设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1895|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 ?8 O' C: C3 P. ]/ y
    " w/ Y9 T6 Q3 F5 m  `: `解释的不错4 m- T, _0 F9 D
    $ [5 P% l& W+ U0 p# w
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ' f0 V8 I) J7 s7 ^& }- K# a8 o  L: f4 K2 N
    关键要素
    9 J! ^$ G( Z. C4 O/ R- d1. **基线条件(Base Case)**
    0 Y! E5 j5 A" ?* G' y   - 递归终止的条件,防止无限循环; e% w6 N# m, h% s) \7 f! {% I" o
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 M$ Z0 P( A, t7 f

    - K) L3 H6 \' A9 C7 ~+ I& A+ |) t2. **递归条件(Recursive Case)**
      L7 D# ?0 }5 ^; ^1 s0 T   - 将原问题分解为更小的子问题. u" K3 I- p) \( n- G
       - 例如:n! = n × (n-1)!
    . N/ r# S- A& T& x8 X6 C1 K# X* s9 ]' J$ ^
    经典示例:计算阶乘
    ' X/ N$ S& X4 W  P# m: cpython
    9 y, W1 F7 E* h3 @9 X4 j& edef factorial(n):
    ' C  e2 z3 u/ N4 O# [) `3 _8 U+ Q    if n == 0:        # 基线条件
    ' {! J. K/ R+ F7 ~6 ~0 J        return 1
    . B! I) ^8 B3 P5 D5 M  ^    else:             # 递归条件
    7 C, ?0 J& s4 p- ?/ \' X9 ~2 a8 x1 \        return n * factorial(n-1)" O  n$ D# n& j; j
    执行过程(以计算 3! 为例):" a# k5 t  g. G" E+ v8 z% L
    factorial(3)
    & l) w2 Q! G, E$ G3 * factorial(2)% H% O* s4 u) x3 D: q0 L
    3 * (2 * factorial(1))
    6 I+ O! g! n9 K' e+ V3 * (2 * (1 * factorial(0)))
    : D) T1 o6 C+ W, p/ J! e/ [3 * (2 * (1 * 1)) = 6
    0 @8 @, w" u, S3 p7 P* Q% m, Z# w3 ?
    递归思维要点
      L! t7 V: }" \' V4 |1. **信任递归**:假设子问题已经解决,专注当前层逻辑
      Z, b5 `5 ^- p5 K6 F2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& i# q5 t/ L8 }+ }# `
    3. **递推过程**:不断向下分解问题(递)! L& G) ?1 g9 I8 n. q  r
    4. **回溯过程**:组合子问题结果返回(归)
    2 V, Y6 p+ ]3 E5 a: B' m' k0 H  y
    # P% u0 x% ]! |1 Y: t6 x1 c 注意事项
    ( f6 D. N3 o* F# R. Z) w9 x必须要有终止条件
    ) @2 I4 g5 C9 }; k( h递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    8 P$ k; i8 o( F, b& \9 d某些问题用递归更直观(如树遍历),但效率可能不如迭代% m1 r& `$ w6 Q2 @
    尾递归优化可以提升效率(但Python不支持). G5 a  ~8 U, Y- S+ ?" J

    $ u8 f' A) @6 N- I3 M4 m 递归 vs 迭代
    4 R2 l3 T7 i- k|          | 递归                          | 迭代               |
    1 U( j( P4 H; a. l|----------|-----------------------------|------------------|8 H) C, U2 l7 a* N# r2 z
    | 实现方式    | 函数自调用                        | 循环结构            |
    5 A* V: V( w- x) ?& f| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ! T! U4 U9 x9 k* W% X) z0 {| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    0 w( m% T7 T7 o) `- H| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  h/ |& @& t2 {1 h) G
    - p5 G! }: \* W1 v% l. `# V
    经典递归应用场景' Y- @  w, S4 _6 {* H
    1. 文件系统遍历(目录树结构)' a( _; `$ f; `! l5 p& ]/ `
    2. 快速排序/归并排序算法
    1 v" {, M$ N5 S3. 汉诺塔问题
    ; P' U6 N# n4 h0 |, j0 ?' h' w4. 二叉树遍历(前序/中序/后序)* g5 C5 t& h* N$ ?' b) i; B
    5. 生成所有可能的组合(回溯算法)
    . C5 j& ^. ?& a6 ?. `! u$ V) E( {2 Y! n4 M7 }- O2 p7 M" W
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 09:10
  • 签到天数: 3149 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. b( v' z- u" w5 z( {& O- n
    我推理机的核心算法应该是二叉树遍历的变种。
    1 N7 y+ {3 i0 v# f! p! T9 C2 |另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    , A# M9 ]1 x; n' L: AKey Idea of Recursion
    3 S/ O# ~% k, S3 q8 k7 G7 _; B" j# s5 v' @# O
    A recursive function solves a problem by:
    + C! ^1 \7 E; @  i9 J* B2 D0 f2 D) {
        Breaking the problem into smaller instances of the same problem.
    ' g6 C$ _( B1 k5 H& r$ g3 a$ }$ l0 @# t
        Solving the smallest instance directly (base case).
    * p! [; }6 F( D  }' B$ T
    + l" r) P( g* L, O    Combining the results of smaller instances to solve the larger problem.+ s  F/ g7 }0 T% S7 j

    ) ^/ a! X! s: D1 z* `) WComponents of a Recursive Function
    5 @. X, j3 d$ x8 R( Z8 S. x! ]
        Base Case:- Y% |9 ?9 A# f: x8 F
    ! q9 r+ E9 o" F0 ?& E
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    . ~$ I: w' C3 E- x( q+ a$ n& ?7 ^, f+ a1 K3 Y* G1 h0 K$ y5 W8 y# `
            It acts as the stopping condition to prevent infinite recursion.
    & H' [; @  H  T$ l5 A  ?% U/ F7 B7 U: L, H, s
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1." Y) \6 Y! X+ B0 k6 [" Q
    8 T2 I, M: ~: ]: o9 _
        Recursive Case:& [1 b6 n; ^; u: |  r

    2 ]  V1 @8 r% b% T' g- s' b% m  o        This is where the function calls itself with a smaller or simpler version of the problem.
    ) A+ w  B, x1 \/ Q' L9 {6 R# e0 W4 M7 i/ R
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., {) I0 c0 V: R
    4 n1 Z4 Q& X8 t( N& i- q
    Example: Factorial Calculation
    1 c9 ?1 V. J$ u
    ' }0 ]' `! t, E- zThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  ?" R$ J( {! S
    0 e6 D0 ^+ |3 T2 E
        Base case: 0! = 1" z& {9 g, @% ^) S2 u

    1 b6 m4 Q0 |, d6 `2 P3 k5 W5 z% F5 g    Recursive case: n! = n * (n-1)!" P7 v: k3 ^. U8 O1 k

    : \7 j2 b: F9 x/ H/ K, LHere’s how it looks in code (Python):
    " q) |8 T6 b" Ppython3 {9 T+ L! T! ~! `+ {- f+ B

    . \' ^7 x" Y9 ^& i' F: {# B6 @7 y7 P+ U4 H5 h
    def factorial(n):( o+ P! P1 B# u* P7 m7 Z
        # Base case; R7 H  O! t; Y7 J9 Q5 K
        if n == 0:5 N: V1 z. e7 ?: L8 S/ e
            return 1+ f( ^( V) |% P- I" N6 L
        # Recursive case3 C3 b) M( x8 j& D9 ^( p& e3 E
        else:) s; D; P. y6 L/ Q7 d
            return n * factorial(n - 1)
    / b+ E7 ?8 F/ }4 h/ Z1 r" s0 ]8 x' `  a; m% O% q7 q
    # Example usage
    . ]0 O3 _& X) f6 W/ w. ?print(factorial(5))  # Output: 1209 g' _2 `; _' E. r
    . f  c3 ?: U+ T- G4 v
    How Recursion Works
    ) a' s+ z+ ^  q1 t% w
    ! h: @+ x# J0 q/ c* ]& O9 i    The function keeps calling itself with smaller inputs until it reaches the base case.
    5 e; X3 Q8 o% \4 D: E  w% r5 i; L- I1 `, c
        Once the base case is reached, the function starts returning values back up the call stack.! ]/ l' ]+ b6 y  O8 g# }7 S
    - G, E+ q" N3 J
        These returned values are combined to produce the final result.
    / N% q/ V- [/ L* `6 R( U$ ~" z  U
    For factorial(5):+ d  E7 Q8 p0 ~7 m7 c
    / a" b- Y) p4 e) r+ `  \3 O2 S1 f; k

    ) l& J4 i  u8 W) }factorial(5) = 5 * factorial(4)- h6 ~( `/ {) L  k4 ^
    factorial(4) = 4 * factorial(3)
    % g( j5 ], x" l8 ]4 Ifactorial(3) = 3 * factorial(2)
      a$ u% E, S/ D- b8 \2 E: {factorial(2) = 2 * factorial(1)
    - S3 b! V7 ?; F5 \% v8 }factorial(1) = 1 * factorial(0)
    . w1 y) W; ^( Z; {8 B0 d/ Ufactorial(0) = 1  # Base case
    # y& {" x+ Q2 d- M
    4 i1 M/ Z6 u; J$ L' u" @6 x$ n5 [Then, the results are combined:
    ; P- |! K0 |7 i2 U9 U! w
    - F( M4 s5 c6 N, V1 T: z
    ' x% i& D/ V" T8 z% M' e* n+ ~factorial(1) = 1 * 1 = 13 t* ]0 N5 n: [# I
    factorial(2) = 2 * 1 = 2
    % c* |2 [+ |# Mfactorial(3) = 3 * 2 = 6
    , d6 w" s( ^/ l2 V* y$ b' g8 @5 yfactorial(4) = 4 * 6 = 24
    . R2 T: H" L; n( K4 ^factorial(5) = 5 * 24 = 120* w+ q. f$ M' y" ]& h

    1 T# q2 O. L/ Q2 N! o1 ]Advantages of Recursion; ]0 H6 w1 M6 g& R- i
    0 j& Y$ ]# n2 m. l) k
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ K0 ]: k& a+ T# y' d

    / h1 k" k7 V) t    Readability: Recursive code can be more readable and concise compared to iterative solutions.2 S. n+ i2 `3 N

    5 Q4 z) X( W7 f# ^) {Disadvantages of Recursion
    # ?+ T- O+ K1 n3 S
    / k# T! G- b9 Z    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ _6 R7 T6 a# U* }( W) J/ {

    2 f( r& _0 u$ E: I$ D    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).3 H, ], W4 R' `2 O" R: z3 K5 l( n

    3 w* i0 }4 N$ UWhen to Use Recursion
    3 L! E( m& c) V! U7 g0 T% q. L$ v$ i' y3 j0 \
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% }) r$ G* x+ Y! y/ ^. x4 r
    2 |( G' E; g& ^! {. Y2 X5 V
        Problems with a clear base case and recursive case.4 J/ K" S% f4 E6 I
    + s& U' a  y/ H" T) I8 y" e* Q
    Example: Fibonacci Sequence" w1 d1 \6 K9 t, n8 q' q

    + y6 M  o7 _+ p- o1 i# ~) BThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    3 O% b, L) p/ d4 p6 l6 p0 C
    ( c- c. J/ I  r" C$ `' \    Base case: fib(0) = 0, fib(1) = 1" {9 R8 @5 l; D6 w
    3 G8 q7 [# e  m% V# R+ M8 y
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    $ e! N/ v5 w% [7 q
    6 I5 ^, j/ x% ^* a0 N& t3 ]python
    % [: ]1 m2 ]6 v  H/ R$ Q
    % ?5 `, H( ^$ G' X# U
    4 L" U. A4 {/ p8 \2 G# @2 _9 ?9 zdef fibonacci(n):
    6 X; T( x, g5 _    # Base cases, y1 R( \: ]$ c% o' @3 U- B+ l+ ?1 Y
        if n == 0:- \: U" Q. D& Q% [/ n* v& U2 r3 t% u
            return 0
    1 g2 x& P3 ~7 f) s* _    elif n == 1:# r4 d1 \5 R, O
            return 1; I; B+ ?3 Q9 N/ {# D" d+ X
        # Recursive case
    , t3 C4 j* a) J    else:6 g. X0 {% h: D; V# }
            return fibonacci(n - 1) + fibonacci(n - 2)
    & c% N4 D8 l; Z' x& e6 \/ X9 \7 S2 s% r- q/ N7 f
    # Example usage
    , h$ Z& E# r- o* u" S0 d. Lprint(fibonacci(6))  # Output: 8
    4 o7 Z, b$ S/ @' k$ G& ?7 J6 t: {! |5 i# U% `2 |% x! p
    Tail Recursion7 |6 r! M* n3 n6 n5 f: _
    + P0 P/ h- Z9 V4 o* D
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    1 }3 i3 J3 M8 ^: ?: p0 c* {( i
    9 T9 v) U; ~! Q5 S2 ]In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-20 03:12 , Processed in 0.059805 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表