设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1008|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 - z9 k1 J+ \& X6 e/ l

    2 ?3 ^+ W9 z5 d3 v解释的不错
    0 ^( m. K$ [; U0 n
    0 o5 Z0 ]- J7 ]: I) R递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。3 C! ]' ^8 Y& N+ c  e, o0 G/ \

    # \$ z" m  g9 v 关键要素; a+ t1 c) k, p/ f1 P
    1. **基线条件(Base Case)**
    ( H0 N+ e  i2 h/ k* T8 x0 o   - 递归终止的条件,防止无限循环
    , x8 I; P: {, ]+ L+ k* Y  n   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    + h7 Z5 r  |, X2 P7 S
    6 E: ], B. l; Q; c5 j4 S2. **递归条件(Recursive Case)**' d- A2 d+ s5 p; o& H: G
       - 将原问题分解为更小的子问题
    2 C# J3 i. H8 }! x6 H0 p   - 例如:n! = n × (n-1)!, T  e/ ], ~7 e: h. B# G- C5 q

    ! t# P6 j/ Q  r4 Q1 Q% k 经典示例:计算阶乘
    - `+ c5 t6 s+ o9 l0 f- zpython
    6 W$ O; R) G# C' P2 Qdef factorial(n):; X( e/ X* w- C8 K2 e
        if n == 0:        # 基线条件2 c0 {) O' t) m. _
            return 1
    - N& i  _, W6 L; @    else:             # 递归条件* O% b# t. s1 o0 @9 R' R
            return n * factorial(n-1)
    , k% v' q  R1 n$ T4 k执行过程(以计算 3! 为例):0 u! k. `9 p4 A/ e' b
    factorial(3)
    & Y4 S9 B' v3 E- d: N! K8 F3 * factorial(2)
    ) \) l; Z+ m8 b9 S+ u6 J$ q8 R6 M; M3 * (2 * factorial(1))$ p8 P, |( h8 `1 O! a4 Q
    3 * (2 * (1 * factorial(0)))" m) U" Q# [' U/ r- ^* r
    3 * (2 * (1 * 1)) = 6
    6 ~5 Y' x) V2 {/ z7 u% P
    4 `8 \. J6 s8 j) E# S. u5 K! t 递归思维要点
    6 p& W) |/ W2 m- v! a1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 v" T! s4 B% ?3 v' ?+ M9 e, `; {% I2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    9 q3 y, [4 r$ m5 x% z) k3. **递推过程**:不断向下分解问题(递)1 ~2 A' ]0 m( W% f5 V
    4. **回溯过程**:组合子问题结果返回(归)
    6 f% K9 S# ^, d% R5 ~; }  O" P4 `' m& ~( R4 ^$ ^9 ?: r0 \
    注意事项/ U" C: r4 Z7 ^/ {/ G# R# x
    必须要有终止条件
    1 o9 a$ c. |: D+ i7 l* v# \  ]+ J递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
      r; s' `8 b$ l, s0 r, M某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . C1 y9 P2 f7 [: v1 |尾递归优化可以提升效率(但Python不支持)
    4 y5 m* R$ X8 m3 j. v
    9 y7 `1 {% r6 F% P6 ~ 递归 vs 迭代0 [+ Z+ @7 u- z9 A7 \, a
    |          | 递归                          | 迭代               |) F$ R$ t# E0 o! j6 A. L
    |----------|-----------------------------|------------------|7 p; B$ T- U! l3 Q0 z7 L8 t; c! W  f
    | 实现方式    | 函数自调用                        | 循环结构            |: E* j' \8 Z& M8 Y0 [
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; U  s# c2 p3 }# x; V/ \
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    - ]5 d8 O( E; p- Q| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    4 n/ P8 R' X) [* o4 @! L7 i& J: U9 M8 y1 H6 {
    经典递归应用场景
    - t. H8 _) }+ L5 T0 F0 d) d* p: @6 Y1. 文件系统遍历(目录树结构)1 U$ s5 m$ y- _% M; r* O$ w" Y
    2. 快速排序/归并排序算法
    " o& \2 f+ a9 {: M% X3. 汉诺塔问题- u6 @" A. s- x" M4 s% u; v( W
    4. 二叉树遍历(前序/中序/后序)- q2 f% f1 j8 H0 \7 h) n
    5. 生成所有可能的组合(回溯算法)( O7 y( T$ ^8 n

    1 Y8 J6 o; V1 [# C试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:43
  • 签到天数: 3067 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    4 \* C( \' M4 F4 v1 X% M我推理机的核心算法应该是二叉树遍历的变种。+ f' |# P0 B+ n  _/ i' I
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:# B: `9 a: [8 e: X/ P8 A, o
    Key Idea of Recursion
    ) w9 {  Y7 x# r6 U* I$ P$ h
    + l% g6 K2 k+ d9 F; X9 oA recursive function solves a problem by:
    , ^3 `0 l, V3 L$ @6 ?1 ^7 u: r6 _! C2 c6 b
        Breaking the problem into smaller instances of the same problem.
    ) [; p  W, u( e: V, @
    ) T+ q- ?4 H1 {    Solving the smallest instance directly (base case).. F% g. r0 g! i6 W1 T

    ; r. D& `  }3 H9 R% s; E    Combining the results of smaller instances to solve the larger problem.
    $ X8 n( l" P) m4 s4 y* [8 F/ T9 y" l, j4 n8 J; L5 c
    Components of a Recursive Function$ Y3 v- q4 W2 _: U+ B

    : D( s; ^4 I  s, M" Z& ~5 `6 W) X2 ~    Base Case:5 p1 R1 c9 o* a  Q+ P- L

    , O. z* b) p" N* d" a9 y( s; G        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ' n, P8 t$ K) k8 }) H* ^5 Z3 s1 E2 q
            It acts as the stopping condition to prevent infinite recursion.
    / V  D  h. M  A4 k( K- s- L3 Y# |: j. s+ I7 r6 z
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.$ |1 t% z& ^1 I; K3 U9 m
    6 j; Q! F0 ^* ~$ L; B: ^  b
        Recursive Case:
    / v7 |+ V8 t( m2 ]9 A' [- ]' ^0 f8 P: u( k# a- v% x
            This is where the function calls itself with a smaller or simpler version of the problem.
    3 E! \! N4 k7 V1 Z( B# I3 P
    0 G$ T2 n1 z- f  W( f        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    + o  L( W2 ~5 C1 F5 J
    ; _$ ^' k( q$ s. t/ FExample: Factorial Calculation
    * m& L2 x! }, ~5 ^2 {) T4 p
    . n& }1 B" w; [" x/ LThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 {- o$ }9 x" i, ~  u$ o4 d/ A
    6 M# s4 c5 |: a. R- P" {- c& |
        Base case: 0! = 18 n, i& N& l: N7 f$ r

    - @- g/ W8 k' I7 a! w7 E    Recursive case: n! = n * (n-1)!; {( j  M' j- L% x7 ^$ C
    5 Q* N8 w" @/ ]1 l( f4 F, ]
    Here’s how it looks in code (Python):5 o8 P4 z8 c4 X' H# u
    python. g0 v; Q$ k" b* |

    % [9 P5 Y: ^9 x8 a# y
    - Q' o; `4 j( M% f1 a! }0 h" s2 mdef factorial(n):
    % g( G( T1 t3 ]$ d    # Base case: w4 ?3 h7 `: o- V$ x5 C
        if n == 0:
    " R3 D; n& m: W        return 1" ~. D+ l0 s$ \5 e$ E
        # Recursive case5 j' l1 h  j7 ~# E1 ^' E
        else:
    3 z, K6 `! {9 p        return n * factorial(n - 1)
    ( g+ ^, C% W( \7 a) [: y/ d7 @+ ]6 p0 V  l! W
    # Example usage
    , k5 |9 z0 r2 Eprint(factorial(5))  # Output: 1200 i7 J$ |0 d) M/ l5 S( x' U
    7 W) H& p5 I- x2 o% C* Y: i9 d: i& Q
    How Recursion Works4 N0 _* g- j- e4 @, W

    " G# c! l! t! D! p6 W. @    The function keeps calling itself with smaller inputs until it reaches the base case.
    ; T7 U: l$ f- q& [: m0 M' \! r/ c! G4 H7 [
        Once the base case is reached, the function starts returning values back up the call stack.
    - K1 p- ^+ P% }; e' V- f7 a7 @
    ) U0 c3 S9 Q. x- g6 p" x8 p& J    These returned values are combined to produce the final result.9 e- c( @- W5 J7 _6 u- z* e. n8 F

    * Z8 \4 H; ]; g4 \- @* kFor factorial(5):+ c5 J( B5 V+ o2 V* L9 _3 B

    + |! L" B, h; Q: H+ ?' z, {) E6 I9 O3 X* |+ g
    factorial(5) = 5 * factorial(4). i( \' {7 R6 @# A. n; A
    factorial(4) = 4 * factorial(3)' l* |( |# W1 v. q5 ?( {! S2 T5 U
    factorial(3) = 3 * factorial(2)1 M7 Q, C6 J( _9 g+ e6 w1 m
    factorial(2) = 2 * factorial(1)2 `% Z$ j) U7 ]% [" ?
    factorial(1) = 1 * factorial(0)6 a5 ~' Q6 ?! c; \$ C2 b- A  y
    factorial(0) = 1  # Base case
    6 M  r- h# S+ u4 s0 d2 D3 [2 R" p2 m
    Then, the results are combined:
    ( y2 \0 D5 c' u4 P' A( x% W" S) M9 [( g4 ^) O

    % F8 S  G" j" [/ dfactorial(1) = 1 * 1 = 1: ]+ h. H* U; Y. ~4 D
    factorial(2) = 2 * 1 = 21 B$ W7 l7 @+ J7 M0 o$ _8 A% T3 i
    factorial(3) = 3 * 2 = 6
    2 C5 G, V! r% U6 ?8 }1 a; E6 v% [' ~" efactorial(4) = 4 * 6 = 243 b; @% w8 f- ~/ f
    factorial(5) = 5 * 24 = 120" D/ M- A6 i8 ^2 t) b

    - m& @0 a" i/ q; f! c# R+ ?9 v; E: ^Advantages of Recursion# N# T& p+ ~$ C" X# l  W

    ) T& J6 v  `2 P7 r4 Y* _) R    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    9 x6 V( g+ X( y7 ^$ G4 @0 v$ q- }& |' u: \* ~: S' h- r
        Readability: Recursive code can be more readable and concise compared to iterative solutions.& ]5 D7 j6 S) s" b

    ' m( F1 e2 r( X, I) @( KDisadvantages of Recursion
    0 e- n* v* N  m' L% Q9 Z; Y
    0 \6 x) f6 T2 B  b9 M    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ) t7 \* X5 A8 i* n+ t3 {/ X% v& R% L& _; B+ e7 U" S" a6 d9 w$ \" q
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    / J* Z% Y; i0 d9 v' d; s; L& ?) J# p0 h  x+ v
    When to Use Recursion
    ' k" i* h( T* I) N9 i. H1 a1 d; A" \3 N" z
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    % g# b# x. j0 w. a6 F$ @
    0 g$ s) A, p6 E8 `    Problems with a clear base case and recursive case.- I  w) R  a7 }$ r
      k/ X5 Q, I: J: d) g& C
    Example: Fibonacci Sequence
    2 N/ ?% i0 x' O+ x0 z) f: w
    * }/ T* G0 C% E$ i/ {1 a9 wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) j: W) O. v1 j. e, V9 B5 f5 r, N. M) h. `8 C
        Base case: fib(0) = 0, fib(1) = 18 ~) \; p. E" `2 [. Y

    # o4 b0 ?* K5 j; v3 C0 x    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 X" y' J$ L7 C+ s3 B2 V2 P
    ' V8 Q8 ^6 I$ b1 Rpython- W- L1 D5 L6 H3 j+ p' e* e6 Y
    ' ^' ?! M  D  W4 N( j( X1 x) F
    ) I' B( `6 ], B1 ^% f
    def fibonacci(n):
    6 N# V5 w; j7 _" I: H& w+ g    # Base cases- p  I. d! q8 X2 P/ U$ p# a" V& P3 {
        if n == 0:- Z/ t# R' m$ F: v
            return 0: t* Z1 o' [! e
        elif n == 1:
    / I  q/ H+ q% T; H# |        return 1
    + D1 u- D/ r& a7 G    # Recursive case
    & a0 i6 h7 a! d: c7 {2 f    else:
    2 M( g8 F' z) h        return fibonacci(n - 1) + fibonacci(n - 2)
    $ E- P8 U3 a8 j8 k. o
    ! u* |6 d7 z; r" I/ U4 L# Example usage& T, j2 W( |0 v/ Z  V
    print(fibonacci(6))  # Output: 8
    / d2 [; y3 Y  ^# i$ }# }! F: c2 K: I) G( z7 d
    Tail Recursion
    " G0 B$ [  Z8 `1 o0 u* }, v# J! |/ Y6 z
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    , D6 T5 [5 C2 \7 ?: x3 j& [( K" U0 h# v) b5 Q- i3 F
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-10-16 06:28 , Processed in 0.033507 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表