设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1953|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 7 V, {7 x7 j8 O, L: e
    8 {9 C0 w. ~7 s+ ~7 ]+ r
    解释的不错& r6 y" U; a. u7 \1 S  o
    # K7 R: O  S9 A' J6 w: e. p
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。1 _' R/ p3 Q1 ?) o, w1 N
    4 Z6 B3 u; X! Y: `. `# j* s1 X8 B' S
    关键要素* X3 I* \  G' x0 h5 e: d$ t/ b2 \  h
    1. **基线条件(Base Case)**2 W& y6 q6 b, a5 T; T" o
       - 递归终止的条件,防止无限循环
    $ L, G3 {1 M; q9 H8 {   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1% E# l9 Y0 z$ n7 }0 V! q0 L" x

    / p: J$ V$ u; r0 W) I9 o  e4 v2. **递归条件(Recursive Case)**
    ' B6 ?4 ]/ N/ i   - 将原问题分解为更小的子问题
      a2 W2 H, U" G0 `6 X   - 例如:n! = n × (n-1)!2 D% |" S; V: [  X* w

    6 Y/ M. T! Z# M5 k 经典示例:计算阶乘0 ~* W$ G* U+ h( v$ O
    python
    ) n& a$ A" G8 ^( U! r, ?. X- }def factorial(n):
    0 k; i) H: j5 [& }( c  O    if n == 0:        # 基线条件
    . x# H- `  ~+ h3 b        return 1/ M0 ]* z; R% b9 B8 a
        else:             # 递归条件) g) X7 ?5 ?) Z/ X" y  U$ O
            return n * factorial(n-1)9 p$ j: d5 a2 f; v. I  C
    执行过程(以计算 3! 为例):7 i7 V% m3 I) V! H1 A. @
    factorial(3)# T$ ]+ J  G  ?4 x# \8 {
    3 * factorial(2): t$ W; ]$ N# u  z
    3 * (2 * factorial(1))
    0 O% q* o* Q4 S3 * (2 * (1 * factorial(0)))
    / @0 Q. z. D5 f. ?2 `7 c3 * (2 * (1 * 1)) = 68 v  Q* C2 R& f& v. z0 v7 [: N9 {

    " C% D3 r' I3 X 递归思维要点  l: p2 p( l# P
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . ?7 T- i" c1 H* M2 N$ N2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    2 r8 y( [! B9 }! e5 v7 F4 ^6 H, z3. **递推过程**:不断向下分解问题(递)
    4 ~: m: J1 W1 p5 Z4. **回溯过程**:组合子问题结果返回(归)
    6 D0 c7 j# W2 n- k1 ?+ I5 z" p5 a7 G( W+ v
    注意事项* G8 Q% G- B' c% d/ U9 K
    必须要有终止条件
    % z% \8 c9 y: X+ c# Y4 e递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    % Z( |+ D( `: u$ A$ I' a某些问题用递归更直观(如树遍历),但效率可能不如迭代# N5 h7 a8 y- V. V8 O  N7 m, t
    尾递归优化可以提升效率(但Python不支持)) V0 Y; b1 j2 W" E$ b: D: n
    2 ]1 ?3 Y* T* h* z6 K  F
    递归 vs 迭代
    2 t" _8 v6 G' \: Q0 k|          | 递归                          | 迭代               |
    . t* Y" c6 x% p4 X|----------|-----------------------------|------------------|
    5 p5 G* I  ^6 D+ _! ]5 _4 K| 实现方式    | 函数自调用                        | 循环结构            |- x/ R9 D, ^* s* u+ i. }8 d
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    : P$ D& P6 k0 z  t| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    * l( g- w+ N" H4 Z6 E| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |5 f8 @8 m% |4 Y

    6 O. m# D* z  T 经典递归应用场景
    - P7 I4 O% F9 @3 Z5 E- D1. 文件系统遍历(目录树结构)
    + b" @/ e+ r+ T- i2. 快速排序/归并排序算法( y& j" B  {+ z
    3. 汉诺塔问题' o& T7 g  S8 d( `8 q' \" c5 {
    4. 二叉树遍历(前序/中序/后序)! W2 _6 A! i; F1 U
    5. 生成所有可能的组合(回溯算法)7 v0 X7 d# _9 t$ T
    * i4 |3 E( ?, S8 [3 t) T( p* i
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 07:22
  • 签到天数: 3154 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    2 i7 k. t$ X) K4 F2 O3 P' O我推理机的核心算法应该是二叉树遍历的变种。
    # P+ f# o% _% t4 E4 {  b/ ?7 B另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:% B3 i8 j' A" X$ V( A: p9 j
    Key Idea of Recursion7 W1 ~/ r2 \5 a5 F" p
    / _8 s) a9 q1 w! g. r6 X" m2 g- Y
    A recursive function solves a problem by:0 j  {  }5 j, y5 U% b9 i9 x, @2 D
    ; w" r& q! ?5 w: I
        Breaking the problem into smaller instances of the same problem.
    - h( ~& @0 x4 ?. W5 x) T% p: h( K" ?# `9 `6 g1 ?7 O- Z5 W
        Solving the smallest instance directly (base case).
    # V: a; c) t9 m3 Z7 s
    : Q* c$ a4 |# j" U$ u5 s& c    Combining the results of smaller instances to solve the larger problem.) p+ j+ I% n7 Z* R* T

    # `7 d$ O1 N6 G% Q$ |4 R3 gComponents of a Recursive Function
    . x8 ]2 w- B" l( c5 }: `7 H! d
    1 p  U" g$ Q. C4 v0 ^. ~4 j    Base Case:
    ; P  U8 B, N- |! T" A8 z4 c4 x: C( X% f) R: x7 h
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.: Y7 Y( Z' w# e3 V6 |5 X

    / z: L0 Z) x  N+ I9 d/ C        It acts as the stopping condition to prevent infinite recursion.
    6 v2 |3 q0 b1 [7 f0 m  i) O# X( l& w% m8 S+ z$ [; m
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    - r0 q) k7 N6 X7 _$ x/ y# C% d2 K: i0 q
        Recursive Case:/ V$ b# n, L$ K# y: d. v7 _$ P" a

    5 m0 Q2 N6 _$ ^3 d$ `5 _        This is where the function calls itself with a smaller or simpler version of the problem.1 q0 K: k! L. P5 {* [9 A

    4 y. T% L% z, y" N' d        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    8 m* {8 }, Q& c
    # z3 D! E/ q, sExample: Factorial Calculation
    1 S; {( U2 H. i
    5 Y8 s) I+ ?1 ^, g. X/ u, H& jThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:8 b* _, V4 @; I! P* _3 i; Y, Y0 D
    ' W( V3 Z0 ~, A" [
        Base case: 0! = 13 v  E2 E7 u4 N9 P
    5 s1 }( m9 j+ `$ w8 H) H
        Recursive case: n! = n * (n-1)!& u7 u6 S( N% x( v3 c

    & V5 J9 R4 V7 o7 [- LHere’s how it looks in code (Python):
    & Z8 ?% F$ A& g2 ^) X7 opython1 i9 u8 `" q& X# W" @0 l4 J
    9 I1 j* o8 p; c+ D: r( x8 I% F
    , V& _& {7 x4 o) ^$ ^
    def factorial(n):
    ' o' @8 G7 C2 Z6 x    # Base case: a' ~* ]# K+ f: y9 L
        if n == 0:
    ( y) [# t  k& F  y) H1 g6 ]        return 1
      ~6 y* a3 c( `    # Recursive case+ C1 L. b- R+ k3 B  O2 p) D
        else:" O) e' H) J/ u
            return n * factorial(n - 1)
    6 \9 C6 u$ X$ ]# N6 e( a1 Y
    : E9 k, _- c0 Z) I# Example usage
    # A; q; U* T4 ]+ [print(factorial(5))  # Output: 1207 ]! Y4 m  V! N4 K/ B

    ( n0 f9 p* x+ I" AHow Recursion Works
    * `$ ^& O+ M' K3 e0 b2 W/ Q4 F4 P9 D4 |
        The function keeps calling itself with smaller inputs until it reaches the base case.; X" `5 b1 s7 G# |3 A" t# T

    / C, p  F/ H- b4 a) ^; s' h    Once the base case is reached, the function starts returning values back up the call stack.
    6 I8 k9 u2 M: Z3 u2 c
    4 P4 }' N' N, k  @* w% `$ ]' ^    These returned values are combined to produce the final result.
    ; d, R2 O( g  |, @9 i5 W
    0 h& g: `; N- R  }0 C: {For factorial(5):! d% ]& p+ Y; P- v

    ! m6 W2 \$ w5 r: H4 z' y! y7 g
    2 Y; k6 u; R1 g; T- {5 ufactorial(5) = 5 * factorial(4)
    9 i& I3 b' J8 Z$ C/ Ufactorial(4) = 4 * factorial(3)& R% N( H  C( L- l- ^% T
    factorial(3) = 3 * factorial(2)
    0 {" N4 N5 y: Ifactorial(2) = 2 * factorial(1)
    9 b' `9 Q) k) T( r$ w, tfactorial(1) = 1 * factorial(0)
    ; Y9 t& u$ v, g+ ^- Q; M4 F- Qfactorial(0) = 1  # Base case
      J6 f+ p2 l7 C+ A  n1 V# G
    ( ^+ S8 V$ r( K; `, g) _Then, the results are combined:) c& I3 t( c- L' s/ ?& B, G
    - A' h: h5 b; n+ y
    ' H& w3 z, e+ n, d) l6 W
    factorial(1) = 1 * 1 = 1
    ' U. s" j* m' h% ]factorial(2) = 2 * 1 = 2
    2 e) z/ ^5 p; i4 A% @factorial(3) = 3 * 2 = 6( C* l- r( w: U( f, j: C3 k( Q% y; q
    factorial(4) = 4 * 6 = 24+ L, K2 ~8 p% h2 Q7 D
    factorial(5) = 5 * 24 = 120
    - z# ]+ C$ m8 A" }' D' n4 Q( u$ `1 y8 P( o! ?
    Advantages of Recursion- [8 M" v$ D; ?9 M* u
    8 u' i) u2 S2 M/ K; t9 a3 m7 j
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * o8 w, Z; u( x+ w# P
    5 b) J& \% S# C8 x) f  d    Readability: Recursive code can be more readable and concise compared to iterative solutions.5 m) N! r# ^7 @$ L( c7 y6 o
    * c' Z( I! e1 C7 v0 Q! S
    Disadvantages of Recursion" l7 Y* D, S! p6 z8 n  C
    ! s8 }. }1 V+ B5 v
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 B- h0 A5 w: e% V3 c' w+ ?4 v

    . k: M% p* Y: x" |7 U4 I" h    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    + F& S4 O; \5 q; C/ Q' I
    , G  a& v2 h7 H' ^When to Use Recursion( V" \: R& U+ d" U7 E
    2 Y" `% l, `% Q* M0 U7 S3 T
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    3 P4 k" U& [% l/ |) a
    ) P/ Z+ p+ D( e& ~4 I, l6 i# E6 \    Problems with a clear base case and recursive case.* ?% W, {0 B% D6 I+ p" k% y
    + d, F5 B2 B( M; B7 H% l
    Example: Fibonacci Sequence
    & A/ h9 r$ Y9 a9 q' M$ N+ ~! G; M  T% \' y& P1 M) R; d! s5 ]
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    7 }5 s' Q4 t4 H: _- p
    9 w7 K3 r  S8 D    Base case: fib(0) = 0, fib(1) = 1
    $ R8 A6 T4 I& I  G7 I$ M0 w! Y; R  G
        Recursive case: fib(n) = fib(n-1) + fib(n-2)! f/ {. q$ q$ @) m+ L9 J6 q+ `
    # B0 Z& b  {4 W7 x5 L7 i9 R" H
    python
    4 e& x+ Z& F' P; o/ o5 ~4 e6 a
    ' f( u2 R! k- E
    def fibonacci(n):
    2 h' [+ M% ^# z6 {9 Q    # Base cases
    " E5 e. n8 x) k    if n == 0:
    / }0 _/ Q; ~% Y7 G" m; T& Y& a        return 09 B! M: f1 E* B' i' W) W7 i
        elif n == 1:6 n( \8 t- a; L* {7 j
            return 1; H8 r2 s: [; ~- _% i7 \
        # Recursive case4 L! X2 J5 \: O( I9 N5 P
        else:9 ~" V3 X& u  p: x, b% o  {
            return fibonacci(n - 1) + fibonacci(n - 2)
    + h' o9 _& j2 s* y5 {. N. m9 t% y3 o* r5 P' F
    # Example usage% B. b) F; P3 q! A
    print(fibonacci(6))  # Output: 8
    $ i$ G. I' j' a5 p/ ^9 F& E0 ]' L1 }" A) A9 e& t! a
    Tail Recursion! j( I- w" H" J/ O$ j

    6 L' u' a! }& y0 F, a6 g4 RTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    * `# I- ]% f9 b! y. Q/ H
    2 w, x4 Z' ?4 J2 I2 u* N, O+ @In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-26 07:33 , Processed in 0.056707 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表