设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1350|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ( P( u3 Y2 J' N! a% Z1 S% n& f3 M6 y: ?  E, M  E1 \
    解释的不错
    " F% B3 ]$ J! f0 @7 o5 U
    $ X6 e& q! u4 R' ]* _递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - m* q$ u3 b" l# m. H5 e* j& a8 K8 j; k6 p5 o2 Y( J; g
    关键要素+ s! U( |  K! P7 _$ ^: b. V
    1. **基线条件(Base Case)**
    3 `( O5 O1 i! L1 U8 C   - 递归终止的条件,防止无限循环6 x. _$ i; U2 T- I
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    5 a, a% b7 I* [( b
    1 E, ^- F) v2 @( Y& W/ G2. **递归条件(Recursive Case)**
    5 i9 ]- V0 l8 d! J2 b- P   - 将原问题分解为更小的子问题3 P. o- j5 N' K  w& k7 X3 c
       - 例如:n! = n × (n-1)!* |; P2 {$ K. Z& W" p

    - s6 H- N" k7 W1 V: O 经典示例:计算阶乘
    4 y" j( J; P( Ipython+ y5 r# c  F/ E1 G' R
    def factorial(n):
    2 X' G" `2 |0 u! F! R    if n == 0:        # 基线条件
    5 Q! ?8 w# s7 q$ b! v" k        return 1( F  O$ n$ R$ e. H2 D8 i+ A
        else:             # 递归条件( |8 T. E7 \) I& z4 u
            return n * factorial(n-1)
    , u2 e: X' h% I执行过程(以计算 3! 为例):1 B9 w& B9 s  j! u& \: b
    factorial(3)9 G  l/ W( |. l/ W" N. M
    3 * factorial(2)
    + s1 P7 l. S* n( T2 [8 u3 * (2 * factorial(1))
    0 l$ V' Q# I8 `- R6 z7 g' z- ~3 * (2 * (1 * factorial(0)))" q$ _+ ^6 S( q. ~
    3 * (2 * (1 * 1)) = 6
    % [; W8 F- A) a1 i, N
    8 p0 L: x" C+ W8 s  Q4 o 递归思维要点
    7 F+ O7 w/ J; Q1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 |& B& l0 O' j% \2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    + X- J  Y% ~2 I3. **递推过程**:不断向下分解问题(递)/ G! a% L6 i! m6 A- ]8 D
    4. **回溯过程**:组合子问题结果返回(归)
    + m: o/ {! u0 H6 A6 p& N; o0 p0 {/ a' J
    注意事项
    % h/ f' ?; p% L. C必须要有终止条件
    - v' K, u' {. P, F+ ?) ^递归深度过大可能导致栈溢出(Python默认递归深度约1000层)2 ]1 Y# d& T6 }- a9 n1 E0 n: {
    某些问题用递归更直观(如树遍历),但效率可能不如迭代( ~7 \) Z6 I3 Q. S' @+ ]% \! g
    尾递归优化可以提升效率(但Python不支持)
    % g; t7 f$ m% h) [& O, a; E6 Y) V2 \* D  n( d& a
    递归 vs 迭代
    ' J" }, i3 r9 f|          | 递归                          | 迭代               |
    ! ^  r; y" H6 G|----------|-----------------------------|------------------|
    1 b, k8 y( y% q$ ~( U7 P| 实现方式    | 函数自调用                        | 循环结构            |
    6 Z# v4 V' _3 l$ K+ I) ~| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ T( F7 ^- M8 S( e
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |6 E0 E) H: S, E/ y# C4 Q: |2 T
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    # r5 A/ _7 ^9 D3 d" m1 C1 ?# S7 x
    & B1 S8 v( n* Y" ^- i, W; V 经典递归应用场景$ g0 [, `4 @9 r- i: [& ?
    1. 文件系统遍历(目录树结构)# |4 `8 r& e; ?
    2. 快速排序/归并排序算法' C! Q1 K7 j) q) j4 r- Y
    3. 汉诺塔问题% v5 J$ B6 }: S8 m
    4. 二叉树遍历(前序/中序/后序)5 z. a( H' s* P
    5. 生成所有可能的组合(回溯算法)2 C4 p( @& p$ [1 f

    2 I# K. x. r7 A0 e试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    13 小时前
  • 签到天数: 3109 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,9 j1 B* }. l/ h8 v: {  {
    我推理机的核心算法应该是二叉树遍历的变种。& h# S5 o8 E) y% K5 k
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:& `. N! W$ P/ G5 I! O2 J1 P
    Key Idea of Recursion2 a; `6 C' ^1 m4 I" |$ J
    ' P  Q; Z- _& n* R  b4 }* ]/ }
    A recursive function solves a problem by:, n7 D( @1 M7 h3 c# k
    6 M# E2 h4 N4 }
        Breaking the problem into smaller instances of the same problem.* ]. G' F  i6 G2 x6 a! t- O3 K
    - }& }1 j; g& a- g& a% L, R+ U
        Solving the smallest instance directly (base case).. h! r1 }% V# B- ~# O3 v% c1 ^: v
    ; K/ G; z* h0 E5 ^1 K; y6 t
        Combining the results of smaller instances to solve the larger problem.) l9 |% n! c9 b6 ?7 X8 M% b
    * e/ E$ f" K+ L# F* Z: y
    Components of a Recursive Function+ b8 w) i3 y; f/ z2 e! X3 l6 I7 [- K
    ( p! ], _# y$ \# b
        Base Case:
    , }, C: x  h) i$ |
    # ]9 f( H4 K* [        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.3 V' v& |+ j2 n; K* N
    # F' N7 `: X6 r; u) v  @
            It acts as the stopping condition to prevent infinite recursion.
    , G! ?. i( V* K
    2 t$ C8 `) s: |. t  X/ S        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.3 q, ~/ s2 |$ y( j+ k& j
    . B4 o5 [+ j! g9 B# D5 p' Q
        Recursive Case:- v6 |" T# {. h" D9 ^

    # g  u* c' _5 N! G! Y+ s" m        This is where the function calls itself with a smaller or simpler version of the problem.3 ~* n0 w: b; f& m; r
    * t7 I& l' l4 A# F% j5 ?1 \6 M! D+ m; s
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    & G/ F4 N) u4 Z7 h# q" K3 |
    # z, [/ r5 B5 y- N! R/ B5 j# lExample: Factorial Calculation: k; Q( L2 j$ x1 C4 n6 s* `

    7 C0 K! H1 Y" T  W% l2 u  pThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:8 t  `% l9 u% E$ r" [0 Z
    * C' w( b" A+ B& w+ ]  I
        Base case: 0! = 1
    5 ~5 W. e; u+ c) _' D1 p3 e
    ( W: I+ `) f9 L    Recursive case: n! = n * (n-1)!
    $ K9 V7 `# J2 N0 d  y& z) I
    : o1 f+ c% K, C8 @0 K* G, iHere’s how it looks in code (Python):; P1 B, Z4 `& ~5 h
    python, k& O1 ?% V& T" Y: o
      A& G; k9 h. @( t  L$ d  r7 W- y% D

    9 h6 R& P* X: G" G/ Bdef factorial(n):
    # \- q8 Z6 o  R: u' v- I, [0 c# @    # Base case8 c" i+ |/ c+ _- \
        if n == 0:2 N/ F8 E/ x, A) _
            return 1# y) K5 o. i7 m8 o
        # Recursive case9 d' i, D8 k& P( S
        else:
    3 x; `, M" O# G8 M        return n * factorial(n - 1)) Y3 z7 E( T0 F. X
    ( I# B( x2 p/ p
    # Example usage
    0 G4 t) t6 @5 A- K; lprint(factorial(5))  # Output: 120# x2 j$ T3 l$ e

    8 O; q; V5 p/ L" \& QHow Recursion Works
    5 j; s( c* |6 C: R
    8 o8 ^: U' {* C9 p& b    The function keeps calling itself with smaller inputs until it reaches the base case.
    $ K( a9 J) e* ]4 {/ {" E/ q0 o" N
        Once the base case is reached, the function starts returning values back up the call stack.
    8 y: Q& B8 _! \$ r% F) i% ]
    $ N) D$ T  O9 z" W+ }. D. ]8 n    These returned values are combined to produce the final result.
    ( ~4 w; a4 c; j3 ?3 n; j8 \7 |. {, T& V3 A+ A' B$ {3 h% B2 u1 I
    For factorial(5):
    7 [! ^& J: s7 ?* B/ z- h* |+ D8 ~/ b9 p2 |2 L9 u; Z
    * e+ x9 Z( W3 H5 A, Y
    factorial(5) = 5 * factorial(4)% I8 d. R4 V* z
    factorial(4) = 4 * factorial(3)
    : p, i, a; o5 Q$ i/ ~6 lfactorial(3) = 3 * factorial(2)
    4 b9 C/ M0 t& j, h) o. ifactorial(2) = 2 * factorial(1)0 R% C$ e0 b( Z7 L) C6 p
    factorial(1) = 1 * factorial(0)* v$ _. b- c, X( Q
    factorial(0) = 1  # Base case
    . V: ~: x6 N$ \/ t1 A' T9 N6 E8 e8 g: d
    - Z; u3 F9 {, _Then, the results are combined:
    1 T# \: w7 K# {* {( E9 y( a+ y/ A0 d' B

    ) t6 [+ N& A& \factorial(1) = 1 * 1 = 1; P  w: H4 o1 j3 R  |, A
    factorial(2) = 2 * 1 = 2, U+ ~  K, N% M" F. X
    factorial(3) = 3 * 2 = 6/ s, B  u- ^8 e4 ^
    factorial(4) = 4 * 6 = 24) {4 G, Y% b4 Q3 f3 O, @8 [
    factorial(5) = 5 * 24 = 120" b2 X2 u" \, i1 T1 P
    / W7 H2 d# w( H" N+ V/ ~
    Advantages of Recursion
    ' Z- X7 p* ^. F2 c& K5 [' M. R& \
    % w3 a$ i  V+ O) }4 W# s3 Z    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)., r" Z: s" h8 H8 S
    & V8 c; q' @$ y9 E9 a# I/ q, i/ d
        Readability: Recursive code can be more readable and concise compared to iterative solutions.% U+ @: Z1 Q5 b2 k; l

    ( x) @8 e  Z$ \( fDisadvantages of Recursion
    5 q9 x1 s5 c% s+ `
    : X3 v9 q9 x( I* k* G  B. M    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 A8 J) w9 x( }) M1 {

    8 r, d+ S) X1 ~' {' O* |    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    $ A. |' `$ Y( I  k/ l/ `" H% W3 d( A0 \# s8 U. K9 D$ I& g, U
    When to Use Recursion
    " D8 d, b# N; p$ _' ~
    ( }) |5 f* w1 n* \: a  V7 {1 a    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) r+ \$ G$ t4 I/ r& U

    + w2 M+ k8 }9 Q+ ]    Problems with a clear base case and recursive case.
    1 p0 H5 _7 f9 ~) i, [/ K2 o! a0 K& h! O  u/ v7 }; L$ V
    Example: Fibonacci Sequence' T0 F5 s7 U) ]1 Y- K" U

    0 ^5 b$ P. _, EThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) [, R' l/ f7 d0 k" d& ~
    * l6 ~9 Z* ?0 h* o
        Base case: fib(0) = 0, fib(1) = 1& p0 X% F; v$ A

    ( Z+ r+ R. p) i5 L    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    % I& d0 k! ]+ j4 O  R' t: |0 Z' {+ K* o' |$ N' z
    python) R% m6 @: @( }6 z
    5 @  r. n: W* S' r' d, w: ?

    2 y4 @& L4 p0 l* Q/ i/ T4 Adef fibonacci(n):
    8 e7 m% i6 Z2 R4 l) a    # Base cases
    $ E3 |9 N" @6 }; [7 B" E/ M+ K    if n == 0:% ^* r6 v+ @$ Z- |/ b; v
            return 05 v# H) a. V* R$ G
        elif n == 1:
    $ G8 g! P0 K5 z% U( A# B% f        return 1& b/ f( N7 O* a2 \
        # Recursive case' s) v+ G" R0 b  w; I* X) ~( C7 a
        else:; C' f" I; ^: ^, W! Y3 H3 u% ]
            return fibonacci(n - 1) + fibonacci(n - 2)
    + W! C+ n+ m  n
    6 ^2 M5 |# \5 `! {9 [# Example usage
    5 e  W+ E# T1 X* v) y: z8 @- Mprint(fibonacci(6))  # Output: 8; X/ r) P6 s+ Z& l' ]
    * Y' a7 k! E7 a
    Tail Recursion6 E; s% K; ^3 v+ Y, s
    3 y* u) t  m2 _! \+ @
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).3 W2 D# [6 i. Y/ E
    . h8 \  o% ~4 G0 T% w7 O
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-5 21:54 , Processed in 0.033422 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表