设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1010|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 % p3 l4 ?6 U- P
    0 F" L  c4 @3 s( ]8 V% Q
    解释的不错
    4 S1 J$ }: F9 x# b" d; `$ |; p
    , x  N1 C" v. B7 P9 O$ W递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。: n" B- a: M$ c9 c% y
    : q. N* q2 p0 l* y; J( o7 b: h
    关键要素
    * b3 Y, N* T1 `; v# b1. **基线条件(Base Case)**
    0 Z, j: |% E8 q/ }   - 递归终止的条件,防止无限循环0 [- C9 W! t  v! G
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 ?# o% K6 j+ K! f' C

    # ?% L2 `9 _) P2. **递归条件(Recursive Case)**
    ! z; e3 `" i7 A* b. O- M. Z   - 将原问题分解为更小的子问题
    # j8 w$ k0 o" z   - 例如:n! = n × (n-1)!* J7 N: |1 g$ k6 w$ E3 D; n9 ^

    / s4 i7 x! a6 {6 g4 N 经典示例:计算阶乘. c1 D7 A2 C; E5 [- N3 F
    python
    , N9 d5 }9 W6 Y( m1 rdef factorial(n):3 ?- X' g1 U* K: z& i
        if n == 0:        # 基线条件; Q6 U+ K3 ^! K
            return 1$ P2 c" i3 I0 d8 c- n: ]
        else:             # 递归条件
    3 f2 m, ~# h4 p9 s6 _8 W6 x/ T        return n * factorial(n-1): u5 j9 l2 a& s! D, i2 ~0 W: E. e
    执行过程(以计算 3! 为例):( _* |& {2 k2 t. ?
    factorial(3)+ q5 s5 z# G7 R% Q, ^
    3 * factorial(2)8 a( t3 G, C# h: `3 M. K6 K! ?0 g
    3 * (2 * factorial(1))
    ) ]! J% o6 q4 p  S7 L' o! y3 * (2 * (1 * factorial(0)))
    ' n" L- H! j8 E  x( t4 U" L9 P3 * (2 * (1 * 1)) = 6+ b  X9 A2 h& k/ \5 n0 z
    * \( v8 m( z+ X; t( \
    递归思维要点
    ! U; u; W% Q" T0 H7 Z1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    # Y. }: b" K4 c, B+ ?& s9 d. u2. **栈结构**:每次调用都会创建新的栈帧(内存空间); m; C' @- x* N$ n
    3. **递推过程**:不断向下分解问题(递)9 f9 ]. v6 q/ ~8 J5 C% X/ W
    4. **回溯过程**:组合子问题结果返回(归)
    / E0 S9 p- x! j  E% B0 a- }( r' P+ x! a- ?7 W
    注意事项
    & I) K- e8 ~& c! A2 x, N7 v8 P7 A必须要有终止条件- U+ O5 i  u. |* d
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)5 u- J; N/ k( D) j; R* b1 [
    某些问题用递归更直观(如树遍历),但效率可能不如迭代4 B7 {: g/ D" U4 z+ ~# ^. l" `! A! k
    尾递归优化可以提升效率(但Python不支持); Y# w. l' b  X, S' |

    1 G2 t) J& {( P; A 递归 vs 迭代
    ( e4 Q5 t! I0 j. ]|          | 递归                          | 迭代               |
    2 |& V4 K! i5 ]3 K* Z* E' i|----------|-----------------------------|------------------|
    8 B& S, ]" d$ Y& P* m8 M| 实现方式    | 函数自调用                        | 循环结构            |: H% L3 x) n- p" Q' m6 Q  Z! ?
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    " U, E  i' G9 K2 Z  C| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; }) z6 W% a* Z
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |8 A  t+ H" l- Q% ^9 `# r$ }+ J4 A+ z* ^
    2 Q8 ?, l! e4 B* a0 @
    经典递归应用场景
    6 A7 j6 M9 O5 l) v1. 文件系统遍历(目录树结构)
    . ]5 }2 {2 u0 s* x& y2. 快速排序/归并排序算法
    + g4 z% W7 X" K6 {3. 汉诺塔问题
    : s, ?+ e& u7 i# \: Y1 n& j, v0 |4. 二叉树遍历(前序/中序/后序)% f! o/ e  {+ V( u4 G  r
    5. 生成所有可能的组合(回溯算法)/ @& [- S7 ^0 v) m0 w6 b
    8 I" ]& V. I( x% N; S  `2 M
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 07:17
  • 签到天数: 3068 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    9 z+ z% Q0 ?5 B我推理机的核心算法应该是二叉树遍历的变种。# w& u8 ~4 }( ^( a+ `
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    * n8 e8 X( R8 X% ~0 D% fKey Idea of Recursion7 E- ]0 b: e# i5 R

    2 d4 N$ h8 O0 R- U: |A recursive function solves a problem by:8 M) k- |( |& n3 o) {

    # x* q$ ~. k1 G    Breaking the problem into smaller instances of the same problem.
    ! B2 k- Z# b% m* g+ i+ w- A  e) o! \# |: b
        Solving the smallest instance directly (base case).6 I1 S& Z! I& b" U$ ~( v( V

    / L# w& f" @( J    Combining the results of smaller instances to solve the larger problem.- P3 E% T3 x) ^7 ~

    1 a9 j' R$ B# g6 gComponents of a Recursive Function1 G. D) F+ h3 O- R. |5 l7 P

    4 Z. S8 w9 t$ M* n+ C- M    Base Case:
    $ P# o) O; f& @" W4 L+ \2 U
    8 T; u. \9 G! N- s2 K$ \        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    4 R3 J. r/ Z9 W" Y- s% A2 L/ B) W3 S) F! ~
            It acts as the stopping condition to prevent infinite recursion.
    7 U4 g7 N9 g% \2 x  X8 i: L" ?, k2 c1 K: ?" ^8 {! |' Z6 o! t' \
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.' L8 ]( `. N8 d5 N) ]

      V4 M3 A! x2 X1 c# {7 `    Recursive Case:; Y( x- i. T$ T. L+ B: m7 C+ {
    & l$ @3 G: B0 o" t( R
            This is where the function calls itself with a smaller or simpler version of the problem.+ f- ?* Y0 V/ ~( _
    . {% H3 r& C9 F5 v
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).  _7 ~3 J. @( T2 z$ D0 g

    $ u/ }& ?. ]& HExample: Factorial Calculation) M) J% C" t5 I$ x$ x8 J

    - z1 |5 I+ k* }' z. rThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! T9 U7 r5 T" F- a# l- }

    5 L& D# v8 U& U! b- g2 i5 C) {2 _    Base case: 0! = 12 K  z( c" @8 O/ O' H1 }9 |- J0 ~
    & z0 ?4 O4 T0 C6 p6 n; i6 M9 `
        Recursive case: n! = n * (n-1)!3 e, O# ^6 f+ J/ }3 W; N- h  Q
    * o( X  g  @0 ?( M
    Here’s how it looks in code (Python):
    7 u( o7 v+ x! E( J6 h7 @python
    & m* z+ c# N8 L$ I3 v9 r5 x* s2 h3 ]4 y$ S" o  ~
    , }& ^7 O# W8 i; Y4 F' r
    def factorial(n):
      H* J4 Z- R; n1 `    # Base case; P5 U6 {9 J  q) _8 }2 l
        if n == 0:) D: @' I: i: S2 [: a, s% W
            return 1
    4 h1 s: a5 q  P6 D    # Recursive case- ]$ M  O( h. l0 D) X7 L3 K; \
        else:
    ; c9 z9 w  e* P/ x        return n * factorial(n - 1)# J1 p: \1 z$ u8 T9 z# }
    - I- W* h- Z$ x* _% v: w8 J* `
    # Example usage
    2 O: F- [/ A- Qprint(factorial(5))  # Output: 120
    ) G3 ]' A! C. b9 y; a: `7 N9 c' @( ^" _
    How Recursion Works; K6 A! H3 n/ m5 u! a* ]
    * R8 P, ~! t+ u* [3 e3 a
        The function keeps calling itself with smaller inputs until it reaches the base case.. C. m# R) e" ]' B, P4 P" I% {

    1 \) s0 O- |1 ~  R' [& v5 K    Once the base case is reached, the function starts returning values back up the call stack.
    # T, b1 n* `  ]) b: N' r4 W8 Q( C+ q2 c2 B9 W$ A2 }7 B' N
        These returned values are combined to produce the final result.
    , n0 c. d& B$ R- v0 s8 w8 _: ~% o/ q- r- P+ s4 G" Y. g3 k2 y; @  {  ~5 i
    For factorial(5):+ e* _  T; e* D/ W9 e) T* R9 Z
    " I- Z: E$ L% u; \% S& |/ I5 q" l8 y* [

    % u4 k7 t2 s$ F8 p& N% {  Vfactorial(5) = 5 * factorial(4)
    , `: n) U6 Q% a) V% Xfactorial(4) = 4 * factorial(3)! X. N7 S6 s4 B* K! q
    factorial(3) = 3 * factorial(2)
    , n& M2 p$ ]% q9 s5 m: m! q0 ufactorial(2) = 2 * factorial(1)
    9 X7 b7 z- x3 t& `5 V& E3 N1 sfactorial(1) = 1 * factorial(0)4 Q( P# ]0 s/ ~
    factorial(0) = 1  # Base case
    9 o$ R& N2 i* U* C1 n/ y
    , _. K6 v1 y' v" l# [) YThen, the results are combined:
    8 P2 X2 k( ^1 }
    8 b# |* ~+ Z* o. D3 O, a9 x% T) _! M9 N# i- \4 I  ^% H# r
    factorial(1) = 1 * 1 = 1( z/ B! Q& p, z; F( P0 X1 B
    factorial(2) = 2 * 1 = 2
    / D+ C* R* T2 ~# r# Ofactorial(3) = 3 * 2 = 6
    ' A, M, D. b& ^4 k) Q. S8 n3 ofactorial(4) = 4 * 6 = 24
    3 v% W0 q0 h) ^- ~/ D0 pfactorial(5) = 5 * 24 = 120
    / O9 F$ l8 l+ U6 V( A1 Q% V' r/ W' c
    Advantages of Recursion) b4 e' Y5 W% T, b0 B5 k

      i# R0 f5 l1 M; s, D1 V  |* x' i    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    & `9 ^5 g6 E; V/ |: E# ^; K) t7 U  K' ^, U; f
        Readability: Recursive code can be more readable and concise compared to iterative solutions.: `* v2 P* S+ b& M" `# }
    5 k+ q% f. ^- R5 U4 N5 {5 w* \% g  ]
    Disadvantages of Recursion
    4 q: }! b1 J0 m8 [4 e2 T& Z8 }3 ^; F& n, D4 ~
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ {: o- N( w5 S/ E! s

    3 S) u2 A8 j9 ?, c    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).9 _* x! j5 Z" K1 L- V3 @' M% H
    ' b+ }# |0 Z2 H" ~
    When to Use Recursion6 p$ N( e% w: T2 @3 J6 t
    7 i& f5 j9 F! g2 r0 U, V
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' y% B7 M5 G9 X' ]! t/ J( S7 f6 h+ ~  q. b. o, k
        Problems with a clear base case and recursive case.4 I0 ~  L! k4 o6 _  B. ?) ^/ g

    ! k6 o! j' J, _; L: U, S) Z3 b% KExample: Fibonacci Sequence
    * ~5 Q0 x/ R0 R# }5 `; h* c& T. ~' U4 A0 \
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:7 e6 Z0 ]( n, z* p7 L& M
    - I! K: l' u4 `
        Base case: fib(0) = 0, fib(1) = 10 V0 g- i" S$ b1 ^8 Y. D) ^( ?
    ) A! D( K0 l) [( z' x' R  L0 d
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    - F) h; _4 T* A7 ^( C, j
    ' V1 R3 ]! d. b, e- xpython
    . d! l. F8 O) p- \0 n& |
    0 ^2 d: l5 Q% L: D% ~
    ( l) U7 w$ i4 h* Edef fibonacci(n):
    ; n/ G- y2 z2 u- O5 O6 `! v0 o& S, I    # Base cases0 g8 o' A7 Z$ {+ h. ^0 p+ H
        if n == 0:
    / t: h" D* U4 f        return 0' |' P9 J; N% F2 u( R9 K3 ?
        elif n == 1:
    2 c( ?  O: |5 q2 J7 Z        return 1, z& q3 e5 P  r4 u% ]1 j
        # Recursive case
    $ X6 N+ E% r% i3 G0 n2 {1 J- ~) ^    else:
    ' g: \; l- u) h2 i2 U        return fibonacci(n - 1) + fibonacci(n - 2)+ q' m% Z8 @' y. C, W- p
    ( `0 I. p! K' D8 e  i: r
    # Example usage
      K! u3 P4 E% t- k( o& U9 w" J: Nprint(fibonacci(6))  # Output: 80 _; x/ D, w* t# _
    ; M2 W: I& _8 u* a$ n! s
    Tail Recursion
      T8 C/ ^3 O. p; C1 [$ ]5 c' o; C* U2 o
    # k( C( i; M- c1 T. J$ ATail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
      C, H; f2 x; a! @( k. I8 _! L/ g8 V3 }+ p
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-10-17 02:04 , Processed in 0.029782 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表