z

    3 w8 U3 v: }3 \" y 经典递归应用场景
    : ]! U- x* Q7 M  k( q; ?. ^1. 文件系统遍历(目录树结构)5 P& G0 u6 L8 f9 h' S1 w
    2. 快速排序/归并排序算法: Q8 Q5 w% G- q0 C
    3. 汉诺塔问题
    ( ~( M9 d9 B, Y! E8 ~5 e4. 二叉树遍历(前序/中序/后序)7 z$ {% k9 X: ^& C7 m9 D
    5. 生成所有可能的组合(回溯算法)  w- m) Q& U' v/ M5 ]; x

    % D1 P: a: H' f: A2 T试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    1 小时前
  • 签到天数: 3149 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( ^) I$ A; j& A
    我推理机的核心算法应该是二叉树遍历的变种。
    $ Z- Z5 M$ A3 H6 {, _) o& I! i另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 w9 r2 y$ q1 n; R" H
    Key Idea of Recursion
    : Y. y! G  R0 R. J' e. L
    ) W1 Y7 C/ B) xA recursive function solves a problem by:
    - U' o) [6 T7 _7 X
    5 d, A6 f: L$ I1 G& [/ C2 H3 a    Breaking the problem into smaller instances of the same problem.
    ; h5 t2 e; P2 h: C) ]! p
    2 K$ p0 d( U3 j. E( `8 H# v7 V    Solving the smallest instance directly (base case).- k" W, ^( q  y( ?' L& b

    ( s5 A% X. O! j. I! n- _' i    Combining the results of smaller instances to solve the larger problem.
    ( Q7 ~  k. C! Z2 ?$ Y
    & u$ ?9 B5 y' T2 {Components of a Recursive Function
    * q, x! c# @+ l/ o8 a$ x- H2 x% L3 v
        Base Case:3 }9 W/ X8 l9 q* V2 u& V

    6 V5 ]1 y' Q4 ?* R* h1 }) a$ s        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. D2 k# E; X1 J% ^* B
    ' P, V2 P, u. v: ^. V
            It acts as the stopping condition to prevent infinite recursion.# A/ i5 n' ?" l; ]4 K5 \% C  C

    & w( j. c  `, V% A, z4 f' ~  H        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.+ l! A( \" v# j. D$ S

    . h" G+ T% i' s; `    Recursive Case:
    0 C4 E$ J* k& ?' O7 E1 h
    $ D% Y5 h, s! O! h, l# s0 q( a        This is where the function calls itself with a smaller or simpler version of the problem.
    / G% J$ S6 Y# I$ h; k1 p9 Q! q- j; Y# m9 t7 S1 A6 H7 J
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    - b' [+ T3 }- l; O/ a
    4 z, ~8 C, y! k' W8 l  q" s4 H( ^, YExample: Factorial Calculation0 l  y( W3 F" A

    7 L8 @2 w( e, h* _  xThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:: f2 Q! [9 n) _+ n2 ]: ]) K9 F
    " y6 A0 w# F: l6 d2 S
        Base case: 0! = 1( |, p( V  z% h$ @/ y
    4 \/ Y- q3 ?, Q( _
        Recursive case: n! = n * (n-1)!& f* b; G3 Z; w0 }$ O

    , k& Q4 S4 a3 C- Y! F. uHere’s how it looks in code (Python):- S" u$ `( Y6 \
    python
    4 Y) Z: h  |" @6 H: l( ?* h% |, S& ^0 B1 p: D( y

    * n4 z* |% C" Idef factorial(n):' o  s  X2 w1 N1 |* K
        # Base case
    1 `5 g+ ~3 n* E/ p* L9 B2 S. J    if n == 0:
    / h: f# x' v8 y7 V) Y% n7 [        return 1- ~4 }) v3 W/ n! }/ \4 ]
        # Recursive case% d- [) ?3 }7 o, |) w7 G  t. C
        else:/ k- G! O. k9 a& s3 r2 _
            return n * factorial(n - 1)
    # L8 C9 b! Z' c3 t' L0 {+ w3 q$ Q. P' k& R' I* c/ S
    # Example usage
    . n9 S; @4 M7 ~% x; Xprint(factorial(5))  # Output: 120
    ) N6 G2 K/ L8 k6 b* I1 d2 J3 W' h# p$ S# r1 d* p% ], i, o
    How Recursion Works$ N& L; |$ q# h- g" ]( K

    ; D- K: ~; W* X7 ?2 S    The function keeps calling itself with smaller inputs until it reaches the base case.0 O" ~, ]4 L, H2 T

    / b+ G, T9 k3 y- T    Once the base case is reached, the function starts returning values back up the call stack.
      ?' ?- q( Y! f) S4 w" n8 u$ t
    9 R( R3 K4 }  t4 V* ^  z    These returned values are combined to produce the final result.8 q9 g! C& [8 c5 n, R( q
      ^! ?2 M: {% g& {6 t2 R  E
    For factorial(5):
    * E& C+ ~! g, r! P& U
    - o9 w/ v4 [3 y" m# r' ~9 o! o2 m
    ! ~5 K1 Y  u/ {. z; g/ O. D: \factorial(5) = 5 * factorial(4)
    ; N+ C7 }; N+ W0 [) j( Ufactorial(4) = 4 * factorial(3)
    6 n! C8 B4 q  N* m3 J  f3 Vfactorial(3) = 3 * factorial(2)7 F9 F& Y9 T' \# ~
    factorial(2) = 2 * factorial(1)1 ~  b/ d1 @1 x1 T. n
    factorial(1) = 1 * factorial(0)
    - J' w: @% K; G; q: dfactorial(0) = 1  # Base case$ T3 u8 g$ J4 ?- R
    7 O# N. ]# C& F9 |4 ~; f
    Then, the results are combined:+ s: }* ~; V3 e6 W0 I; j' X

    5 q* t- a" x* f( U! Z: r$ E. _: {5 i! C; _) c% J( I1 O
    factorial(1) = 1 * 1 = 1
    8 r" a) C" c# Ofactorial(2) = 2 * 1 = 2
    ) i7 p6 n0 e/ v) w8 ^  k# \  xfactorial(3) = 3 * 2 = 6
    9 M9 X$ u* \% @  ^6 Tfactorial(4) = 4 * 6 = 24# H1 {/ ?% d% C
    factorial(5) = 5 * 24 = 120
    " ?' L# y( L8 |. v, {  _# w$ m6 u* J1 M& [4 j! c
    Advantages of Recursion
    ; o/ a& X$ L, t. s" X  y. C* l
    $ r5 U- Y) l; r) o! k! U    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    " O9 q4 ?3 C" z$ _( H- l9 ^
    7 f# Z4 ^" ^, Y    Readability: Recursive code can be more readable and concise compared to iterative solutions.7 W% y/ ]2 q1 E. \
    , p! f: B: _# S, B& H% v
    Disadvantages of Recursion
    / |% |9 V; q1 J  ]2 j$ t
    ! H3 e1 h, `; _: y    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ' ~. e- F) g4 R) b
    " G9 f( j7 T5 [/ o4 n) O    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).( v2 D( V( o) j8 g& K, n6 g
    & Y& K' h3 `! I- r9 o( D
    When to Use Recursion
    . W* Q* z1 }  H, A% O4 H$ [% h8 w) |$ y) y+ C; K/ t
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).& S3 V- Y( l, L& b

      {/ B5 g. I$ z: ~    Problems with a clear base case and recursive case.
    : b7 X6 ~# _1 e9 \  a% R
    1 n! _# |! O! I& s- MExample: Fibonacci Sequence* `) X( v6 b$ d# n- }0 I  q

      C/ H( D" m6 B9 X8 V; {: B" }The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:% F# \$ ^# u! f; q8 }4 w

    7 M$ W4 T: e  G1 M) C* p7 }    Base case: fib(0) = 0, fib(1) = 1% D3 n6 R* M; S: N# |4 j
    % S7 ~& ^5 Z  j- O: B" ~, c0 V* x& [0 N
        Recursive case: fib(n) = fib(n-1) + fib(n-2)$ o+ {: x6 U6 \6 v& G4 J

    : D6 O" s" _# H6 hpython  [, n+ V  @" H; X/ e1 w
    % `: G9 x; H( v( P2 p" M
    " R( W* j+ P0 s% C( w9 j" C6 F
    def fibonacci(n):* Q( h0 r6 I1 s3 ]+ h2 l" V
        # Base cases" {4 M1 r: r( d/ \2 v% |) O
        if n == 0:
    / K& @: X! i6 j) L- q' M2 z        return 0
    7 l7 l. W* Z& F, q: W  g6 u    elif n == 1:4 v% O7 \4 g8 T6 ~; a6 d
            return 1
    1 J; H; @2 u: C) x6 G9 J, J    # Recursive case
    % s! K( U+ e3 m5 d, s- b    else:; i  w5 C% b& g
            return fibonacci(n - 1) + fibonacci(n - 2)
    5 P, R2 |$ }# |3 I4 k' j
    " D0 \% t5 y# h5 n6 T+ D# Example usage
    % h! {/ E$ o+ x; Nprint(fibonacci(6))  # Output: 89 d& ]1 \" j$ Y- J/ h! o! K- B

    0 f& a2 V4 t9 RTail Recursion
    ' G9 [: M$ F0 T+ q  U  C
    4 [7 \- \) e( D& a" fTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    5 G" a/ i4 c$ G& l( t3 o/ A; l
    : K! c1 a: I5 o! m( |6 G  m& O- C6 dIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-19 10:53 , Processed in 0.042105 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表