设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 334|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 5 F5 K' G0 [- C* }# O3 n1 O: }
    * d8 u+ J% G" J. p8 K' P
    解释的不错
    : V. D$ `# j' Q3 h, {/ e$ ~
    : y4 O5 A! V" v# T- P& s& a递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ' {. k+ v- T& Y5 s2 b8 H$ g+ E  U+ g4 r; J
    关键要素
    ) }& \7 Z! y# O4 E+ m1. **基线条件(Base Case)**
    6 _& u+ O# w! g2 T, P: [   - 递归终止的条件,防止无限循环
    $ Y5 r( ]  p" D( Q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  w6 ^  E* y" a
    5 @/ k* Y7 f6 B- e+ D# I# m
    2. **递归条件(Recursive Case)**9 i9 }, z; c6 {, X' n6 i
       - 将原问题分解为更小的子问题2 Z  u$ k8 J7 u+ X! S$ j7 t
       - 例如:n! = n × (n-1)!
    1 G# |" o! i8 z! d# q5 l7 R' C; W6 C9 u2 A2 f; z! V1 B2 l1 t
    经典示例:计算阶乘. t+ V+ H! r8 U+ p# }
    python
    4 e- `6 d1 D7 q( m+ r. X, k, K3 hdef factorial(n):. I) H7 F2 k) e7 A
        if n == 0:        # 基线条件* o. x7 v) C4 S$ K
            return 13 `- y+ j( c) ?/ ?5 I
        else:             # 递归条件
    ' g& `. i7 T; z$ n        return n * factorial(n-1)
      g6 x- d; J+ a# |. B, C5 \执行过程(以计算 3! 为例):
    6 T  {+ _) o- b3 j, {factorial(3)' h! B! J; q" v! h% X
    3 * factorial(2)* L1 v- A  r$ D  F) \
    3 * (2 * factorial(1))
    # l+ T4 S: O, e3 * (2 * (1 * factorial(0)))
    . [3 P9 K; i7 E8 N% }3 * (2 * (1 * 1)) = 6
    8 |& H: g$ _1 T; c, X. c8 z- F
    3 W2 x$ i! g) U9 J, | 递归思维要点
    6 O4 p, {3 N7 I: i2 H1. **信任递归**:假设子问题已经解决,专注当前层逻辑: n* r" M+ }! G
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" _& f& w) s6 ^( v6 T
    3. **递推过程**:不断向下分解问题(递)" ]6 q6 i2 G1 U6 Y' A( P, F
    4. **回溯过程**:组合子问题结果返回(归)
    0 `) R4 W: J1 J0 @3 b! s/ m' U; R  t$ _, H  k
    注意事项
    ' U, M& p; o7 n必须要有终止条件
    1 G' g. m! a( }2 B0 T) j: n! g递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    % H8 V" G: x+ V2 W9 }某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . B; q& X3 }$ x6 ?5 J尾递归优化可以提升效率(但Python不支持)
    ) q" ]7 Y6 \- ]( S% t9 _" k' |' S+ g; @& u1 z9 E
    递归 vs 迭代
    % r: [0 h8 b$ E4 K5 v, c|          | 递归                          | 迭代               |
    , ]0 }# z* |! w|----------|-----------------------------|------------------|, {) l$ c9 ~% m9 T: m! Z3 r- l5 ?) J
    | 实现方式    | 函数自调用                        | 循环结构            |
    ' X6 ]! G0 p/ b9 {| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |. P. m4 A+ O& |' _5 ]. G
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ a9 E8 t2 q& n" R) f$ j- r+ S
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    # I; j2 t8 h8 \3 A* D" j) Q" y) v1 h$ _4 y4 B: B$ `2 E
    经典递归应用场景+ l  O# y- N. J5 i
    1. 文件系统遍历(目录树结构)
    / O4 a8 @8 H3 J' e/ ~$ `2. 快速排序/归并排序算法. _% |- h) l, [# W( k
    3. 汉诺塔问题
    & k- d9 e4 `9 W/ ~& N- u4. 二叉树遍历(前序/中序/后序)" n% C8 H4 h. c5 t( h
    5. 生成所有可能的组合(回溯算法)2 x% e" v8 H# ]$ r
      `. p- y5 r6 q! D- f7 g
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    4 小时前
  • 签到天数: 2841 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,5 u# v# c) n' [* s7 K. x' P
    我推理机的核心算法应该是二叉树遍历的变种。
    5 o3 w( d1 c. }1 m2 z: s/ y7 b另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 w  N9 m4 c$ y5 M( s( \  N, m
    Key Idea of Recursion" f! i1 N1 I* d  D" m
    * s7 ~# N5 F( Q0 J0 v9 \; ]
    A recursive function solves a problem by:$ H( f1 {% x9 k5 r/ J

    ' I0 b# b7 k6 u- _' ]( E, k- U- x1 f    Breaking the problem into smaller instances of the same problem.( D+ l: @8 L1 n; ?3 U
    3 v& U) Q3 I# k! [! ~
        Solving the smallest instance directly (base case).
    ! j* u! t; d5 A5 L$ v$ c% A& _$ D
    7 _4 @" a" u  `# U! J3 x8 R5 N: G    Combining the results of smaller instances to solve the larger problem.) S' _0 q& B4 i8 ~

    * y( M1 ~- M* L( c% H" C0 WComponents of a Recursive Function
    6 s  ?! W7 ?& }3 _# }: k0 p2 {8 ^5 r0 w7 |
        Base Case:
    : Q& i2 V+ F4 Q: ?9 U. G
    , j; X! I# v. w) ^5 O' N        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    " A& o, d7 r- O# J! c" L# U. M& _9 y. a; a0 R
            It acts as the stopping condition to prevent infinite recursion.) t% I* e" O" ^+ s& k
    1 Y# _9 F8 k0 e3 _5 j
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.) F0 ]( u7 l8 ~
      l) b% E0 D6 N* A  q
        Recursive Case:9 S+ J3 B: N+ M' Z

    ! G& U+ a. N. C) n1 J& r        This is where the function calls itself with a smaller or simpler version of the problem.0 B5 l, R' @& l1 r' _+ ]8 ]

    $ H" t1 q7 R# k3 A        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).& v  n: R) r( l3 k: O- P9 M
    8 ~3 l. _4 V, l0 o) M: C- `
    Example: Factorial Calculation) |- t0 S+ m: i/ w" R: X0 y' D/ e

    4 A4 k+ N5 b7 ?) A: h% TThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  N1 W# g" @( ^& k( l% m! O# r: E
    ! C6 j* q/ h* i/ s4 e3 y, f: K3 I" f
        Base case: 0! = 1  J, x9 d) y. A+ F. Z

    ) w3 E/ a: L5 p# m& \# d    Recursive case: n! = n * (n-1)!+ e4 }1 y: [6 m  J3 T2 V) T
    % w( D" S. x; G
    Here’s how it looks in code (Python):( o' t; `" t0 V5 v3 y: r
    python
    3 r4 J7 k( j6 l& F5 F( i/ W. Y- g  G8 ~, x, G; Y2 n. n* c
    " e. U9 u& D8 d; V9 d
    def factorial(n):7 [5 e: h$ n! R2 ]* H, u
        # Base case% z2 j9 k) _7 h2 R# D4 j
        if n == 0:
    3 d- ~0 D( j! M( y* H( p        return 1
    / S& a6 x6 I3 x    # Recursive case8 q8 ]  C8 H, s5 ?
        else:
    5 \9 {% n: j- e$ R; s        return n * factorial(n - 1)% W: f! g1 @2 i9 l
    9 ]# K6 n3 ?% q- D/ x/ N& Q
    # Example usage
    1 ^+ n0 F, P( K! R+ ^9 n# cprint(factorial(5))  # Output: 120; Q6 `" i% G( x9 R# s2 P

    7 |/ v; l  p" AHow Recursion Works8 [, W% u/ x7 z* J* w0 U

    & l. z4 B+ d. U0 s0 c3 e    The function keeps calling itself with smaller inputs until it reaches the base case.
    1 U& @" `' Q2 D% V
    3 N# a* D, \8 P% ~4 Z& J    Once the base case is reached, the function starts returning values back up the call stack.
    1 u1 p  b" L$ W; o, f6 S
    0 o; G0 h$ d/ L' q# R    These returned values are combined to produce the final result.
    1 I4 ~+ k1 g4 Z9 g2 W# ~2 T! y
    4 ^7 Q" W! Z. Q7 {/ [1 aFor factorial(5):& B: J; ^' \, K! C* y$ u# f' {

    . F. B! f6 E. l& X
    1 l* `/ a* C$ K- ~0 w7 X0 Gfactorial(5) = 5 * factorial(4)
    4 |- Q5 c2 W2 P. s2 K5 r% wfactorial(4) = 4 * factorial(3). a- N/ L) p) o2 b% y. r0 b
    factorial(3) = 3 * factorial(2)- h- X7 E$ b1 A& X" Y
    factorial(2) = 2 * factorial(1)0 m; v: _  H' Q4 g9 K9 b3 m3 U( w
    factorial(1) = 1 * factorial(0)
    # g- p# ^& }( K! xfactorial(0) = 1  # Base case$ m9 r- p! I. m7 X

    ) h: C" J! ?& \: eThen, the results are combined:
    3 u( B: c" K' [- [1 J
    & H: T6 D* k3 @% e$ X# a( U" H
    ; g1 m; y$ {' T: q: Sfactorial(1) = 1 * 1 = 15 d+ A' }+ x2 ]: Q: R) Y! i
    factorial(2) = 2 * 1 = 2
    2 Z+ J; b$ R! R% ~0 B5 b2 pfactorial(3) = 3 * 2 = 60 v; E# ~/ a6 ?" s
    factorial(4) = 4 * 6 = 24
    4 o$ {# _# w+ }" Rfactorial(5) = 5 * 24 = 120
    3 W1 {7 U' a3 R% N- z7 T; i) Q7 y! B" H8 C& i4 |
    Advantages of Recursion
    2 u7 z2 ?+ G$ n* U; f6 \8 U/ @% K0 t; G
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * B1 l8 ^! p: W% B/ U& a; H2 ~+ Q
    - o8 U* X) v& d  H( c( e3 K% g" B    Readability: Recursive code can be more readable and concise compared to iterative solutions." _8 _$ \9 R+ N$ ^& a2 D* |

    . G8 N( |! w! \! X( [Disadvantages of Recursion) ?; Y  z$ l: m1 n* r

    ; l; W  R6 J4 m  H6 t    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! a) s( n# J9 c- h
    4 P& r" W' O2 ]8 c# v  k8 P
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ; ?" Z4 s% N9 P( u! }8 a- S" N
    8 Z4 G7 f4 }- _) Y/ o4 T+ a9 bWhen to Use Recursion
    / C7 q3 W0 z: D- U$ P0 w4 V. S9 n
    6 Y% G+ l" \: |( X7 X' i" }    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    : k2 _# ?# N2 x, d* S. ?, e$ ^- A; u) x9 ^
        Problems with a clear base case and recursive case.
    0 j1 l- L6 `" ^- p& N. t, z2 y5 U& w5 T3 [8 {2 o6 {3 K
    Example: Fibonacci Sequence
    3 w% a1 v6 ?8 \' m) q4 H! X% z1 K+ p* ~
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    0 X0 b/ {* j- v8 \
    % C& q, i4 ?; b    Base case: fib(0) = 0, fib(1) = 1+ m4 S3 U0 |% x5 c8 r* B
    $ r) q' `* v  f6 O" ~; I/ g
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    / {# [2 e* B( I6 {) l  Z5 x: Y3 k) [8 E% c: t4 [
    python  W& m* I: h5 K( b
    : U( X# H. _& }5 |
    5 O3 i" \- c0 O7 K; Y: i1 ^' D" P
    def fibonacci(n):
    8 q9 V) R3 B0 [# m& i    # Base cases
    8 L# ^+ f. b8 z# z8 }! d7 a    if n == 0:1 q3 T3 h1 ?8 o$ C9 f
            return 0" E- ]) s8 n) B2 Y* P* K4 K) }  u
        elif n == 1:
    9 Q8 O8 W- ]+ o/ E        return 1
    : A9 ^6 J, b$ D    # Recursive case+ J: _: t8 w* U* E& c
        else:
      y9 ~. \, j: O; j% j" v; l        return fibonacci(n - 1) + fibonacci(n - 2)
    ! y/ k0 n0 F; g
    + a# u$ `+ J# ?/ J0 O9 L6 q; l# Example usage
    ( A/ }1 H. J: I; x0 m, ^) Dprint(fibonacci(6))  # Output: 8/ ]# n8 O6 T& x, S( D

    " i2 U) E) H; w8 r8 z- ~; V" L5 VTail Recursion
    8 J- M# }7 A9 P' ^0 s+ v9 q) g! g9 A
    , d7 ]8 M, e0 ITail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    2 I- F7 U( @6 H" ^; d! H3 H0 z4 S8 u# J- U  X- j
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-2-23 10:11 , Processed in 0.037408 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表