设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 4267|回复: 7
打印 上一主题 下一主题

[武器展望] 西工大这个AI成果意义非常重大

[复制链接]

该用户从未签到

跳转到指定楼层
楼主
 楼主| 发表于 2024-5-12 13:14:48 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 晨枫 于 2024-5-12 00:20 编辑
! x( t3 U% o1 m5 k
) N# U, `* N/ c' I& n+ G南华早报报道,西工大张东(音译)团队在《航空学报》上发表论文,成功解决了AI的“黑箱难题”。9 z, N+ p- l) O7 m8 u, _- \7 H
3 F% Z! f9 U. s0 ~
黑箱模型也叫经验模型,指模型结构与物理过程没有外在关系的数学模型,模型结构的选择基于有可用的数学建模和分析工具,并无物理解释。模型行为与物理过程相近,纯粹是比照输入-输出训练数据,对模型中的可调参数“凑参数”的结果。在使用中,使用者“喂入”数据,模型“吐出”计算结果,仅此而已,谈不上理由,谈不上解释。& x- i8 H/ }1 J9 _9 v

( R5 T, s' o# `% O, M" Y, \( f) l: p从高斯发明最小二乘法,这就是数学模型的基本思路。建模方法越来越复杂,模型结构越来越复杂,但思路没有变。
. f7 \- ~. N" d" ^: h  a: X9 A0 R$ C. S, \6 x8 w$ D
也不能说一点没变。“任意”选一个模型结构,总可以“凑”出参数。模型阶数提高,模型结构复杂化,模型与数据的拟合度提高,但最终拟合度改进越来越小。数学上有一套“适可而止”的办法,帮助确定模型阶数和复杂性在什么程度既保持足够简洁,又达到足够精度。甚至有一定的办法,帮助引向最合适的模型结构。
" a* d# V' R; d' Q: \% g1 c' C- Z( v& f2 G. H
黑箱模型的好处是简便,不需要对物理过程有深入理解。坏处是适用范围很受训练数据的限制。如果训练数据代表了所有可能遇到的情况,黑箱模型其实是不错的。问题是物理过程很复杂,可能经历的情况几乎是无限的,而训练数据只可能针对有限的场景。一旦遇到训练数据之外的场景,黑箱模型就很不可靠,而训练场景之外既可以是数据边界之外,也可以是数据“云团”之间的空隙。7 c9 {* \; G" q! w

# v7 t) l6 A3 Z, B9 f6 Q# O1 D更近一步,不再是简单粗暴地从数学上容易入手的多项式、双线性等模型形式入手,而是基于对物理过程的认知,建立具有物理解释的模型构架,用可调参数使得模型行为与现实过程最大程度拟合。这是灰箱模型,也叫半经验模型。
6 G4 L. }+ k3 s
# Z/ u7 n6 c: E- o1 @; u. x灰箱模型的结构有一定的物理背景,在结构上就决定了模型行为的基调。如果这个基调定调正确,加上训练数据,就可以建立比较可靠的模型。即使在数据边界之外,或者数据“云团”之间,模型结果也不会太离谱。0 W+ x2 x- P" \$ J) A* ~
; b) w: o% {) V4 |0 q& Q
理想模型也叫白箱模型,这是根据对物理过程的认知,建立机理模型,再通过实验,确定模型参数。由于这有坚实的物理基础,只需要相对较少的训练数据就可精确确定参数。而且在训练数据的边界之外或者云团之间,精度和可靠性依然有保证。( m9 d- _# w1 C! ^6 w- j- n5 W

8 J! G$ A2 u7 v) C白箱模型是可遇而不可得的。真实世界太复杂了,要精确理解和建模对相当简单的过程也是艰难的事,最后得到的模型也可能在数学上非常复杂,使用不变。比如说,水壶烧水是又简单又复杂的问题。如果用黑箱模型,选一个线性律或者平方律,在火力、时间、冷水温度和沸腾时间之间通过实验或许足量数据,然后用最小二乘法,就可以得到一个黑箱模型。在大部分情况下,这模型就够用了。
2 L  A+ ]" k- L' x$ q0 z7 j, x. u' b! ^4 f2 O* h: `5 m
用灰箱模型的话,就要用到传热、材质等方面的知识,但模型也更加精确可靠。
- A) C, b  t: M) T1 e6 h7 G
4 v1 s/ ^8 X" O$ v. e9 _" N但用白箱模型的话,连壶底的热分布、壶体的热传导和散热、壶内的对流循环、水中杂质对沸点的影响等统统要考虑进去。模型更精确,但建模就太复杂了。
% n0 \$ u1 n9 D4 o" t6 j/ v* p9 R
- r$ f5 p7 q. S5 K, W在实用中,常常还是黑箱为主,毕竟方便。$ j, c: O/ F7 G5 Y0 r+ {
3 i0 f: z8 ~1 h/ X# X; W5 Z# n
AI正是黑箱模型,模型结构与物理世界无关。简单黑箱模型多少还能分析一下,对模型行为有一些定型、半定量的理解。AI模型就不行了,尤其是深度学习模型,动辄几十几百层,几万几亿参数,根本不可能进行有意义的分析。( K, E& P8 k9 \, j0 k
9 ?. m: {  }5 Q$ l# s
这就带来巨大的问题,尤其是用AI模型进行决策辅助甚至自动决策的时候:如何确保AI建议或者决策是正确的,至少是无害的?$ s  q$ D' |6 x

, U' M' d& F. [- Q' n7 S# Q; K在AlphaGo的时候,就有一些棋路是这样,事后复盘的时候,人类大师也看不懂为什么要这么走,也说不上来这几步对后来的胜负有什么影响。自动决策是个最优化问题。最优化好比爬山,爬到山顶就是达到最优了。但要是山包顶上很平坦,到底那里才是山顶就很不清晰。更糟糕的是奇点,像马鞍一样,从一个角度看是顶点,从另一个角度看是底点,算法就容易犯糊涂。还有“香蕉问题”,在两头翘的区域里,算法可能左冲右突就突不出去,要沿着“香蕉”走一段,才有比较明显峰谷。还有就是局部顶点,在山脚下的平地上有一些小土包,爬上土包,在三十步之内确实是顶点,但真正的山顶在前面,连山脚都还没有到呢。* E& v% o# V+ M) V: r4 [
- a$ A, ~: c3 V. v- Z0 E
这些数值计算上的问题可能把最优化算法绕糊涂,找到的最优解其实不最优,甚至一点都不优。
- W- e7 W  ~' r; o+ L5 L$ g# I+ `+ W5 `' f+ N/ _( {+ b; h
人类需要理解AI是如何得到当前的结论的。同时,如果人类对AI的求解不满意,要有容易的办法“纠正错误”。
. k6 B, n& t1 f. y, H7 v. K; t3 f2 Y7 J' c/ w$ A
张东团队正是做到了使得AI“坦白交代”,用数据、自然语言和图表说明决策依据和过程,帮助人类理解AI,并在人类复审有异议的时候,可以反馈回去,纠正AI的决策路径。" Y: @) u2 v) I; K! H. A5 v3 X: ^" E
/ _' A& s' L& t. U0 M( I1 y
张东团队用这个方法,训练AI空战。在一个实例中,AI用复杂的角度机动试图摆脱追击失败,有经验的飞行员发现,AI不顾能量损失强行机动,最后没有击落对方,自己反而能量丧尽,被对方击落。在后来的人工反馈中,AI“改正错误”,再也没有犯同样的错误,而是用貌似蠢笨但保存能量的简单动作引诱对方上前,然后通过积蓄起来的能量突然反手机动,一举击落对方。
% Z9 {# p5 J+ [8 t- h/ a- N! B5 Q
7 L8 |) G$ w* G% G团队发现,利用飞行模拟器数据,用无反馈的黑箱模型训练,AI要50000轮才能达到90%的成功率;但用有反馈的逐步训练,20000轮就能达到接近100%的成功率。2 g3 s2 K% i+ H8 m- p& {
$ L- w' C' \, j6 g- e1 P
这其实好理解。完全基于训练数据的一次性黑箱模型训练好比关起门来死读书,破万卷书后才一知半解;学一点基本知识后,到实践中边学边完善,进步就快多了。0 A- R( W( N1 q4 x9 u* P
% V0 L( P, _3 v: j
这对空战模型的意义显而易见,但应用还不止于此。在工业自动化、工商决策辅助和其他AI应用中,AI的“黑箱性”是应用铺开的最大障碍。即使人们有理由相信“AI是有道理的”,在不能理解这个道理之前,还是不愿意接纳AI的决策建议,在AI直接行动的时候更是抵触。# A5 _4 [9 v) x/ V

1 p+ f. p3 d$ Q+ V# I2 T张东团队的成果如果能白菜化、普及开来,功莫大焉。
. M0 Y3 ?- {8 S+ [  N- k7 f+ _9 e$ `4 p
对了,爱坛里@testjhy 是AI权威,给说说我这个理解还靠谱吗?

评分

参与人数 9爱元 +82 学识 +2 收起 理由
常挨揍 + 10
helloworld + 8
landlord + 12 伙呆了
李根 + 8 油菜
方恨少 + 12

查看全部评分

本帖被以下淘专辑推荐:

  • TA的每日心情
    开心
    6 天前
  • 签到天数: 303 天

    [LV.8]合体

    沙发
    发表于 2024-5-13 04:22:37 | 只看该作者
    本帖最后由 鳕鱼邪恶 于 2024-5-13 04:24 编辑
    1 c  z$ b0 o$ m! a. e; }' t0 B0 s! ~& S* q# H- ]% H  M* _/ x4 v
    兔子现在这么不耽于泄密了嘛~
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    16 小时前
  • 签到天数: 1955 天

    [LV.Master]无

    板凳
    发表于 2024-5-13 17:24:08 | 只看该作者
    更糟糕的是奇点,像马鞍一样,从一个角度看是顶点,从另一个角度看是底点,算法就容易犯糊涂。

    9 Q, ]7 t& v0 W' g- M3 c所以最小二乘优化问题一般要求系数矩阵是正定的,至少是非负定的,避免马鞍点

    评分

    参与人数 1爱元 +8 收起 理由
    helloworld + 8

    查看全部评分

    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-6-21 09:14
  • 签到天数: 2 天

    [LV.1]炼气

    地板
    发表于 2024-5-14 07:10:52 | 只看该作者
    能给个文章出处吗? 完整的标题,署名,日期也行啊
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    5#
    发表于 2024-5-14 09:22:18 | 只看该作者
    听上去好像不是什么新东西,感觉这个好像有个专门的词,叫监督学习supervised learning还是啥来着?

    评分

    参与人数 1爱元 +8 收起 理由
    helloworld + 8

    查看全部评分

    回复 支持 反对

    使用道具 举报

    该用户从未签到

    6#
    发表于 2024-5-15 00:00:33 | 只看该作者
    黑箱的可解释性,是AI领域的热门研究课题。如果他们是理论上或方法上有突破,应该是尽量发在各个conference上。是的,这个领域的文章,conference上发表最重要。所以更可能的是这是现有方法在一个工程领域的成功实践。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-6-21 09:14
  • 签到天数: 2 天

    [LV.1]炼气

    7#
    发表于 2024-5-15 00:31:18 | 只看该作者
    本帖最后由 gnomegordon 于 2024-5-15 01:09 编辑
    % r! C5 ^  N9 V# }# H7 k
    老福 发表于 2024-5-15 00:00
    0 {# Q  U5 G" E; ?. u黑箱的可解释性,是AI领域的热门研究课题。如果他们是理论上或方法上有突破,应该是尽量发在各个conference ...
    , Y( ]! z4 \0 G7 J
    6 T( y- T; L0 O6 @& l3 x! L
    这个有所突破,算是重大突破哎。听上去像是人在回路中,不像boosting
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    8#
     楼主| 发表于 2024-5-16 05:34:03 | 只看该作者
    数值分析 发表于 2024-5-13 03:24
    ! ~6 P# ]: B7 w7 F& P8 ?所以最小二乘优化问题一般要求系数矩阵是正定的,至少是非负定的,避免马鞍点 ...
    9 m$ n2 H* i6 Y1 c8 T8 z
    工程实践中,通常是不到结果出问题,不会去检查正定矩阵的
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-7 18:23 , Processed in 0.074399 second(s), 25 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表