设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2105|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 6 V' s3 F& D- l# X( B% J  ^
    4 S  U1 @5 {  ]$ V1 i$ b- a
    解释的不错- K9 E! I* E1 |# q/ h" g+ e, Y3 r! v
    . S/ o- y7 q  ]/ w( F
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    0 O7 m. P( f' c+ f9 o8 z1 ~: ^+ R* s( h% D% K1 c( L7 p
    关键要素
    3 Q7 r8 u2 c. y2 ^0 {3 y& \1 b4 _1. **基线条件(Base Case)**' |9 D# W- i& `1 y+ @. p. }9 Z( n
       - 递归终止的条件,防止无限循环
    , f6 |5 G+ ~4 \& Q: \   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& T* @8 y0 D& {. C

    1 C+ X6 h( L9 K3 O3 J2. **递归条件(Recursive Case)**: h' I2 W; q3 ]
       - 将原问题分解为更小的子问题- b. f  ?# W& v% ]
       - 例如:n! = n × (n-1)!
    6 B7 a7 P4 V& q
    $ W$ t* D1 `( Z, y; t0 G) S 经典示例:计算阶乘
    : k# [8 _6 l2 t; f5 F  J9 S; J# gpython
    : V  f1 I1 T/ Idef factorial(n):
    # e; j5 U$ L; ]; J- X1 L/ o$ P; `    if n == 0:        # 基线条件, ]) N+ C  v2 ]8 }
            return 18 _7 u8 R+ U; N+ O  N
        else:             # 递归条件
    8 z4 E3 v4 f* N$ @, @        return n * factorial(n-1)1 X: ?( h/ ]( L
    执行过程(以计算 3! 为例):
      w2 o7 t$ u0 P3 ]" W/ U( zfactorial(3)
    ( r6 E. D4 i; G( f: k' T  |; `3 * factorial(2)$ c8 a4 ?  C% P+ g- u9 Z
    3 * (2 * factorial(1))  P% {9 s& k. }5 h; Q
    3 * (2 * (1 * factorial(0)))
    " x4 V2 N; Y2 _% t0 S& L3 * (2 * (1 * 1)) = 6
    " {- e: p: D, i$ v' z8 u1 C8 u
    " ?; r4 N* I' z2 ?) j: x 递归思维要点; c- W6 r7 j: g5 G8 n. V6 V
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑, D% H0 D5 N, y7 G6 g' [" M. U# W
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    8 V  n7 @- w6 o9 L/ t7 y/ q/ r0 |! u3. **递推过程**:不断向下分解问题(递)
    ! F* e7 g* `5 x' ?9 a$ O4. **回溯过程**:组合子问题结果返回(归)
    1 T& Q+ p" R0 E, M0 d
    ) Y  Y, G. R) E% q( D 注意事项1 y+ g6 P9 {" c" m
    必须要有终止条件  P( I0 |& N$ r
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    % i) A) l0 V% a- p! ^, s1 T某些问题用递归更直观(如树遍历),但效率可能不如迭代6 B3 [. h/ _+ U8 b
    尾递归优化可以提升效率(但Python不支持)  w( w6 q  C3 |7 t% O% x0 _/ Z
    # z. B3 j+ _. a# p3 A
    递归 vs 迭代
    # Q5 F6 |/ |+ ]. m8 D8 l|          | 递归                          | 迭代               |
    $ @0 s: c. Q" a2 o; Q( j0 \|----------|-----------------------------|------------------|
    * z3 E0 h4 u! Q| 实现方式    | 函数自调用                        | 循环结构            |
    ' }8 C1 n4 }- [0 o8 h" e2 H| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; n- U9 E4 X7 Q! f1 L( X3 L# O! F
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |) L  \% F% \1 V5 x7 D  }6 ?# ?, G
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    4 G+ C  T7 p- p
    7 p0 R6 r% \+ x: {, a. I/ l/ P 经典递归应用场景2 \, F! A1 q, e6 l
    1. 文件系统遍历(目录树结构)
    % m2 x( y3 ~( b2 K% l2. 快速排序/归并排序算法
    ( C0 H' P9 e2 {& N3. 汉诺塔问题" }1 j( D) A# M5 ^
    4. 二叉树遍历(前序/中序/后序)7 N) i8 [+ Y, u- G& A
    5. 生成所有可能的组合(回溯算法)
    * {1 h3 T+ S1 \( n! I2 ?/ \, ^7 p, q. p  _1 n) v! z. _" P5 b* e
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 22:40
  • 签到天数: 3176 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ( `8 _0 F, X. h. ]  Y我推理机的核心算法应该是二叉树遍历的变种。3 W' X' o" u* j, a
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:5 |- b7 v$ R# y1 u
    Key Idea of Recursion; A! v' H, s+ c0 D0 X

    9 j% f0 ]& V; m; l7 VA recursive function solves a problem by:0 Y' D7 a. t8 H- S! @4 i( A
    2 L4 O& V4 }0 O% @1 P. ~% Z
        Breaking the problem into smaller instances of the same problem.7 r- X2 d" m/ ^
    . F3 L  Z, y2 d9 q/ D9 M
        Solving the smallest instance directly (base case).+ [5 h1 P" e' {5 i  ]7 s
    1 U* K( }7 x3 X/ M
        Combining the results of smaller instances to solve the larger problem.
    3 c; c/ P% C1 c2 ^
    6 i( m% ^4 k: y& i2 nComponents of a Recursive Function# ^/ {3 A$ E: s/ Z

    8 n# c9 p$ ^+ B( s( E( w    Base Case:
    . N2 [" r. V) @6 V9 D$ ?1 V% d* [/ d$ j
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    " B' D* I: w! H: b, e0 \
    1 T  e( p1 _1 n6 Q0 R0 O        It acts as the stopping condition to prevent infinite recursion.
    2 w1 m/ n; l9 M
    7 Q. z: N/ f- v3 c1 `. T        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    / J0 |' e8 P! D3 C3 t: M! T
    1 t! d* h9 G" D8 K4 j9 k5 p    Recursive Case:1 C7 x# D% `/ n# n
    , F: j: V: F. h% K5 S; j- h2 e! I* ~
            This is where the function calls itself with a smaller or simpler version of the problem.
    ! T  p; N0 \/ I# g+ w5 T. r) E" {9 J
    % ~! i5 A( x( i4 R$ P) r) a        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ( J/ P0 `2 |/ [. j$ R; M+ y/ y: R" z7 _9 I7 B! |5 [
    Example: Factorial Calculation
    ) m0 M& {0 l8 W$ X  ~" K2 _) _
    ( c7 _3 \" Z" {) k/ b7 \) uThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  k- b/ @# U: m; B
    , R6 K' ?9 ], W& @
        Base case: 0! = 14 `" o; ?$ q" f' ~# @8 s

    3 a# b# ^# k/ F4 m$ w; {    Recursive case: n! = n * (n-1)!
    & O/ E7 N. o  w& a& y0 ^% R2 a- {% }0 c
    # f# ?! O+ `6 _# [. A5 ?- e- nHere’s how it looks in code (Python):! G8 B; z4 ~) \+ m% H1 |! ^" N
    python
    4 S! a# F5 b; c. j4 m
    - @3 J& p* I9 @* b6 i* C1 M1 g+ ]! l  p. b5 h' \2 c" A
    def factorial(n):  q4 a9 k) h# o9 k  W
        # Base case
    - D: l% `! i% }6 v    if n == 0:2 _3 x. b+ T" k% |3 k3 Z) z$ N* S2 }
            return 13 r! t3 W8 {  X1 j* P# h
        # Recursive case
    5 L8 W- F! M. V6 K, w* ^4 P; g2 i" x4 l    else:
    - e, H$ J+ y, E% @' R        return n * factorial(n - 1)1 d8 ]& L: d2 h) J- r( {

    % Q0 g& r9 u, f# Example usage# I. h+ r0 g: t* ]
    print(factorial(5))  # Output: 120
    4 N+ a) k3 p* ]( T" f: G" V( |7 z4 x. o4 `
    How Recursion Works% v# ~8 K% ]! @$ |0 H/ D1 Y7 A

    9 ^- u3 C; p) v+ w$ v+ O    The function keeps calling itself with smaller inputs until it reaches the base case.
    3 ?1 |1 I$ g, g- ~4 Z+ `& c  K( _
    : w4 G. J# Y* s2 N    Once the base case is reached, the function starts returning values back up the call stack.+ b6 r( m, a- F& v

    * N% K! B/ X" b7 J$ m+ X  S    These returned values are combined to produce the final result.1 o: d) d: U! o) {: y2 J
    ' r" i8 E- S( R3 ~8 n1 j: [+ e% M
    For factorial(5):! b6 A* g! b+ u$ N

    4 T% Y% {: d1 r5 Z- G$ l& m! [
    ! w: G/ e- _+ Lfactorial(5) = 5 * factorial(4)
    ' h2 H! `: X. a+ wfactorial(4) = 4 * factorial(3)6 g* W0 l3 K3 J" n1 R: P
    factorial(3) = 3 * factorial(2)6 h: j, k1 Y7 z* l: v  z
    factorial(2) = 2 * factorial(1)) ?" q/ n' A; y; l) V, F
    factorial(1) = 1 * factorial(0)/ s& H' O& R7 P# A' s
    factorial(0) = 1  # Base case/ ?8 N% r- x: ]; ?! Y4 s! D; H
    9 \. Y: `: e8 p3 f5 p8 I
    Then, the results are combined:
    - a  B/ c  N5 v0 }- R5 z" W
    2 @+ }7 W5 t9 y- L# P' J6 V, R9 i/ Z
    factorial(1) = 1 * 1 = 1( i/ u: G& g! y9 Y1 V2 k$ i4 o
    factorial(2) = 2 * 1 = 2! y0 z3 i: [; N: ~" k
    factorial(3) = 3 * 2 = 6
    ) y7 v5 [* l" V4 m- \7 D+ H' ofactorial(4) = 4 * 6 = 24$ u) M7 x1 D# t
    factorial(5) = 5 * 24 = 120
    3 C& i3 z2 Y' C/ J2 B4 H0 ^- a; p; z, `+ X) L7 y
    Advantages of Recursion) A, v" X, }. E+ k4 g  L

    3 O! ]5 c7 \- e( D: }    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    8 Y# A( c9 W; M, n) N- O0 a0 R; O0 _
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ! L4 j# g  h9 h- i
    3 ?. V4 n. I! @1 iDisadvantages of Recursion/ l  P: O" q8 g  f+ X6 c! T+ P# @; v
    ) M2 R# Z- i+ C
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.& X4 k: z4 W2 k, \; q7 ^* C
    4 e0 H1 c: |7 a$ ]* {
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    - G1 L' }! N( R, u* j  y" S3 G9 }4 T& D5 ^! L
    When to Use Recursion
    7 k" V( D3 [8 s3 ~- @1 T! u  e6 R' J
    ! [1 _6 l# F: R/ ^4 s6 i* ]% y    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    , W9 ]1 H3 X* o( M
    ' K+ }0 u: s5 o  f2 I    Problems with a clear base case and recursive case.
    6 z# t$ K3 I/ P. x0 ^8 Q0 B8 p" F* i+ C, k' w
    Example: Fibonacci Sequence) o4 }% O) U" {! B) p% p: \! e$ M

    & w" D/ s/ ?( N% v4 jThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    6 S/ T$ m# }. ]! J( l. ?+ Y! ?: m6 q" `
        Base case: fib(0) = 0, fib(1) = 1. q) ?* F/ \6 W$ n( c; A) b' g% W
    5 H/ h7 e9 F: c' U$ a0 a* o% l4 B
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    $ s+ `1 Z8 V) l7 Z( }  V2 a' w6 ]- Z5 O
    python
    4 l2 X6 I3 G* M5 o
    # `: P2 N7 L8 {% M0 X: d6 _9 l& X' c# C
    def fibonacci(n):7 N2 j! @9 c4 A. |. m
        # Base cases
    * w& T  [1 R" v6 i    if n == 0:# J" [* _' i7 A" N" C* e. p! C4 ]
            return 0, X' M0 r) t* V2 V
        elif n == 1:
    / F; q8 h' E/ J' D% A  ^$ y        return 1
    1 D! z  {" K7 p' a    # Recursive case
    * c$ k) z# _- Y2 ~0 k: }    else:8 h& F( q- ^# b! s2 ~5 w
            return fibonacci(n - 1) + fibonacci(n - 2)
    $ N( A3 B5 Y6 P3 o( Z2 x2 g
    ( K% q1 R7 ~7 i7 l1 M# Example usage
    + m0 G" S' X* J' Y0 ~; V/ Pprint(fibonacci(6))  # Output: 81 H, W! n5 K% ]* h5 t! h3 i
    5 I5 B0 n* {& b$ e. v
    Tail Recursion  w+ u4 q" \; {# O& \
    * L! B( v% N( x. b3 z, W/ O4 f( u# b0 p
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& C% B- c5 `# F( _

    " g- Q# }! C1 p) g- c2 uIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-18 06:17 , Processed in 0.060124 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表