设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 944|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    3 L( I3 M, Q0 C" U3 J. R
    ( M3 L/ z8 x/ W" _% X5 f5 E解释的不错9 u' l* A0 a' W' S" p* s" k. ~

    - x/ @% w4 q5 j$ s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
      N1 i1 _1 G8 ^& t. ^4 q
    ( U/ G0 t. a0 ]. ~/ ~: e 关键要素
    * N% w0 j% A& ~1. **基线条件(Base Case)**  o8 L, _, v. m; F3 c
       - 递归终止的条件,防止无限循环
    8 e4 `$ q2 L- S+ S% u' [   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
      ~' Y( J- a( ?: b, T2 C+ j" }" F5 w" ^& w, o& L7 s2 X
    2. **递归条件(Recursive Case)**5 }( `, C/ C5 r; d) V5 q1 @' L; O' j
       - 将原问题分解为更小的子问题
    - H$ u7 J& q; l6 v   - 例如:n! = n × (n-1)!# U. k: s  E9 A/ n5 f8 b

    $ y* ^& \7 o# Y: }* j 经典示例:计算阶乘
    # z" a5 }- V: R3 ~, h' J4 ^python! g, [; o0 i/ n
    def factorial(n):
    9 R0 I; F. e5 V. p! ?  I) h; K    if n == 0:        # 基线条件
    8 @! E9 G* r. l1 A0 B        return 1
    - v5 B$ G/ T0 D8 C    else:             # 递归条件* a) w  R3 m9 _0 A, ^
            return n * factorial(n-1)8 f& v9 w, R, i; x# W" [
    执行过程(以计算 3! 为例):
    8 Z) ~) V0 A4 H0 `; W  `factorial(3)
    8 O. R, P' b, L; a3 * factorial(2)
    * C  o. T3 r9 a+ I3 * (2 * factorial(1))
    : t4 t! ?  T4 o' y3 * (2 * (1 * factorial(0)))
    - I- P/ c2 _# Q7 j2 ^5 d3 * (2 * (1 * 1)) = 6
    % z. M* O( p! L, P9 ~9 T4 e
    # M. C4 I- E; c 递归思维要点
    2 g; S3 g1 ?) t0 y" ?- L% s1. **信任递归**:假设子问题已经解决,专注当前层逻辑$ T$ V6 y9 o8 v: t
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    # l. b2 k+ Z0 H8 V8 ~0 e# Z3. **递推过程**:不断向下分解问题(递)' F9 J" H; C3 Q0 n' A5 }) D( \0 J$ z
    4. **回溯过程**:组合子问题结果返回(归)
    / X( ?8 X3 p! x" h) M% f5 E8 X* ?8 [1 ]! h5 F2 @) Z' S
    注意事项
    $ W" I9 [! m  I. [( {; [3 m必须要有终止条件
    * ]4 ~8 @3 i; ~. K/ h' D; T递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ; j: E$ E5 ]4 |* Y# u某些问题用递归更直观(如树遍历),但效率可能不如迭代
    & j/ O. o0 X4 T" T尾递归优化可以提升效率(但Python不支持). x0 b$ m, j2 z
    : X4 t! V0 l. S6 g1 g- i8 u; E
    递归 vs 迭代
    ( [3 F. ^6 e) Z, M$ [|          | 递归                          | 迭代               |& e* S7 l4 F: p4 V3 h5 M6 k2 y
    |----------|-----------------------------|------------------|9 X, h( v  E) p5 s7 C9 F/ t
    | 实现方式    | 函数自调用                        | 循环结构            |
    ) @0 \& p5 V9 ~+ b% U| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |7 [6 Q+ B2 L& ~
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ G) f5 v4 H' S) f1 z+ m0 C8 p
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |- z2 F3 X  F% P* Z* t9 w
    1 R& n' j) R2 z, M2 b8 K
    经典递归应用场景
    6 S- r: n( G0 ~' T" i1 Z9 ~1. 文件系统遍历(目录树结构); R6 O+ F% i2 x# M
    2. 快速排序/归并排序算法
    6 Y6 v- i" j5 U3. 汉诺塔问题, _2 W2 K% {  H+ l
    4. 二叉树遍历(前序/中序/后序)
    8 i  v" L( |* a0 v, k; H+ C5 ]5. 生成所有可能的组合(回溯算法)
    $ Z% u' O3 o+ u+ Y9 Y( D! {* B4 s, S4 }7 ?  e/ p0 f% R; F0 W! Z
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:06
  • 签到天数: 3042 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ X  \+ a; h! q) J, Q) o/ S7 {
    我推理机的核心算法应该是二叉树遍历的变种。+ {7 e5 u$ Q5 }. @0 L& a( K1 V3 _
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    : }4 M) p5 J1 W+ xKey Idea of Recursion
    5 x! `- t! d# y
    1 e$ b% T) o: D' @) SA recursive function solves a problem by:
    8 z# _9 V6 b& R1 i! ^# E
    ( L9 q  o. u7 \3 ^6 m$ q! ~. {    Breaking the problem into smaller instances of the same problem.2 r# K7 B0 {: {- k

    0 W" C7 c0 J2 [    Solving the smallest instance directly (base case).  y1 B& n  G" \2 Q4 g

    % ]+ y3 }7 \  o" I3 N' J    Combining the results of smaller instances to solve the larger problem.' z) X: V0 H+ ]4 y9 _- |; E
    & K8 v0 Y4 k" u- ^  e7 ?
    Components of a Recursive Function
    ' f* d: |/ n& Z/ z; _% L8 p& u* H) P! B* D) H- r( ^! d/ A
        Base Case:
    6 J+ c7 `' G3 P8 A4 V2 _  c& E. J" m' T' v- |- Q# B8 F; @
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.! n6 g. q' j' n3 p8 ~4 m
    * }0 n4 d$ q+ I4 T! f* P5 v
            It acts as the stopping condition to prevent infinite recursion.
    . Y6 c$ L' |' D& K" a, {" V1 d6 W0 t5 A8 t" o
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.. ~  Q( n/ q3 e% o" j! \4 G
    ! _9 I+ a/ ^3 K5 D  e4 q2 I( W: n
        Recursive Case:; D- F) E* i( a5 L
    9 d3 ]+ M9 P# H
            This is where the function calls itself with a smaller or simpler version of the problem.0 B. T. i0 h4 g, D& b* l8 C7 n

    + p9 T  y( J( v6 u7 i( y9 o        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).. w- k5 o7 o% |
    % H, [4 U% N* C$ O1 I4 U) Y
    Example: Factorial Calculation
    # G/ }0 J2 b2 i4 }# A, A3 `& n& w( C( ]) r3 I+ p( f1 H2 z
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
      l) s( w* Q- G$ F; h+ }9 ^/ G/ u- d- }3 K! b1 U9 x/ S/ e
        Base case: 0! = 1
    , o- B8 u4 v& h- L, ~( ?( G
    4 c  K1 `' N( F    Recursive case: n! = n * (n-1)!
    0 S7 M* y, p$ E$ O  D7 D- @
    ' Z. z2 @; o& w1 m, t- FHere’s how it looks in code (Python):: O5 R5 H  N. J6 ]& @2 h
    python/ O6 R6 m" O+ N$ a9 V7 p' a; V
    $ g  b7 W( e6 F) _5 h* d

    ( r" B% s% z/ T* B4 f) Z5 A8 @* u; Bdef factorial(n):) R" X2 {3 S2 U4 ]/ x5 F
        # Base case
    $ U" q1 I/ I1 G    if n == 0:
    0 {4 I  d1 s) z1 j        return 1
    5 _' f2 Z5 e- c1 R+ |4 T    # Recursive case
    ' h+ f& c) H' ~: S    else:+ _2 i# ?% b) X/ n' X+ Q
            return n * factorial(n - 1)" e# k) J7 V/ p- Y
      x) `2 b% `0 E' X
    # Example usage
    9 W, ?7 Q% {# m3 h# S8 Mprint(factorial(5))  # Output: 120
    . Z7 R7 w3 E: I' U+ e$ F
    6 m! p1 `) m( F/ ]" o" ~  k& |7 s/ r0 JHow Recursion Works
    6 M- A$ G7 L% b* M+ S$ t8 t5 T+ V# _
        The function keeps calling itself with smaller inputs until it reaches the base case.
    * h% R& S3 ~: g  p' D  d0 {1 f, f; {8 l1 o9 L
        Once the base case is reached, the function starts returning values back up the call stack.
    % P% V3 z  P3 |3 z- }! k
    6 l% r+ T6 r1 L1 U/ O    These returned values are combined to produce the final result.5 ]; q( W3 V6 ?( C

    6 t# R: v# [* o) V' tFor factorial(5):
    + _% s# r) @+ o2 U/ P; S7 I: M- c7 |( b0 P# y+ l, r% q

    7 u. F, v+ B2 k2 Y3 q1 `5 Kfactorial(5) = 5 * factorial(4)- u6 X' w, v8 k" Z" m" o
    factorial(4) = 4 * factorial(3)8 {4 w6 y/ X$ z) t+ F( a- J9 X" {
    factorial(3) = 3 * factorial(2)  Q, L8 ~9 m- E# q
    factorial(2) = 2 * factorial(1)
      A. H' r* Y" O' Ofactorial(1) = 1 * factorial(0)
    ' z: P9 x0 `9 D* ]8 s1 t: pfactorial(0) = 1  # Base case
    4 Y2 `$ r6 ], i- n. C) |) q7 `* h8 S9 P& x9 r  e1 Y0 S& j
    Then, the results are combined:
    6 x+ m+ }1 l3 x7 E! j
    1 r: Z( c: V/ G* q2 f' r* j$ b$ A: _2 ^0 n! s
    factorial(1) = 1 * 1 = 1
    3 r* y& l5 ~9 Ufactorial(2) = 2 * 1 = 2/ m, W& c9 t' O3 K2 C2 z; v
    factorial(3) = 3 * 2 = 6& B7 F7 y3 q0 z; x$ ~+ H
    factorial(4) = 4 * 6 = 24( _8 a0 `  B  N1 Y0 q
    factorial(5) = 5 * 24 = 120
    " B7 a8 X$ U0 f; R% J, Z0 S4 D2 X+ `2 F& Q6 U
    Advantages of Recursion. H4 r! }# w8 |, D6 E$ ]

    . X/ n# d8 r1 w5 d    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ; o3 {/ j, r- S6 A) G
    3 o$ T1 N- e5 L0 G4 I2 |    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    9 G+ R) C( b! P+ N. N& i) t  ]0 f- V2 e4 }
    Disadvantages of Recursion" s. p0 ]' D) B+ u0 S* \
    - b( i& ]" F6 Z0 v6 P  Q
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    0 d! ^7 |+ w1 r8 R' U$ V$ ?" Y9 I: ?# E7 R+ Z
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).& g- x8 P0 G3 @9 }
    : c4 _' f2 r, p7 U6 U/ H8 E
    When to Use Recursion; d/ e" J. W* z! \. M3 l  j" H; a  l

    ) v2 ?# ^0 O3 _1 ?0 w3 M+ F; N8 ]    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).8 j4 G% I4 N/ q5 @0 d  V7 [

    : u- l7 _% Q& O- N0 e    Problems with a clear base case and recursive case.
    $ |& w/ z! M7 i( X8 n+ e
    & A. p# p% [' TExample: Fibonacci Sequence! V4 @2 {1 H6 {! Y

    - X" f; ~9 N5 S- GThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:6 L1 N6 O. C/ Y* _

    / J% Y* v8 L# a& ~" D    Base case: fib(0) = 0, fib(1) = 1
    - h; F, t& L5 g
    , O' O/ I( i2 P& t    Recursive case: fib(n) = fib(n-1) + fib(n-2)4 V5 _/ u# {1 K6 a; U+ I. U% q( Y% e

    0 t* H. Q. {- {7 gpython
    8 `% D* m3 _9 W  R9 Z& J
    7 j$ u( F+ N$ A/ ^: k$ a& ]0 J/ [+ t! ]6 ^4 \& M" m; Q) ]
    def fibonacci(n):+ S; r/ y" U) c" J9 f' G% }
        # Base cases0 g. b$ {! Q2 M- O- ^* e
        if n == 0:
    4 l: d# I$ v# d, A# u        return 0# F1 \& Q+ f5 d( B' e$ F
        elif n == 1:
    6 @$ g( L% W3 u/ M, z6 }: Y: b- p        return 1
    . f) e2 s# ?1 y0 u* b    # Recursive case* }4 u  a" R$ ?7 G, a  f# _
        else:' u3 ?8 b# R9 e6 w; I# o: F
            return fibonacci(n - 1) + fibonacci(n - 2)
    2 A; A2 f+ e5 Z
    , k: {# k3 [# b. e0 Y( \6 G# Example usage2 ^, q4 J9 ~6 |! {4 K% V/ a# C
    print(fibonacci(6))  # Output: 8
    3 O; C' ~& T  c' w( T7 f
    " d1 ]. V7 y: u3 o8 mTail Recursion) o" t% o( i; N  @6 q' r
    0 F2 c) t, B3 n5 {/ E! }, ~
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    2 \7 v* ?3 q' ]9 }& y+ F0 v5 X3 n- U4 R2 v
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-9-17 03:11 , Processed in 0.034502 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表