设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 727|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    * S) z, k) W9 r+ `# S( z7 D% ^3 R) h% r. A+ u0 d
    解释的不错) _8 ]( W2 b; S1 T) `5 [

    . l6 b) o* o  h1 S! t. |; ^& s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ! p* v: M' W0 z4 v- g6 j0 Z( b2 {" F; o8 u
    关键要素
    + \! K) s% B& \5 {2 ?, V1. **基线条件(Base Case)**
    ; a: J+ k# Q0 e# x3 ^& ]1 e2 I1 G   - 递归终止的条件,防止无限循环' A" [, i1 ^" y6 X0 M6 n" ~9 a  l6 j
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    5 X5 s/ Y. M  \; v: k/ q- U# V7 \/ F# _8 S& H6 H
    2. **递归条件(Recursive Case)**
    : x  l# ?. ?' H- M   - 将原问题分解为更小的子问题
    , Y' B; U! ]) r/ {9 D   - 例如:n! = n × (n-1)!
    + _: M$ g! ~) b5 g# M& ?; ?
    " |/ X  O: A* s7 H& P2 k 经典示例:计算阶乘
    7 [& j9 y( ^; w% hpython
    9 J* C0 ?) o0 O4 J2 ndef factorial(n):. d% L* V1 S( j  M0 Q+ N
        if n == 0:        # 基线条件7 g7 q( m1 T& C, T' [. `* p$ E
            return 10 D: g- N* A( t1 T& ~3 s
        else:             # 递归条件
    + F2 p. g3 L4 z; T0 j2 t        return n * factorial(n-1)9 ]: a5 I1 k) Q. h, G" L
    执行过程(以计算 3! 为例):- J' Q7 A8 w$ p# r0 K+ n
    factorial(3)% l' }( @" D* @* G! j1 }  s
    3 * factorial(2). ]* Y4 r, P. J# p' N+ n0 D* i
    3 * (2 * factorial(1)): s: h# x5 b; e# F
    3 * (2 * (1 * factorial(0)))
    ) T5 ~7 Q1 D$ Z3 * (2 * (1 * 1)) = 6: z8 b* U, L! w! x% a
    . y% d0 B8 p( [3 \: I/ O1 O
    递归思维要点
    6 @$ V$ A- K3 t! I7 R% y: G1. **信任递归**:假设子问题已经解决,专注当前层逻辑' D" o7 {" ~& B1 @( [
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    9 K' T. L- Z% l! V+ k& r3. **递推过程**:不断向下分解问题(递)
    ) L/ I/ O6 ?; c# }' w# \# X4. **回溯过程**:组合子问题结果返回(归)
    # L. }& j# a2 R+ [8 D+ i" b5 ~. ^, y5 g& Z, n
    注意事项
    " n) J# s5 X$ Q% f; u1 E必须要有终止条件
    8 n- y5 {% f: P8 S8 `( R递归深度过大可能导致栈溢出(Python默认递归深度约1000层)/ p+ m& T: D/ S  V) a# O
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    : b9 H# f2 {1 t+ Y. o尾递归优化可以提升效率(但Python不支持), {) ?) C) z1 h; a" ?; B& }

    " J6 ]! P& g4 }1 g8 T9 N) H 递归 vs 迭代; Q! ]+ d5 @: _
    |          | 递归                          | 迭代               |
    ' e! C' F5 i4 Z$ D+ l- T2 x|----------|-----------------------------|------------------|) R: D" z# ]- R1 r
    | 实现方式    | 函数自调用                        | 循环结构            |) B2 _! ?* r8 D9 W' A
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    # i9 Z" X) I5 A* c8 v* E* h| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ U2 R& u/ [: w
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |. N5 c) f8 ^! v- R& g* V
    7 ^# b, ?4 G+ T% `9 U3 V
    经典递归应用场景
    , {* E) P8 o/ U8 z, }8 l1. 文件系统遍历(目录树结构)
    9 o$ h! @! Z7 I, p( x- k' o8 `2. 快速排序/归并排序算法
    , D3 X- f2 E: h' T% E1 E3. 汉诺塔问题
    8 v: _& {# w: @! ?( S4. 二叉树遍历(前序/中序/后序)
      M, ]# ^5 Q( ?+ q/ l8 Q5. 生成所有可能的组合(回溯算法)# _# G8 F$ Z0 ?% W$ c
    * r4 z# c& n8 u& x7 m9 W; y
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 00:38
  • 签到天数: 2963 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! c! c0 e+ W& g2 F
    我推理机的核心算法应该是二叉树遍历的变种。2 \/ D- J* |: e9 F5 [& H
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 ^" _, U: a7 P1 D; }8 ~
    Key Idea of Recursion
    , p# O. \% T* V( f0 w
    ; d  v" F) n, X/ r5 FA recursive function solves a problem by:
      {+ O$ M7 N& _; t- ~& d$ ]
    0 ]8 `( ~7 w' c; y2 P    Breaking the problem into smaller instances of the same problem.
    * \, {* n# \- L9 F5 S* N* w3 F4 S
        Solving the smallest instance directly (base case).4 O" K' V7 O0 _1 p! o

    ! U1 O7 M% u, U' K  D    Combining the results of smaller instances to solve the larger problem.# f1 U6 q6 N1 y% ?: z6 t# l5 m
    + T: b+ p/ Q3 H; a8 A
    Components of a Recursive Function. m+ @$ ^* s. V5 C! T  u

    6 c1 O# |& c* N+ u  k    Base Case:5 Q# w( a# ^' O

    6 t: g. q) q9 e: J9 s. j$ D# A# j        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
      s# g+ N  K5 Z" O; S2 @+ T, ?7 z# W) U
            It acts as the stopping condition to prevent infinite recursion.4 `& ^1 }+ F- }5 g% c
      K& s0 i& l; a! Z2 Z, R
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.1 {/ H. x% v  v9 G
    ; b- o1 W! `, F: }
        Recursive Case:
    4 a* A) j1 t$ a; E" Y( |" e' p+ `; ?6 e
            This is where the function calls itself with a smaller or simpler version of the problem.7 a" t6 D) D. T/ G7 C5 H
    " c" i3 a4 D# \3 u) R. o6 s
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).( K5 Q; _% O$ ^) H1 f

    2 u. x0 |9 a" ]( ~1 ~6 ]Example: Factorial Calculation0 N- _# U/ N. c, j2 x
    7 s* T$ m  A; P- z! J
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    3 U: \5 N1 Y0 W8 ]. G
    4 ]' T- I/ z. {    Base case: 0! = 1
    3 N2 W: [6 s7 R+ |8 O! K' t7 L, ?) H9 q# M3 [! `
        Recursive case: n! = n * (n-1)!* T9 n! x& H% i& z% [! d8 V5 O

    % [" p/ v: [+ B6 m9 }+ ?9 QHere’s how it looks in code (Python):9 h8 [' {6 j! u; `2 I
    python/ \$ Z: N' p, E7 ~

    ) f* \! @9 A* L7 R1 p
    : a/ X/ r8 N" F  a/ s4 g6 H3 {+ ]8 Idef factorial(n):
    1 t) y' r2 H/ l0 ?8 L    # Base case
    ' i$ t) l, P) H1 p6 C0 E+ @# A    if n == 0:; o5 P$ P9 r% H( D$ b
            return 13 G5 d3 e7 k; K! R6 i: z2 ?. q  S& ]! F: ]
        # Recursive case
    0 E$ C. P7 V  R6 G+ C    else:2 n8 C% r/ h" g, F  I! n
            return n * factorial(n - 1)0 J. b; H: _# V: C# D) K/ H7 x

    9 o9 j; x. p: j  w& ?- `* ?# Example usage
    ( L0 }; u6 H  T* n3 `: z* F; ?: ~print(factorial(5))  # Output: 120
    4 Y& W( n7 @6 Q+ k9 G) s/ u6 Z# {; ~# r, O0 p$ e7 _
    How Recursion Works
    ! L' n& ^( I. v6 i9 H- D0 k8 n, \0 T$ u  Q8 E( E; p
        The function keeps calling itself with smaller inputs until it reaches the base case., G, a$ g6 m8 Q3 t5 ?! `" Z

    0 Y8 d* r+ V, K* ~, s    Once the base case is reached, the function starts returning values back up the call stack.
    + Z$ Q. D. X$ b4 W+ j
    6 I( m% v9 ]) v# n% J7 }    These returned values are combined to produce the final result.
    3 U& c9 Q* r+ Y8 |: ?7 \" g, @
    , c  j0 k" V3 v4 h; U" tFor factorial(5):- _; t- B! C& Y" y; r3 K0 F
    0 s) F9 l, v. {4 f% a. I' j* i
    8 p" O  H. R' b! {9 q
    factorial(5) = 5 * factorial(4)7 {7 V; e3 K, Q, h9 ^8 M
    factorial(4) = 4 * factorial(3)+ N& z# f1 X% x( M% o* {
    factorial(3) = 3 * factorial(2)" h, H) L: [" }. X* m% B7 k: K
    factorial(2) = 2 * factorial(1)
    ) }% k  [3 ^5 B8 H; ^. o7 y$ Ufactorial(1) = 1 * factorial(0)
    ( E) _" [0 W1 C9 y" ]' @factorial(0) = 1  # Base case$ L: S6 q* [, p' {* M) \9 x8 l

    * z0 N5 l. h2 L3 L7 hThen, the results are combined:# E. E6 H' w% ^- G' _/ ~5 r
    2 Z! F7 o5 f+ W4 [( w
    1 A6 e5 B3 q6 g1 G1 X
    factorial(1) = 1 * 1 = 1
    4 b0 S1 ]* G! B" `6 Z4 v* wfactorial(2) = 2 * 1 = 2; e( S* B/ j: `1 @7 ~
    factorial(3) = 3 * 2 = 6
    9 p: D* Q5 ]" `4 Pfactorial(4) = 4 * 6 = 24
    + ]( P8 y- q) B! ~+ p4 @5 tfactorial(5) = 5 * 24 = 120" d/ V8 p; P; D1 K% Y0 i

    ) I( ]/ }2 x' t1 tAdvantages of Recursion
    0 e0 [8 c8 s3 t. ?* N! o" p7 D2 Q' ~2 U
    ( A* {6 w3 {$ \+ i8 z2 a    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    5 S+ D; e6 r" [. O$ f) A
    $ g9 X8 i3 M4 i/ t    Readability: Recursive code can be more readable and concise compared to iterative solutions.# Z2 ?2 h2 m) W$ t4 F& P9 I# _0 z

    9 L) w; v" U7 {6 O8 fDisadvantages of Recursion6 D& Q$ ^9 b& d. J9 J9 @6 u( G  j

    ' a; _0 K. ]4 j9 s/ S    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.& X- \, g+ K( l  r

    ; v' h7 T, {3 B+ }4 s    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
      V- p8 N1 ]) A9 y4 o, O
    9 _' Q4 }0 T% r0 U9 BWhen to Use Recursion; Y8 v, F! p( c8 P5 Z% i
      _% R7 ?; F( T
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) p% t) R8 I1 L7 i% J0 N4 r
    2 C1 _8 T, R! u& Y1 c' b$ l
        Problems with a clear base case and recursive case.2 S: r. ^% v# C0 K6 N
    9 f, A% U, C$ B1 ~: U" V' F
    Example: Fibonacci Sequence# y. F6 Q- O  ?. z' T/ |6 S

    6 Q* ~/ A. |+ K) O$ m4 bThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    : `9 o  n2 O, K5 Y6 M7 u0 f, L; r+ B8 Y. D# P
        Base case: fib(0) = 0, fib(1) = 1
    * D8 t+ f0 ]- s# `7 m& k  A; `( ~7 m' f  O
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    9 V% Z: g% I& c' G$ `7 T2 R
    + h! J& k) @9 N1 w- S2 Qpython5 B2 K$ W2 b) t# E  j& ]/ d

      j6 i, Y/ i+ N+ T: M$ {7 Q% y  `' J; [  D
    def fibonacci(n):! _, T9 c" O( F2 G' o
        # Base cases
    ' F8 x! r! q0 V) o6 O, Z    if n == 0:
    3 O8 @. P. f3 }. G  C( g        return 0  D' \( Q0 `( l& w
        elif n == 1:
    ' V* L' d* @5 C. K2 B        return 1
      n0 R$ B  e3 S) p# E# g    # Recursive case
    + X" y$ y( Y. \- E9 {: a; k7 v' R    else:) y/ I/ i! v2 F! j2 o/ U
            return fibonacci(n - 1) + fibonacci(n - 2)
    - e& J3 y& s- k; z8 P/ E6 F' M, p+ m, B! J5 P  Y0 z! Z( r, Q  _
    # Example usage
    " l+ J4 \( \. i5 Aprint(fibonacci(6))  # Output: 8
    7 X6 t  }. y5 r, \: p# O% t2 M0 e
    9 q& c5 I5 S% g* {, LTail Recursion
    , l' ~- B( S1 Q" ^/ {) j- a
    + L9 b$ N$ F$ k2 o9 q# BTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).0 c' q: C4 K% Z4 {* z+ c
    5 _) u5 g( ?  H8 b, I& g
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-6-28 05:00 , Processed in 0.036390 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表