设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2100|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 7 O6 G" w0 O6 |) I
    ) H: O. `4 @* L
    解释的不错+ K) C8 i1 V8 ^% p" C

    # f0 `6 W0 a5 n" Q. {& i递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    0 }- B. S" B% [: r0 r7 u) M$ [( y8 u6 k% Z: E5 ]! z' V* y
    关键要素) s5 B: a1 y! d0 O9 ]
    1. **基线条件(Base Case)**
    . S% y9 c/ X5 K, r   - 递归终止的条件,防止无限循环5 {- ^) _! O- Z$ J
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    8 F. p- @( I9 }2 ]
    3 O2 g# o, ^, }2 i2. **递归条件(Recursive Case)**
    0 a; @) M/ R" r7 F4 E   - 将原问题分解为更小的子问题9 N3 e+ s, {- E, u1 A9 X1 }+ I
       - 例如:n! = n × (n-1)!5 Q0 ^6 U, X3 H5 n

    / J) [) {  q3 K' D( n 经典示例:计算阶乘9 h5 ]( i4 r2 ^" [+ J( K0 d
    python
    % k. ]1 O+ L' Xdef factorial(n):
    3 j( J+ A! s. p    if n == 0:        # 基线条件
    " k5 ^9 U3 ^+ w6 I5 k        return 1
    " X( K9 C- p: _7 y# y0 \    else:             # 递归条件
    $ @) ^' J9 D- f* f        return n * factorial(n-1)- D* O( q1 u; L8 d" C6 h$ s
    执行过程(以计算 3! 为例):
    7 K! N. V" Y9 g5 P% k4 S( {" Bfactorial(3)! T! {' h  f3 r1 \5 M1 ^
    3 * factorial(2)1 y* D% K/ _- p
    3 * (2 * factorial(1))
    1 H- v, H1 C" n2 e9 ]3 * (2 * (1 * factorial(0)))
    / d7 n7 |; \6 U/ ~' p" x" p2 h3 * (2 * (1 * 1)) = 6
      }9 F" B; m) Z( F( n7 C$ }* C* m
    递归思维要点
    0 Z$ v$ q# B) S: ]' Z5 i1 t1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ( v$ T) ~+ k7 @; t* I2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : I, O; o( c  X3. **递推过程**:不断向下分解问题(递)4 J& m) n6 G" a# X7 y3 b
    4. **回溯过程**:组合子问题结果返回(归)5 o' C5 c# k9 A" i) {- g" t8 M, M' Z0 g

    0 L; G! D" Y+ x! S0 T. k 注意事项! Z/ C4 m$ K- I4 b' p9 `( P
    必须要有终止条件
    ( ^' }* d6 a6 ]  U递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    7 `+ a" g& T4 y2 X- Y# l9 ]1 [' a% J某些问题用递归更直观(如树遍历),但效率可能不如迭代
    1 T+ g& z; q6 z" |尾递归优化可以提升效率(但Python不支持)" g% V7 \- r0 ^2 q

    ' I6 d7 ?7 }! N 递归 vs 迭代; T/ o' ?2 T( V2 I& V
    |          | 递归                          | 迭代               |
    # q: \  V: p/ @|----------|-----------------------------|------------------|7 H$ I; U; a3 v/ Q. J
    | 实现方式    | 函数自调用                        | 循环结构            |& R' J# m+ K9 M6 ^1 _6 m' q, Z; b
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 D+ a' ~: U( l7 W| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    8 m0 T* D+ v. }* m, ]$ h| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |" m4 I/ E& Q% [: Y6 o: K

    ) x9 `+ O. i3 g  D 经典递归应用场景) n, y% i$ \! A& R! o
    1. 文件系统遍历(目录树结构)8 S2 p$ R0 D) N- z
    2. 快速排序/归并排序算法
    7 N! o; b$ G# b1 A3. 汉诺塔问题
    % k# v$ S9 f  ?6 e) G( I, ~2 H) \4. 二叉树遍历(前序/中序/后序)
    3 n/ Q! m& y" e5. 生成所有可能的组合(回溯算法)
    9 F, V! b  r: T, p# C4 I! d
    6 x+ r6 S" f( W* l6 l6 H4 S试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 12:17
  • 签到天数: 3175 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,0 V( G" I& q6 h6 B) P
    我推理机的核心算法应该是二叉树遍历的变种。
    , {- S6 _& A0 r7 G* X2 J! j# Q0 d, D另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 Q( v1 x! k; u, z- N. _
    Key Idea of Recursion" u8 r- ^9 P: g5 E' ^- w+ h

    ) r" C% }5 V: Y. E9 zA recursive function solves a problem by:
      g0 x1 Y' ^) ^4 s2 \1 ]+ o
    0 {# E7 W& G- k! n' m5 Y- e- K    Breaking the problem into smaller instances of the same problem.; [+ ?* G) N# B! t$ Q) q

    $ i9 n- G4 e4 r) P    Solving the smallest instance directly (base case).
    , h, ]. T- W! U$ T( U
    ) d6 ?, L, _8 X# ~    Combining the results of smaller instances to solve the larger problem.2 ]( L# F% C/ r$ y: v; [

    ) [. I1 x9 p6 rComponents of a Recursive Function6 p8 Q% L) F/ t6 \6 I
    ) ?* W2 l  K6 _$ {8 W/ o' `
        Base Case:
    $ j! v9 e: x5 L7 m- C+ l5 R' U' E( X2 E2 u/ Q; o( U2 K- l, U7 K
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.6 A$ E8 s# K7 J" _4 C( X. |! P

    ! C$ U( f& B; Q0 y% W5 _, C7 W        It acts as the stopping condition to prevent infinite recursion.
    : }$ J9 \  t' k, O! Z$ u' s- P* v8 ]$ r
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' A* h# j8 r' l
    + Y! _/ U- [! V  g; D! D% R    Recursive Case:4 z0 ?8 u: l. F3 ~: `
    & w  p  _4 F8 T
            This is where the function calls itself with a smaller or simpler version of the problem.7 u: s9 X4 c+ U- m
    " m! C# I' C, q. ?& G1 S* p" z
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    8 l: R- n: a2 U8 x
    * {: _! F% `4 d, C( q, j: X' @( QExample: Factorial Calculation
    ) W9 b3 m. Z: q& w. o+ z
      @8 E8 V& @. v7 |% R4 f0 kThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ' j' i" Q; r' s$ G/ |# U$ v
    5 E" i, \  r" [8 d# N7 ?    Base case: 0! = 1
    0 Q: P7 O8 M. y
    0 b) D8 P4 o7 Y+ a% u    Recursive case: n! = n * (n-1)!; {, b; {8 k4 x

    3 l9 N4 Q  X1 C& RHere’s how it looks in code (Python):: F  c! u* D0 V0 `7 J
    python; r5 S6 H# T3 T7 p& u. v- ]
    2 h  \( l$ k/ i' j, S
    . z5 Z) u9 e$ x  w5 D4 v5 {
    def factorial(n):4 y8 D2 I. F, }  D8 c" ^0 r
        # Base case! v7 V0 N& E" {6 ?
        if n == 0:
    . k9 X4 M9 i( T) k; k# ~        return 1. k/ e1 \! \+ ^7 ^' k; ]5 s' Q% X4 I
        # Recursive case
    5 l7 g* _/ X$ a    else:
    , z- N8 t' J- ^, T        return n * factorial(n - 1)
    7 U* l3 Z! B7 s& [8 w
    # H1 ]* _8 o2 D0 i$ n& Q5 g" }$ b# Example usage' A1 V/ X6 a3 ?  @* B
    print(factorial(5))  # Output: 120
    & |+ G' M, ^" @; z
    , ?6 K9 ^6 y! d" `) wHow Recursion Works
    ( U# j' C. F8 \3 V6 b0 y) S% p7 r' g) ]/ \: z; l0 M0 u
        The function keeps calling itself with smaller inputs until it reaches the base case.
    $ A. P# y7 {. T& M( c
    + A- [+ T" u( H* |& U    Once the base case is reached, the function starts returning values back up the call stack.
    . D( M3 V; M0 W
    * X1 b( ?! N( c  q8 e! G" e    These returned values are combined to produce the final result.2 h7 w- w; L9 e4 a! G
    : s5 v4 @. V3 {/ z$ d
    For factorial(5):
    . ?! |+ [+ f  v4 h6 b2 I  p7 B. p$ Y7 [; t5 P! n  S8 ^7 }
    0 I1 y( {* ?5 B6 K; F
    factorial(5) = 5 * factorial(4); F- G% r- _6 h/ L
    factorial(4) = 4 * factorial(3)
    5 n7 o9 f# D" ?: I$ L8 Qfactorial(3) = 3 * factorial(2)0 C% o6 c1 {  G% s6 q0 W: V) d% S
    factorial(2) = 2 * factorial(1)
    9 J7 G7 B+ B: h; z0 |factorial(1) = 1 * factorial(0); }/ ^3 P- y& K: Z
    factorial(0) = 1  # Base case0 D1 ~5 [0 {/ A, Q2 U. S

    ) K7 m) _! [2 O8 J; f2 w0 r% DThen, the results are combined:2 K% |4 d+ f5 E# b: @4 ]

    7 a/ P- ~( |, m* u+ O6 |$ D* ~, `" w2 ?: A& d1 A: e0 g0 L
    factorial(1) = 1 * 1 = 1
    4 Y' t! }4 z0 g2 Q7 nfactorial(2) = 2 * 1 = 22 s7 E' A/ A4 Y) Q
    factorial(3) = 3 * 2 = 63 R4 F, w9 W9 h- }, w9 `; m) P
    factorial(4) = 4 * 6 = 246 ^& n+ u( L$ G" Y' r$ ~
    factorial(5) = 5 * 24 = 120
    3 Z- c! |/ |3 S  M$ n) Z; m* d. x, ~8 F4 \3 n4 O+ x
    Advantages of Recursion
    ( ]3 E+ y' ?0 ?+ C# x7 n( d
    , Z9 m6 ^$ N; n+ E1 R    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).7 i7 u2 A8 Q) Z' D2 M

    1 b' {$ T' R: o3 P* c    Readability: Recursive code can be more readable and concise compared to iterative solutions.- h' e9 `5 c# `, H/ C  h

    # T5 y: `9 e8 UDisadvantages of Recursion3 ~3 O- n& U$ W' z) {& M* B. L
    ) m7 _! }+ }! \5 v1 c
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    * |5 J/ r& i+ Z- S: R5 H+ E( P6 p8 g: Z& L9 F1 ^7 F% l
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    2 \) K; z) W3 {# f1 ]+ f/ e5 i& D% T. m' [7 v, [  _
    When to Use Recursion( c4 w$ a' }+ y: A) y: J$ o1 s
      K, u' Y5 m) z. A7 C, X. e
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    2 o7 t( V/ Q7 n  j' ~
    4 {2 i; Y8 S8 R* ~8 e    Problems with a clear base case and recursive case.
    ( H! i' p) k) O) u2 R) z4 Q5 C- q3 z$ Y1 W
    Example: Fibonacci Sequence
    ! a+ Z7 g* r& |; a2 S( J
    : \3 u) O; S7 w4 J" G  B4 zThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:  [# N4 R$ D1 B9 `: t
      i* i# M/ C( T, F2 h. ]" Y- {
        Base case: fib(0) = 0, fib(1) = 1
    ! {* L" S7 I' a2 Q9 ^  ^* R2 c+ R. n- D! N! L8 Q% u& [
        Recursive case: fib(n) = fib(n-1) + fib(n-2)7 }6 N% p9 J3 W6 ?
    ; m% C& B4 ^3 Z5 V, E: l$ c
    python. \' g2 L1 c" \; Q
    $ |! `% z) r" i9 D1 @

    9 M( r$ J% }- S- Kdef fibonacci(n):
    7 s: T* Q6 J3 C3 H. G5 \  o    # Base cases' }! K1 }2 }: j3 w5 D
        if n == 0:6 G, R: s8 \& X5 |2 R9 o
            return 0
    5 S6 T9 H: j5 V1 R* m: ~    elif n == 1:
    7 E  V6 k1 \- U3 ^! B        return 1
    & X# p9 n$ Q' `" e5 V    # Recursive case9 G3 G- }/ q  r" r. h+ a2 q
        else:( l# q% N( w0 ?7 T
            return fibonacci(n - 1) + fibonacci(n - 2)1 ]& x$ c' ?& b3 H1 |6 A
    , U5 W, E0 c8 x2 @3 q
    # Example usage$ \; h- G8 J; D
    print(fibonacci(6))  # Output: 8
    - y- C4 k5 @5 L% e1 W! m4 L1 V7 F, S, K+ D( z5 D
    Tail Recursion
    5 `8 h8 p( {) f: i( X& X; W- Q, Z+ d  e' k  r1 q: J2 Y7 a% O2 i
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).% r* [" E9 Z4 `, r! y6 A' I+ P: Z# R

    + I. Q& \4 G+ [# S1 _# j( bIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-17 06:51 , Processed in 0.055674 second(s), 17 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表