设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1623|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # Z% K5 o. I* `/ u1 \7 g7 g& C( s8 L& o  }# }  h
    解释的不错
    & b) e. X+ z" x3 u- q' `3 s' m) w! ]0 |$ r! t3 r
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    % o8 }; v. ~' r; \1 X% ]; ~- j7 r6 a0 }1 u
    关键要素/ M; W" R5 z( c# ^5 J5 R/ x
    1. **基线条件(Base Case)**  V) w, o  A/ G7 d6 `% p9 A$ A
       - 递归终止的条件,防止无限循环* C! b/ N& \( h- i! `
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1/ W9 F2 k2 l2 {+ P8 k
    - C$ Y, I/ y( T' F4 f
    2. **递归条件(Recursive Case)**  w" j9 E+ f% b2 h9 y: {1 D
       - 将原问题分解为更小的子问题
    * p' D# e' G+ c' \* A3 V   - 例如:n! = n × (n-1)!# v/ s2 m: a. f+ h
    8 I* v, A9 e3 S" E0 U1 r- c
    经典示例:计算阶乘0 L1 L& U6 ~! W$ Q
    python
    7 P5 `" }/ I  g6 w+ E5 p! Cdef factorial(n):
    3 z2 @6 Q6 b) g$ T$ S. h9 S    if n == 0:        # 基线条件2 e; _% M# P1 P: v# j
            return 1
    ) |, Y) V* \8 }8 @! n* a# s    else:             # 递归条件
    , g: p/ C/ B8 D2 T6 ]  M        return n * factorial(n-1)* J! O0 U  W; J" j/ F9 h
    执行过程(以计算 3! 为例):; b+ `1 ?0 L- Y, i
    factorial(3)0 z9 w5 v, G- R' o( a* @1 q
    3 * factorial(2)6 Y" l9 p! W' V5 V/ A5 k2 C) V1 \, y
    3 * (2 * factorial(1))
    6 q6 D) b+ l; Y7 S9 g& f3 * (2 * (1 * factorial(0)))6 S7 d! t+ B) E6 i
    3 * (2 * (1 * 1)) = 6
    : i) h/ q2 o& M0 j
    + [1 L2 s- h7 S 递归思维要点. g6 C6 l3 I# e9 _$ b$ Y1 Z
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    % a. _5 Y* w; X- W7 o2 @1 p4 q2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . S) Q, h; }: L* O( y* o* G2 N3. **递推过程**:不断向下分解问题(递)0 K( D9 i- \& ?, j+ u
    4. **回溯过程**:组合子问题结果返回(归)7 L' M5 u, R, T

    - v0 {: g  b$ h* K# o 注意事项
    ; l" \; V- N" R* G/ s必须要有终止条件3 E4 o- j3 ^' \0 e6 H- b$ ~
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 X7 Z: ~* M+ q4 U
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    8 N  j: c6 B& B, I& Q尾递归优化可以提升效率(但Python不支持)
      i- a6 s: G7 ]
    & M( f4 ~. T: ~" @( k 递归 vs 迭代  b% p4 Y. r! J% c- z8 V$ L# ~) l( J* Y
    |          | 递归                          | 迭代               |
    6 o, q" D; k# D3 |' c; f9 ||----------|-----------------------------|------------------|
    ! {- X9 K9 {7 N' D! a| 实现方式    | 函数自调用                        | 循环结构            |+ ~. @) o. B; M! x) i; c  t# E: s
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |+ w4 ~- G- Q! _
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |1 a# \9 ]. _: s7 I8 q7 E
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |8 u3 r& Y/ |# J" n

    7 R& ~8 x  M5 e( b- m 经典递归应用场景$ n! i/ t8 v4 m: Z  g) F# t" u
    1. 文件系统遍历(目录树结构)% X& q4 y+ @' t& ]
    2. 快速排序/归并排序算法  v4 S0 @; g: _- g9 r6 s) n. Y% ]4 c
    3. 汉诺塔问题# R) f0 T- U; W5 j- p
    4. 二叉树遍历(前序/中序/后序)# r6 F& p' s# y8 ~; W7 [$ R* _1 w
    5. 生成所有可能的组合(回溯算法)
    8 V" ^+ C1 T/ S' i+ x  c& X
    ( a0 O/ O* S- D试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    9 小时前
  • 签到天数: 3126 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ X1 c1 a9 p+ x
    我推理机的核心算法应该是二叉树遍历的变种。
    $ v6 p: {0 O- C6 l另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ! R: T3 i( ?- R4 V6 B9 ZKey Idea of Recursion
    9 f1 D7 d+ a$ e8 k# R) A6 s- k' z2 D. a3 n! z- y
    A recursive function solves a problem by:
    & n+ {6 p2 E; Q8 z3 q: S+ @! G1 T: G& H# s* A
        Breaking the problem into smaller instances of the same problem.' x& h. W- Z3 X5 w' K/ i/ w# A
    * j, z- h. m4 h4 f# V& H
        Solving the smallest instance directly (base case).' Z6 s; |% y% c! ?! B2 R) O

    2 x0 Y1 u! b7 W, m! z    Combining the results of smaller instances to solve the larger problem.
    # E0 B0 w' o  U; n- k: r' \& Y' v3 L' j( n% t
    Components of a Recursive Function
    & H- v6 H6 \6 L) ]8 ^( R
    " k; P' j% I5 @; W% m0 ?+ B    Base Case:& I2 J' {, s; m. V8 Q: G  s

    + [9 k9 v5 I& O% I. C# }, i  \        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.; T" i+ W$ n( O5 o* H# I3 e0 j

    : I! Q/ v: D$ O$ C: f4 h        It acts as the stopping condition to prevent infinite recursion.9 n0 l% G. d" \2 @+ T- N, R
    4 C, j5 u% g  q- O( J+ P
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    " A7 A  O2 U8 W$ b4 f' `- x* f; _* y) b
        Recursive Case:# ]# x5 o1 y7 m) q$ f
    0 h3 Z2 Q3 P3 @6 [7 Q3 \
            This is where the function calls itself with a smaller or simpler version of the problem.
      o0 @% e9 p* V+ l; \0 t7 I6 y4 [6 b* L
    $ }4 ~. `, g  A- y/ h        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).- q% b0 f# q' K# [
    5 ~; N" i; Y  V  Z0 g
    Example: Factorial Calculation2 c; R2 Q& n* h
    9 T* b  _7 v1 L; o: }+ N+ T+ ]
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    9 b/ E1 x8 l; B0 d
    ) H1 O! n2 b! Y# X    Base case: 0! = 1
    & M( u2 b  Y; H2 z0 O
    / X. ]! I  _+ g5 j# }9 q    Recursive case: n! = n * (n-1)!
    ' J2 s' c! Q/ d9 p! a5 h" }  `0 X" |1 t8 [
    Here’s how it looks in code (Python):# s2 M; r! _' N1 }6 l( U
    python
    ! \/ N( n$ M9 \4 S  K; ?7 @/ R9 R- c- |& u5 p+ D, I- D( }4 _
    4 e$ C) o! G- ]+ e
    def factorial(n):
    % b4 a& z' G" M* y- o; L    # Base case
    / y& j. W/ L) e# D; F1 l8 [/ b- W    if n == 0:# D" Y" o' d' h1 i- {
            return 1
    6 }( `1 U% V/ R+ _4 M    # Recursive case+ t8 ?  w* q4 Z' b6 D
        else:1 N. A- }6 T  x  d, |
            return n * factorial(n - 1)
    - [% @' D1 A. o( c
    1 D/ J; \" U: @) k4 v( ]  E  E# Example usage0 t/ k+ k7 [% ~; V  @/ }7 ?/ u
    print(factorial(5))  # Output: 120) P' c$ o" u& H% \, r6 W- w/ Y

    " ?  S4 w# m2 P( c! cHow Recursion Works) y% S% R; @% @1 k# y9 @6 m
    - r) N4 ^; E1 C/ n$ \1 n+ M
        The function keeps calling itself with smaller inputs until it reaches the base case.
    4 ~) n8 p5 h5 o9 q* D2 ]
    + U6 R% }* G1 E- g, w# K    Once the base case is reached, the function starts returning values back up the call stack.
    ; z, Z# L' h+ \# C
    5 {. m6 v* g/ J    These returned values are combined to produce the final result.
    $ U" F. m4 f9 ]* D, T9 N1 `8 P0 a% {- C8 ~/ t# y( A
    For factorial(5):
    # j6 J5 D6 j% x, S( @+ ?. O- `# O& ^
    & ]+ z7 x1 J) z" u7 u0 N
    factorial(5) = 5 * factorial(4)
    - \3 x: A5 N- H+ x* C- s0 |& ]  Qfactorial(4) = 4 * factorial(3), Z0 W" P; L' R4 v: J
    factorial(3) = 3 * factorial(2)2 u5 `; ]% F# |  R* W2 f& n
    factorial(2) = 2 * factorial(1)
    5 o4 l7 F" ]" F' kfactorial(1) = 1 * factorial(0)
    8 R' V; ?7 s: nfactorial(0) = 1  # Base case" d0 [: l6 A. K9 E  H) ?

    1 j4 V2 f7 |: A; Y3 v$ eThen, the results are combined:
    ) _6 w* j3 i& M: a
    ! L  C, D) ^- b$ n1 A' |$ h
    / \3 v& z* Z3 ~: Z$ nfactorial(1) = 1 * 1 = 1( n5 T1 r9 x" g5 u
    factorial(2) = 2 * 1 = 2% S/ o& [6 `; V  j+ B) N
    factorial(3) = 3 * 2 = 6
    " F* s* w& {4 I+ ^factorial(4) = 4 * 6 = 24
    7 h# I* z1 n' f6 B& Dfactorial(5) = 5 * 24 = 120
    3 f+ S( ?. F+ d+ @1 C, \! }0 b$ G. N/ x4 M) Q/ c- S7 V
    Advantages of Recursion& H5 c1 a" b+ O1 q; E1 K

    $ M7 n- s1 Z& f& t$ p& I    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ' U0 G. n  i) r) S7 q5 h
    ) d$ G2 ?# }4 C: U    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ' ]4 O; L; O% Q$ E8 n* Q
      Q& [% z1 c. N5 L* o+ zDisadvantages of Recursion0 n6 G: {; w1 t2 q: N# t2 R* v
    * n6 O3 D% c& @2 @2 E
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    / j& j8 c! p$ q$ ~) z! N' X9 G/ f3 G$ n* X3 e7 n; q
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).% E9 O2 \. J3 G$ f* z3 b6 o0 G
    # p& W5 t' V: T; O; F2 i
    When to Use Recursion# k3 B0 z3 k  t& ^

    + Y. y! m0 X! _; d. ]" L    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% i- S- s* L3 q% n0 F1 n6 L

    1 D8 ~' J1 \" l  x1 n+ t$ B; @    Problems with a clear base case and recursive case.* g# E8 u7 Z7 s, V* T% v
    & p+ I+ g  N4 i: c) d  m5 m
    Example: Fibonacci Sequence# n- p5 V2 R7 i& P- R% s

    / l5 d! K8 R8 [The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    3 V- `4 Q, r3 |" `( o0 l$ Z1 x4 m( V8 i) M5 P7 J- j$ `7 K8 w- M
        Base case: fib(0) = 0, fib(1) = 1
    * y8 B3 D# l2 {! ~
    5 ], U0 J  {4 N/ ~5 y    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 \$ x" b6 h7 X# S: k# @/ k5 j
    7 n' F$ ~8 [7 k$ [python1 o! Z1 @; L0 ^7 l9 V5 j1 Y

    0 U$ M3 W& Z$ ]' O2 R7 @3 \$ f6 v+ e  d2 B/ S) J2 J
    def fibonacci(n):  F9 ?: i' R" F. o0 p
        # Base cases+ N$ u7 L' Y' x3 O
        if n == 0:% u3 ]( T% `. [
            return 0
    4 U- f, k* `& ?# `& ^    elif n == 1:
    0 z1 M: O' e- Q2 `        return 1
    # Z- n4 r. H& S7 ?    # Recursive case' l: }# u& ?: Y6 R; I: Z9 I% H# D
        else:
    5 M* j: ~0 F" X3 y  X2 G        return fibonacci(n - 1) + fibonacci(n - 2)- I$ E, K5 u4 b% ]2 {: ~( X% l( o. W

    9 T& O1 S, r& g3 P0 C! y; k5 t6 I# Example usage
    + _8 ~) [* B. a% Fprint(fibonacci(6))  # Output: 8
    4 [: E6 ]' d7 W! ]7 h1 i) e2 I8 P: k: M. U; p: d
    Tail Recursion
    + C$ Y1 [4 w: B" z, F0 m
    1 ^( b/ K9 z& I; `; b$ _% m4 C8 dTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., Z$ L% @# z0 K
    $ B4 u8 E; m2 w
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-24 17:55 , Processed in 0.032451 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表