设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1574|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 1 a+ A9 w; f9 x  t
    - M. C& \0 L" k! C: R
    解释的不错
    2 D* f' _# q' S* D4 M: i$ q. H+ h4 p% M' g, Z% X
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    3 m4 v7 n5 s  M* S! t  U) v9 E: a# j4 @: _# J# }+ w" R& ?8 V
    关键要素7 O0 ^3 f2 F( V: z
    1. **基线条件(Base Case)**
    / |8 Y3 [7 W: ^2 Q& V+ Q; `   - 递归终止的条件,防止无限循环
    5 X7 R8 c! K4 V# D, K9 k   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    8 I3 y# q6 I9 V8 W, t' r
    0 N) ~! J$ B4 I+ z% _" m" |2. **递归条件(Recursive Case)**3 }5 P* T, y' u6 U3 H/ I. T
       - 将原问题分解为更小的子问题- `0 B/ d* A, i  ~8 Q
       - 例如:n! = n × (n-1)!% m; e5 L! h/ _( e" N0 w

    5 w. ]% z1 P4 b 经典示例:计算阶乘$ C5 K/ o' v: `# y7 {: ~. ^
    python
    - O0 _5 S; B) l! Hdef factorial(n):& w0 P4 V- N/ W! V! i2 [' h
        if n == 0:        # 基线条件' V" k+ I9 W+ g" P1 W
            return 1" c/ z* I8 X! ^" `7 r8 Q
        else:             # 递归条件
    / c3 Q) M. f1 u# k9 a* {        return n * factorial(n-1)4 g" w; D$ t0 \! a7 v+ f- I( k, }
    执行过程(以计算 3! 为例):
    4 z' \, b8 p  O2 \factorial(3)
    ( Z9 J7 `! D7 T5 z1 N4 z* [# ^& w3 T3 * factorial(2)
    7 S) \& v. Z8 c- C3 * (2 * factorial(1))
    ; X' k" g# G: g" G& e6 {3 * (2 * (1 * factorial(0)))( _) {+ ^2 V1 a* @3 ]
    3 * (2 * (1 * 1)) = 6
    6 k/ i' S( A7 S" N
    0 Y; f- r! z4 |0 x1 ~, ^6 V- N 递归思维要点; d* Z4 j2 h7 g
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑& y& [' T, D) `7 e
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  [! D! w4 _7 J
    3. **递推过程**:不断向下分解问题(递)' w- R; K7 g7 P6 j4 M
    4. **回溯过程**:组合子问题结果返回(归)
    4 i' @; J1 |8 K- e7 y$ Q1 d, s
    ( |9 a2 h2 j6 z, ^& p/ o 注意事项$ i0 i# V) g& ^) {! Z
    必须要有终止条件; x& J. o: X7 A. n! |- i; x/ ~: l3 Q
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ; b3 K9 L; L: l3 c6 L8 v7 d某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ( B9 ~2 X0 g1 {7 E( f尾递归优化可以提升效率(但Python不支持)
    6 z+ ]0 z' t3 ^! J" J  d' J( B3 n$ _" A
    5 n) t8 S) C  k$ E1 ]( k 递归 vs 迭代
    . f7 J1 ^; r- ~3 N|          | 递归                          | 迭代               |
    0 |" S# N3 A  U: j|----------|-----------------------------|------------------|; ~; F5 u( S4 w% t8 G5 ~
    | 实现方式    | 函数自调用                        | 循环结构            |
    " b/ K6 E& P3 f$ a| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    6 ]+ S% M% U( K. F+ E| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ; i( h6 S' H! N! E- {# a| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ! }0 R$ Z* U. z  a
    ' m  u: j, X9 ^3 I4 K 经典递归应用场景; b: M0 }, f! R# j  }
    1. 文件系统遍历(目录树结构)1 |, b7 E( W- z- \/ W* g. H
    2. 快速排序/归并排序算法) p3 L5 s' j" P, @& h* _
    3. 汉诺塔问题
    $ Y4 U, M  h. Z, R4 o4. 二叉树遍历(前序/中序/后序)4 S4 b- u2 ]* n8 x7 p+ M. D2 n
    5. 生成所有可能的组合(回溯算法), o; f1 ^! ?1 E

    0 V" K+ P1 |0 S- R# m" |试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 21:01
  • 签到天数: 3122 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,- i8 y' `! E, j1 R9 o7 \4 M% w
    我推理机的核心算法应该是二叉树遍历的变种。8 u) I' r1 P; `! y5 V
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- c- W" v: e5 x% I8 u# t5 C
    Key Idea of Recursion
    9 _0 Z8 |7 V/ Y! U
    % a' ?9 {/ _) `4 x; Q2 F" s( \A recursive function solves a problem by:! S6 U& B+ p$ R

    1 ^& g! f$ _* |2 X    Breaking the problem into smaller instances of the same problem.
    6 ~/ d+ j# [- S8 \4 m9 x
    ( m* o: t5 Y$ `% L+ P; G0 F    Solving the smallest instance directly (base case).
    $ t6 D+ z3 v. ^- W! H# \% s
    - d9 {4 n( T( ], C0 {5 O3 I* [    Combining the results of smaller instances to solve the larger problem., i8 E7 f7 V+ I- |5 x+ j
    ( @- p' T5 x) a# \
    Components of a Recursive Function
    . y; D! g( I, Q( a, w; w) m, f9 W. h/ m
    + K, q: f, ]4 l* S5 T0 D7 G    Base Case:
    1 t' R/ P7 E# n, m7 p6 I7 A3 a* W' Y; M% J; Z8 r  ?  g
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( E- {, R$ V! ?2 f+ b& c$ @
    3 Z/ z8 U8 A+ O' |
            It acts as the stopping condition to prevent infinite recursion.
    4 l3 o. {& E" O3 x# W) d1 g" p
      v' W; U% _$ b, j        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' a/ f9 r2 U: z4 ^8 z9 g2 }3 Q& E! C
    5 B, r4 G' |- e    Recursive Case:
    * `+ {6 M0 |9 k1 {5 u
    ) G' B6 c( e  e* j        This is where the function calls itself with a smaller or simpler version of the problem.
    # h! S% W, T- L/ g; K5 Q- P: i, s3 \4 T
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).1 w4 m: `$ X( `7 K% K0 J, A3 B
    " U7 i' {9 L; F3 `6 @
    Example: Factorial Calculation+ @# @+ z" L1 a4 ^0 n, O
    : B" g% E# Q7 R8 y, [
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:0 z3 `2 @8 f" g

    ' o& D) f7 z; K: x    Base case: 0! = 1/ ]$ w+ o1 r' d8 E8 {# j: S
    , t7 Q2 ~2 s, M. K2 P
        Recursive case: n! = n * (n-1)!2 p; Y: m3 E- |' t' W8 c8 k! Q3 n) n& y
    : T0 ?: K, i. X; v6 ]" a
    Here’s how it looks in code (Python):
    # |6 Y" Z: i) @+ a0 r; kpython
      ]( {9 \( h- R0 K, x/ y
      P, G5 s# c( |7 M$ x
    : f) i4 y: z6 K/ S& Hdef factorial(n):/ U6 i6 q' b; @2 a- y. f& ]
        # Base case1 L3 r7 |( U8 S1 t& g8 M/ ~" b6 {
        if n == 0:
    + n" i! }, N# X; Q7 c        return 12 n" c! I. k* g
        # Recursive case
    1 L/ L! O0 W; c6 w& p/ R    else:) Y3 i: W9 V3 Y; i
            return n * factorial(n - 1)
    / _, ~4 o  t3 _) F6 Y( Y3 L) F. ^: ^) C4 w7 U
    # Example usage& @, ]: B* R# O& x. t
    print(factorial(5))  # Output: 120) k& u9 N0 ~2 u

    , o  Y' @  T5 g( ?  y% VHow Recursion Works, [; t" _, I. k2 g
    / G) @/ @* G! x
        The function keeps calling itself with smaller inputs until it reaches the base case.7 {2 l2 I! ^' i2 [' X# _4 M) x
    ; [$ Y0 e/ i! ^/ S$ ]" z& o
        Once the base case is reached, the function starts returning values back up the call stack.
    : @( n- n7 T) x, b. P
    0 b# I% J4 ]6 f% h+ a8 k' u( W( P- E    These returned values are combined to produce the final result.
      R) s* V; f' |: p1 L5 O" E% H  g/ k% ^: R8 J0 a
    For factorial(5):# s$ }  u; i: s3 `
    ( }- B9 Q. c4 L7 B5 o; T
    : f$ E  G6 a, P. a0 V
    factorial(5) = 5 * factorial(4)
      t' F5 `% p5 L* j$ s" [factorial(4) = 4 * factorial(3)
    2 X( i0 e: m# s- Y& p5 x4 K* C) Qfactorial(3) = 3 * factorial(2)
    1 b/ g  \# L$ `' }4 Wfactorial(2) = 2 * factorial(1)7 l% Q; E6 y7 b" p! i# G" i6 ?
    factorial(1) = 1 * factorial(0)
    - {7 T& D+ Z& h/ [/ Jfactorial(0) = 1  # Base case* h0 c4 e7 A: S6 N
    7 o5 V0 J! G8 F
    Then, the results are combined:
    & ]+ N" E: s! j
    + b8 z; {2 `: j. P( |# c# r  Y$ W$ b: g  U) }
    factorial(1) = 1 * 1 = 12 i3 n( V0 B* n/ K9 N
    factorial(2) = 2 * 1 = 2
    ! A/ b; h/ D& G$ O9 ^0 tfactorial(3) = 3 * 2 = 6* i, a9 Q! L! Y2 i* L" Y3 q
    factorial(4) = 4 * 6 = 24
    , x- {6 o0 k1 |4 E& z! V; bfactorial(5) = 5 * 24 = 120; [1 D4 ^6 d* n3 p! y- r6 l
    $ k* w- G& d3 {# R' B# c
    Advantages of Recursion0 o& ]) I, X: v! h" D% f- y
    9 Z  z* R1 ~, `8 ^" r
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    : ~$ D1 N, x9 T& I4 d. m' {* c' E2 X4 ]! O( P
        Readability: Recursive code can be more readable and concise compared to iterative solutions.) h, ]+ J- b& a+ @$ O* J
    1 E3 R- A* g* Q/ f
    Disadvantages of Recursion$ ~1 {: G4 |* L! I

    ; f" h( a7 O. p8 G    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    # X" q# B' J  }( y0 P' Y4 `0 M6 K, ?) e  W( N
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: u! U  _  l; t. Y5 H
    3 `1 F8 x1 R6 s* {# e
    When to Use Recursion& @9 }9 |5 p; V7 K! N) P9 |
    & ^, V3 \5 B# i+ y2 k3 ~0 _
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    : {/ X- q1 v+ ^8 t5 ^9 c( |" N( V% f" g( I* Q0 `6 r
        Problems with a clear base case and recursive case.7 Y, a  N9 b, q3 n9 }1 |
    $ |; g2 S- f  n
    Example: Fibonacci Sequence
    9 H& n% G! D) c8 [" s& `" r7 K5 _
    " j, n# h) s* w4 J2 {$ kThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:# h3 X. b+ W2 |2 l

    - f8 t5 _, q6 ^* Y. L; F    Base case: fib(0) = 0, fib(1) = 1  {9 m+ k, J$ Z& D' j

    1 g5 [) i9 R1 \# ?; `" |    Recursive case: fib(n) = fib(n-1) + fib(n-2)* G' t" S4 l( h/ r# h

    5 ]  t; i4 C: h" ^! l" Zpython0 r9 J: J3 {+ Q8 m. }# ~
    6 o- L/ f2 M; H1 H

    2 f  Q; K1 Y; f& I! n' W/ @) d( Tdef fibonacci(n):6 `( _7 R/ }# E5 x5 |* @
        # Base cases* b$ E7 H! w( h+ h2 ~- K  n
        if n == 0:  r  M$ T6 f7 Z# X
            return 0
    0 w0 _& k) `7 n+ q6 p6 u3 u. U    elif n == 1:) K& P' H% e1 h
            return 1$ M( c5 W* r) T
        # Recursive case
      t2 G: F  F+ {+ K8 g  l  @    else:
    - w7 S5 M+ q; [8 L% f1 T        return fibonacci(n - 1) + fibonacci(n - 2)
    " M- t. h! K: o! [/ F" V) a- D/ M5 P# b% z8 C8 g9 K+ c' ?+ X
    # Example usage  H* I( Y, X! D' N3 ?3 T
    print(fibonacci(6))  # Output: 8
    0 D# F( [3 I& t; o9 P$ ]6 i+ k) o" C% ^
    Tail Recursion1 W2 G/ y, `% O
    ( J; G' `' K0 q: N# w, u4 Z% s' F
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).: ~+ M% W4 ]8 g, H  U* T+ h! P

    1 j& v! \( N) V9 _In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-20 04:03 , Processed in 0.029536 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表