设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 687|回复: 0
打印 上一主题 下一主题

[武器展望] 极长波搜潜意味着美国海军潜艇优势不再

[复制链接]

该用户从未签到

跳转到指定楼层
楼主
 楼主| 发表于 2023-10-4 04:30:33 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
中国科学院福建物质结构研究所在《中国舰船研究》上发表《自然空化下潜艇感应电磁信号的演化》一文,指出潜艇空泡产生的电磁异常以极长波形式出现,可以在远距离被探测到。这可能成为反潜探测的突破。- d+ c0 M+ z$ w0 i! V$ S# \

; [% T, a5 c9 P  f: ?: e- t在一战和二战中,潜艇绞杀战差点把英国打趴下,但那时的潜艇只是可潜水的鱼雷艇,潜航时间很有限。现在,核潜艇使得无限潜航成为可能,而且不仅速度快,静音也越来越好,几乎达到海洋背景噪声的水平。被动的水声探测越来越困难,主动的水声探测则受到复杂水声环境的影响,还容易打草惊蛇。
* G) ~% i0 `+ L9 ^6 u& L: j4 i$ c% v6 r- o7 R+ Z& U9 R' Y2 \
在中美对抗的大环境下,潜艇成为美国海军最后的优势领域,航母和大型水面战舰方面已经不占优了。- J; m' l2 u4 K. @- D1 @" P. F
; h6 v) w: j! t- m7 r+ N  X
反潜首先要搜潜。一旦发现和精确定位,潜艇就死定了,但要发现和精确定位可真是不容易。
4 l( f# Y) k9 h! C) k/ _
: [- x( U, ^1 T雷达无法穿透海水,光也很难穿透海水,只有声波还行。海洋里本来就有各种水流和生物噪声,加上远近船舶噪声,这是比空气中的雷达恶劣得多的探测环境。针对复杂的水声条件,也衍生出多种多样的声纳。
0 O: b# M) T' T$ t
2 y9 a5 F4 T4 ~" @- p水面战舰是最传统的搜潜平台,舰上空间宽大,便于装载各式大型搜潜装备,口径为王,灵敏度高。问题是舰艇本身的机械和水流噪声较大,海面的波浪噪声也较大,影响声纳工作。主动声纳可以增加信噪比,但水温跃变层有近乎反射镜的作用,使得跃变层下的潜艇难以被探测到。8 |# n! g- f2 p& q; b9 O+ ?
- ?& ~0 z" x  j+ y# C
航空反潜在二战中发挥巨大作用,但靠的是潜艇潜航时间有限的漏洞,在上浮或者通气管状态下充电时用雷达捕获。在核潜艇时代,这个诀窍不管用了。红外、磁异都有用处,但探测距离和深度都有限,除非直接从潜艇上方飞过,很难可靠捕捉。
# l- V$ Y! S* @* x" c; p: a; E: ^9 O+ R/ R  q. `2 f8 s
现代航空反潜一般用空投的声纳浮标搜潜。美国喜欢用被动声纳浮标,苏联喜欢用主动声纳浮标。在理论上,被动声纳浮标不易惊动潜艇,可以抓现行,在对方没有提防的时候就予以猎杀。实际上,投放入水时的“噗通”声可以被潜艇声纳可靠地捕获。要是距离和水声条件使得潜艇听不到声纳浮标入水的“噗通”声,声纳浮标也听不到潜艇的声音。潜艇声纳的口径可比声纳浮标大多了,灵敏度高多了,水声环境也更加安静。
, t, o! I9 M' R
: n% u9 X5 x8 q& F4 e& A. v主动声纳浮标肯定惊动对方潜艇,但探测可靠,也可能使得对方忙中出错,自投罗网。0 f' ~* q' c3 F1 ?* w3 V

' u8 j0 @) w5 l& v) u$ a直升机反潜则以变深声纳为主。到一个点,把声纳像吊篮一样放下,沉入海中一定深度,搜索完毕后收起,直升机再到下一个搜潜点重复这一过程。但声纳的口径受到限制,也需要多点搜索才能完成三角定位,很费时间,容易被潜艇在搜潜点的间隙中溜走。" z$ h  M$ u+ y
" `+ W3 G5 ]6 V8 Z$ a' r/ B0 y2 E6 m
一般认为,潜艇是最好的反潜平台,因为搜索与被搜索的潜艇处于同样的环境,谁都不占优势,但这是“三岔口”式的互相摸索。+ W- m0 k/ G5 n8 H
3 w4 ~) T+ ?  I
很多年来,有各种远程搜潜的尝试,最主要的就是SOSUS。  @7 `% p* A2 d4 M
' n- L: c; x! g
这是在海床上固定布设的被动声纳装置,灵敏度高,可探测几百、上千公里外的潜艇活动。美国在60年代就开始建立,现在遍布北大西洋、北太平洋。中国也在建立,首先在南海。但这也是非常粗略的探测,并不精确,远远达不到可以引导攻击的精度,只是提供远程预警。
" [3 h) d# n0 [, o$ Z3 o
  [. v8 T' D, g/ X+ h: Q; ]卫星据说可以“看到”水下潜艇的航迹,但并不可靠,而且对光线、海况、斜距等要求很高。与其说是有用的探测手段,不如说会偶尔撞上。/ ]) `: U' v% j; C
+ `* H% q: B# t. f, l0 ?5 p
光在本质上是电磁波,水下没有多深就是漆黑一片,这意味着光线穿透海水的能力不强。所以激光搜潜在本质上也是有局限的。
/ ?' Y* _( N( C' p! m9 G+ O! b) \. f) v4 z: w
但极长波是个例外。极长波和极低频是一回事。极长波可以在水下传播,这是战略核潜艇接收打击命令的基本手段。美苏都有极长波电台,还有专用的带有极长波设备的战略值班飞机。一旦最高统帅部决定启动海基核打击,就通过极长波系统发出预定指令。在水下的潜艇接收到后,要么按照约定上浮接收卫星通信发来的完整打击命令,要么按照对约定目标直接启动打击程序。
1 x6 k+ _7 e! x! b. I1 c! \' u( u9 C% j/ Y6 P' X' U
极长波的频率极低,所以数据率极低,只能发送非常简明的命令,一啰嗦就发不过来了。, U$ \# {2 G9 f' I+ q0 Y
% g( s, t  u% Q* C- Z0 L8 V3 G
但极长波能穿透海水这个特性,现在被中国人利用来揭示潜艇行踪了。
9 G0 j5 H. \9 y0 e* |& ^- l- W; R! u& F, w5 J
高温和低压都能导致水的气化,这是中学物理就知道的。游泳时,手划水,手掌推水形成压力,手背形成涡流,这是负压。负压强到一定程度,海水会局部气化,形成空泡。人手达不到这样的负压,但螺旋桨能。
2 W( Q. g4 M# z- R( i: [
7 {- Z; l6 c) A# ~( c8 J1 G螺旋桨在转动时,侧斜的桨叶在旋转中一面搅动水体,一面形成向船尾方向挤压的分量,桨叶背面就形成低压区和空泡。船的螺旋桨即使完全浸入水中,也会打起白沫,就是空泡的原因。潜艇螺旋桨也一样。4 h0 O5 [1 u3 R5 x+ `

5 w1 e0 D$ ~# O1 N5 i- Y; D空泡形成的尾迹在船开过后很久还能看到,因为空泡比较稳定,要过一段时间才会破裂和被吸收。在水下,空泡破裂是潜艇非机械噪声的主要来源,一般用大侧斜、低转速桨叶来抑制,但不能消除。
) `  N& T. X0 c* t1 o& {0 G3 ?! N8 k' b! P1 t
空泡产生的湍流导致局部电磁异常,其信号可能比先进磁异探测器的灵敏度强3到6个数量级,完全在现有技术的探测范围内。不过磁异探测器的探测范围有限,如前所述,除非直接飞过潜艇上方或者相距很近,还是很难捕捉到。
8 A: C6 Y0 K/ ?+ `. K2 _# |% d- `1 j% t( Z! N/ Y
不过磁异导致的极长波信号就不一样了。这是34-50赫兹之间的极长波信号。但极长波会在电离层反射,在很远的地方也能接收到。这就是天波雷达(OTH雷达)的原理:用电离层反射的电磁波信号探测几千公里以外的目标。
' d2 K, n4 R% `. M4 e/ q
7 `) b% `  h$ D4 E# y2 W( q- ROTH雷达有很多好处:隐身飞机对OTH雷达是现原形的,航母也一样会被抓个正着。OTH雷达有近界,襄樊建造面向太平洋的OTH雷达的话,近界在杭州到赣州一线,更近的看不到了;但远界差不多到关岛一线。
8 Y6 J3 o; V# R) F$ @
$ ]) c4 D4 f" U1 X9 q) j6 ?OTH雷达也有很多坏处。首先,天线阵巨大,像一个竖立的足球场,布满奇形怪状的金属框架和笼子。飞机上需要极长的天线才能捕获,极长波通信中继飞机是用几公里长的拖曳天线实现的,少量专用极长波反潜飞机在高空也这么拖一根几公里长的天线还行,一般反潜飞机以低空飞行为主,还要拖这样的天线不大现实。其次,OTH雷达非常不精确,不仅极长波本身就不可能有高分辨率,还有电离层风暴的问题。如果说电离层像海面,这个海面会不时有风暴。太阳黑子活动期间尤其风暴强烈,平静的电离层被搅成一锅沸腾的粥,使得反射路径不确定。OTH雷达的探测精度在几十到上百公里级。
: Y$ v7 h2 e% C8 R$ m, V5 y+ v' e& Y# ~$ N: D: j# I- Y# w" \
在空间气象实时监测高度发达后,或许能全球监测电离层风暴,对OTH的路径实时矫正,但现在还做不到。做到了也不能解决极长波的本质不精确性问题。+ W+ M$ |6 U9 w/ H- K* j- h( z

5 r! I; Y; Y& h/ k以空泡电磁异常为基础的极长波搜潜也有一样的问题:电离层风暴导致探测的不精确性。5 ^6 v+ _( T& Y. J
" S8 @1 C- F  W( G5 c6 Y9 \8 e
海洋里产生空泡的物体很多,快速海流都可能在水下礁石的下游方向形成空泡。但自然空泡的位置要么随机,要么固定,形成规则航迹的不多。鲸鱼游动则是不形成空泡的,其中的仿生原理现在人们还在摹仿中。通过先进数据处理和航迹追踪,应该可以鉴别潜艇空泡和自然空泡。水面舰船航行也形成空泡,但在不同的水压、水温环境下,空泡的电磁异常特征应该和水下空泡不一样,这也是区分的线索。5 J1 F' l9 v+ Q5 G3 `* X
: J5 S1 C5 |! R7 z
但极长波的本质不精确性没法解决。7 c# Z# T' {8 r& I$ [! I+ J
/ D, i7 X' O3 h* f6 U) }
好在潜艇的速度相对不快。隐身飞机有几十公里的探测误差的话,用作武器引导,那是一点戏也没有。打航母有几十公里探测误差的话,也需要赶紧派一个补充侦察手段去详查,精确定位,然后才谈得上发射远程导弹。
% A$ r; d& Q: }; z% ?, ]7 P: K' I* w! j8 a
潜艇在理论上可以和航母一样飙30节的航速,但机械和水声噪声都极大增加,SOSUS老远就听到了。要是有就近的舰船、飞机,或者调集舰船、飞机靠拢,什么常规手段都能精确定位,然后潜艇就没有然后了。也就是说,根本不需要极长波探测。
' K/ b( }# w3 J1 M1 \) f: r% s# A  j2 g9 G3 w2 g: s
但以低得多的“安静潜航速度”航行的话,没有引导,舰船和飞机泛泛的水声搜潜就很容易当作海洋自然噪声而漏过。有引导的话,仔细搜索,还是能捕捉到的。这和反隐身飞机一样,即使试图隐藏在环境噪声中,但被抓住蛛丝马脚的话,仔细凝视搜索,就难逃罗网。隐身不是不可见,潜艇也一样。9 B4 F- z1 v  R" S) V
& W2 E( M- _* ~$ t; E
在这里极长波搜潜就是那个引导。而且可以保持相对连贯的监视,引导海上和空中的反潜力量靠拢目标,提高捕获概率。这和卫星的“惊鸿一瞥”不一样,后者可能在下一瞥之前的间隙中被目标溜掉。
- E# ]3 v( \: b  E- ^. |- p) i8 i( D( Z4 X, o) S
有意思的是,通常被动探测只能侧向,不能测距。但在极长波搜潜方面,由于是基于电离层反射,测向肯定是可以的,还可以测俯仰角。入射角等于反射角,电离层、地球表面的相对关系和形状都已知,电离层反射的延长线与地球表面的相交点正好就是目标测距。当然,距离越远,角度越浅,误差越大。! T* @, c$ j; ?+ X& v

; n; c6 v, A* R在理论上,航速足够低的话,空泡几乎消失,也就是说,极长波也搜不到了。但海洋那么大,核潜艇要是这么慢慢蹭的话,一个太平洋走直线也够蹭个把月的,黄花菜都凉了。* e, y3 @2 U: P  W

% P* T' Y9 e' H' t1 v9 g0 v/ k而且低速潜航的话,核潜艇就丧失对常规潜艇的优势了。常规潜艇潜航时用电池动力,比核潜艇还要安静,但只能低速航行,否则电池电量一下子就用完了。核潜艇的“安静潜航速度”高于常规潜艇的电池巡航速度,可以围着常规潜艇打。潜艇对潜艇的战斗和一般战斗一样,在其他条件相同的时候,相对静止的一方只有挨打。
) B4 |( D* m3 ^# D: ^
+ p) X5 o( ?; t4 ^! q0 q3 v3 r在这样的战斗中,常规潜艇尽管更安静,但核潜艇的声纳口径更大,双方并无太大的探测距离差别,机动和火力优势决定了战斗。常规潜艇要是提高速度,早早用尽电池,被迫上浮,就更是死路一条。' `' |/ q5 _5 D: k, W
8 y& ~3 n: [" Q( A6 X
但要是只能低速潜航,核潜艇的手脚就捆住了,对常规潜艇也没有优势了。要是敢提高速度,形成空泡,敌人就不只是常规潜艇,还有被引导过来参加围殴的舰艇和飞机。
# ?% p. G8 R+ P3 W" L
! `  U4 R9 L+ r对于中美对抗的大设定而言,中国海军能在第一岛链以东建立反潜线,就是很大的战场优势。与中国航母、055、轰炸机、反舰弹道导弹、反舰高超音速导弹在一起,这也是可靠的反航母线。
5 r( V: w4 F- t( K. Q, \5 j4 Q
) c6 H+ b2 c2 R) P% i有了这样的战场态势,台海战争就是完全不同的打法了。台海战争胜负落定的话,中美之争在军事层面上就大势已定了。- o- ^& D; V/ I' e

8 |' V* ]/ r- ]4 C+ e* Q2 P当然,现在发表的只是理论研究,离实用化还有距离。不过制造业超级大国的优势就在于产品化速度也超级。理论上的路走通了,实用化还会远吗?
" \  G% V4 Z% d  m

评分

参与人数 5爱元 +48 学识 +5 收起 理由
老票 + 18 + 5
常挨揍 + 10
住在乡下 + 4 涨姿势
pcb + 4 涨姿势
landlord + 12 涨姿势

查看全部评分

本帖被以下淘专辑推荐:

手机版|小黑屋|Archiver|网站错误报告|爱吱声   

GMT+8, 2024-4-28 03:31 , Processed in 0.033553 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表