设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1180|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    2 L5 X1 H& `: d5 S, C
    2 S8 V: i4 _. Y) `: C解释的不错4 p& b9 Q# k8 a. S

    5 q5 W: p: F' y; s  b! w( K递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    0 ]; L  L8 d' Y3 Y8 b
    ; ?2 t7 d$ d! ?8 J' Z/ k 关键要素& g# a( P7 S' P2 r
    1. **基线条件(Base Case)**
    # n$ I' T/ L7 u3 k  P   - 递归终止的条件,防止无限循环: ^$ t9 e6 w! f# M: K3 o9 c& c
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    / N: V) ?. L* b: Q$ J: m' s9 O
    ' F# G) s, j5 N$ x5 E2. **递归条件(Recursive Case)**6 m* Y$ Z% `5 P7 z& R, E$ S8 @7 _
       - 将原问题分解为更小的子问题. V3 R3 g7 M  [! [' _
       - 例如:n! = n × (n-1)!
    " v. ^) i2 e7 s3 W2 E9 }$ l* `# s+ |# i8 K: `) S# k
    经典示例:计算阶乘0 ~. t* O+ _( u) ]1 p% |! q9 M
    python. p  d$ T5 {7 p
    def factorial(n):8 _5 P9 `1 z3 D3 E
        if n == 0:        # 基线条件
    + G9 d( Z/ @. R& ~: g2 s        return 1
    & C1 g! q7 l0 j2 q7 N* v    else:             # 递归条件
    ) e4 v% j1 |9 V; s        return n * factorial(n-1)
    4 h5 G) v" R6 t0 [8 X" |: a# J+ W执行过程(以计算 3! 为例):: U& K  r& H: d' \4 w# X3 r
    factorial(3)
    2 ^7 h0 a7 ?4 }  m5 [$ Z3 * factorial(2)% o0 C; e# z; J( b7 v* E; M# u
    3 * (2 * factorial(1))
    & D' v# S" f. h7 h3 * (2 * (1 * factorial(0)))
    $ o4 H$ X0 w  P! x# G2 |0 ^3 * (2 * (1 * 1)) = 6: f- j; p: C8 n$ a/ b  o* q

    - t3 x  h) z* G& `/ O9 ~# R 递归思维要点
    % P! }) e5 ^% X3 }5 Q- y* w7 w5 A1. **信任递归**:假设子问题已经解决,专注当前层逻辑& c. L9 e- ~# g
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    $ ~2 R% \( q( k3. **递推过程**:不断向下分解问题(递), K' q9 z( v% H6 @* C) |
    4. **回溯过程**:组合子问题结果返回(归)
    * Z! Y4 h9 `9 I$ L2 j2 l% ~3 j: l' \3 s, C9 G$ V! u) }2 C
    注意事项
    : ~2 I& @( \; Y8 K必须要有终止条件
    . I$ j$ `" m5 S* H递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    : b0 P3 D2 F. S% H4 {3 X6 h6 b0 n某些问题用递归更直观(如树遍历),但效率可能不如迭代3 Y4 F7 ]: C8 F! |2 `7 {/ K
    尾递归优化可以提升效率(但Python不支持)
    ' \  d3 l9 s2 z7 w5 U1 A9 H; u# P6 B' m2 ^; U( N1 T
    递归 vs 迭代
    ( s- k; M/ a* h" }# R( v|          | 递归                          | 迭代               |
    ( R7 f3 i7 v# I6 ||----------|-----------------------------|------------------|3 N; ^- @$ f! a- P: X4 U6 u0 U: |
    | 实现方式    | 函数自调用                        | 循环结构            |3 W" g6 z5 c8 c; y- f1 o7 g4 t
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |( ^1 O) u1 ?/ _1 f: L: C
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ! y, f. |/ B0 A2 Z# o/ S| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    7 ~- g$ H9 @/ i
    * N5 I9 q: Q2 m" T 经典递归应用场景: Q& N' W3 |8 Q% g- |
    1. 文件系统遍历(目录树结构); I+ @& |2 ^; m8 U
    2. 快速排序/归并排序算法2 f2 }% A; K+ w, Y' D/ W5 ?: Z
    3. 汉诺塔问题
    # Q2 B& ^" g$ w. v4. 二叉树遍历(前序/中序/后序)
    # a3 l$ _/ Y# `$ S* B# F5. 生成所有可能的组合(回溯算法)8 A% E' i& d2 d
    * K" D4 o" z/ C, f1 Q( s/ H
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    12 小时前
  • 签到天数: 3102 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    / r1 S8 K0 \5 a2 C我推理机的核心算法应该是二叉树遍历的变种。: x8 b6 v# V5 O: _7 G1 K1 t+ v+ A# g
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    9 `3 G. l5 E/ AKey Idea of Recursion' F- e  }1 F; |1 b

    4 M9 x# ?" E. OA recursive function solves a problem by:1 F3 f2 j' Y% S- \! }- J

    $ D# z& G. `# K. N0 L& R" X, m    Breaking the problem into smaller instances of the same problem.
    / N8 i& t; ^1 |- a! d( ]# C8 H7 g# s
        Solving the smallest instance directly (base case).; M- H" W( F/ V1 p

    6 f& A, F' U7 O" I* M7 @    Combining the results of smaller instances to solve the larger problem.! q8 ^, z! v7 ~% R

    5 }6 C% g, b) e- N, l3 e1 l6 U3 RComponents of a Recursive Function
    & }9 ~: f4 ?% h- \$ ~1 ^& P) O. w8 f" ?
        Base Case:4 x- j7 l% V' v5 x  p
    # [+ c/ a! a- L  g
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    2 x  Y$ q' k: V) B/ p
    5 J5 Z" q9 T- O" Y        It acts as the stopping condition to prevent infinite recursion.% ~- ?, m0 l! d$ Z, _$ _

    . ]- v/ N4 T: z' c: J6 T- I        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.( o) l; {! k! P6 z8 Y6 e
    . L% ^& e8 i2 K; g/ @
        Recursive Case:; i" U" L9 m6 ], i4 p' |

    5 A9 T" n* i' C1 g/ w  c        This is where the function calls itself with a smaller or simpler version of the problem./ P/ i4 @6 S: ~" q" f+ U

    & \7 y: C8 R' E) [$ p        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    0 @1 w7 p3 k; s5 \: ^
    ' r& L5 D% D7 C' SExample: Factorial Calculation
    . ?( U* w+ _4 v  N* v  p0 {% q
    5 _$ U9 K- m, D+ @" L7 YThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    8 R: Z3 F! o/ V  [
    4 l$ `5 b; S! p, ^3 ^. k    Base case: 0! = 1
    $ J6 a, {5 N7 b/ y
    " Z+ C* K- N* o    Recursive case: n! = n * (n-1)!4 k+ [, B! B) t. h- T- t
    + v7 h1 Z2 d' {1 y  |. ^7 N
    Here’s how it looks in code (Python):- |$ B- o4 Z! r& h0 E2 c2 L, Z
    python" r3 C) I! k9 Z

    6 G# W# \! V4 n; @/ x$ M. E
    . `: ]. S' U' o: n- N0 b1 xdef factorial(n):
    ( I8 G; F% n5 \/ @5 V5 r    # Base case
    8 n, ~% b4 \+ E+ v+ P( n& E( b    if n == 0:. X0 e" e; u) I& i7 q! M
            return 1
    ! K8 i0 X0 p* s1 r    # Recursive case
      M$ B3 b! T/ a    else:: K( s) p/ w6 N" o& d
            return n * factorial(n - 1)( t/ i. }  W, Q2 R: Z
    4 f4 {, |& o7 e2 h7 {
    # Example usage
    : x& n/ O7 j1 m9 O$ q. ?' {print(factorial(5))  # Output: 120
    : v- }& h# h! P' ]" J7 ~* c. O6 K" u: x0 Z8 z8 s7 l
    How Recursion Works
    ) {7 c6 x5 F1 G! v/ w
    - [. D/ v: m% w, J    The function keeps calling itself with smaller inputs until it reaches the base case.
    , F& C& a* ~6 b6 g! ~* c4 r% l
    + I! w5 {1 i- V7 v- k1 N    Once the base case is reached, the function starts returning values back up the call stack.
    : P! c$ z9 N# W5 I9 E7 r( \5 i0 J/ u8 O! p
        These returned values are combined to produce the final result.
    - j0 u0 m  b4 L* h8 B6 A) g4 X* s) Y, z$ L1 ?) G
    For factorial(5):( S0 x7 m/ Z5 ]. r6 r$ l1 h; F  B4 Y, F5 l

    ; u& u" P7 G) P, [$ e# i1 Z/ x/ h3 ?- l; b) |( z& f
    factorial(5) = 5 * factorial(4)# _, G0 ~! [/ A, N
    factorial(4) = 4 * factorial(3)
    / w5 T9 Q# Z7 Nfactorial(3) = 3 * factorial(2)1 B+ P7 d( `! ?+ i
    factorial(2) = 2 * factorial(1)1 s8 o* r* L; l6 i" G* Q  y
    factorial(1) = 1 * factorial(0)2 L# M& ?- J$ G; F3 y6 ^
    factorial(0) = 1  # Base case
    $ L  x' R- |1 [/ P3 D% R0 v
    6 `1 F7 ]4 d6 y9 q: i2 u# ~( }3 FThen, the results are combined:* J) h! j- s3 ?

    . }1 S* ?+ \' j% ?
    2 b5 f2 j" ^" Z4 C( rfactorial(1) = 1 * 1 = 1* w+ i; @9 ~8 u8 t2 d; }
    factorial(2) = 2 * 1 = 2) }; d  k, b. {4 |0 T# c
    factorial(3) = 3 * 2 = 6
      y7 {8 V' q3 C4 U6 m$ {7 yfactorial(4) = 4 * 6 = 24+ U2 O" c' Y7 G5 K6 I$ P" l, k
    factorial(5) = 5 * 24 = 120
    ; U2 p+ h% B( j5 ]$ I6 d
    : _; @7 h' T2 sAdvantages of Recursion
    7 V+ X* ]/ O' r' F; Y* B6 }' P# t' A/ B* p4 e( x# }
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ S/ K# s- v  v8 ^4 U
    : V: u' }. R: V2 X- q5 b$ `7 k5 M) z
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ' H9 X$ S- E* h7 ?$ Y, ^9 _. L1 j
    0 `6 v! R- U  B1 @3 ^Disadvantages of Recursion
    . S" K% _$ O+ J, B$ q1 Y; y. V3 c: R  _- R4 ]- b; p
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    0 |, Q9 v  T. m8 r7 K3 G
    9 n# l5 I# p4 q. d! r    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 M. M/ O, ?1 R1 {+ n! n, E- t8 \; |- z+ D8 @
    When to Use Recursion
    , C& x' t8 }$ H' B
    5 N, }: x# i: e0 _  c* Q    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) ?1 _' f- z* c! b3 X7 J
    7 \7 G" B7 M7 M8 I+ L5 C; p
        Problems with a clear base case and recursive case.
    - U: z1 O* p& o* ~
    & D* H+ c) e' }2 w$ mExample: Fibonacci Sequence' V0 \  b. P6 {- v: M2 E: [
    7 U2 g0 b$ a  `1 U+ c% s- O
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    - E1 S4 @: ~; K! j& ~  F5 L) N# H  B2 F5 ?9 c& G
        Base case: fib(0) = 0, fib(1) = 1
    6 l' ]2 V* L4 v& j. S- [( Z
    7 w8 L  j9 q' T8 |% T4 g    Recursive case: fib(n) = fib(n-1) + fib(n-2)5 ~7 Q  o0 b) |' H% W

    0 F; ^) y  g4 F2 b" R& {! Gpython+ h: d# J2 i; K9 e: |

    ; b0 c* r7 b( ~9 v1 B2 ]( N# J' Q5 {- S
    def fibonacci(n):
    ; {8 p( \4 Z$ K0 v9 K8 ]; j    # Base cases9 I- S* G/ B/ g$ ^9 S9 T. y3 j
        if n == 0:$ N8 M2 f. Z: j( i& p- A
            return 0
    $ U( X) s7 @: D, G    elif n == 1:7 |7 f$ L' p  P* u& m% d# Y
            return 1
    9 J  x" C2 ~# N0 V4 q. v    # Recursive case, `' H% n$ C3 A$ Q. `
        else:
    4 d6 D# I3 \% M% b; n7 \8 n1 h0 V; |8 W        return fibonacci(n - 1) + fibonacci(n - 2)5 x5 _& D" H7 i! y
    9 s: u' C6 f- `# q- K4 P, _
    # Example usage
    # M4 Y# G7 y7 {) m5 X' b8 m% fprint(fibonacci(6))  # Output: 8- ]  l$ [2 L0 ?: _

    ; i% o/ f$ D, a8 a1 yTail Recursion
    4 z( {- Z  Z# p1 Y1 Z* F: {* V+ {+ ~: ~' G/ @4 f* w6 ^' T& s
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 P& B, `/ _+ P/ G

    6 A; i( p/ @% e3 x6 QIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-26 19:05 , Processed in 0.031164 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表