设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1665|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 1 u. v! z7 U, C$ h5 d) g$ ]; D% Y
      D8 T; \3 h% N% O; Q2 k! b
    解释的不错
    ( l9 m! W& j5 ]1 N) L, v1 o0 G, I; a$ q* f  x: r: a1 u7 f; F
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 e2 S3 R# e$ F. c) U5 M$ K: Z; A; E: V+ M& d) i. q
    关键要素# Z6 |+ A2 f% y( q% R
    1. **基线条件(Base Case)**
    # p/ D/ l9 L# X2 `7 k  B   - 递归终止的条件,防止无限循环
    % I# S' g' h( q$ ?7 O0 K   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 14 l, V+ C* b, E6 X0 e, D* A( @

    9 D1 Y' [1 E# b# }2 U! [  D0 D, M2. **递归条件(Recursive Case)**
    ' ]1 L6 }& E0 b- _2 \1 D3 x   - 将原问题分解为更小的子问题
    1 j5 H0 D3 h: I   - 例如:n! = n × (n-1)!
    & w  e7 V* \7 ^' r$ [% ^. g! f* r9 f, }: A+ s
    经典示例:计算阶乘
    1 M: w' ^- D; \( b1 _python
    + |. l* [! [# l5 Wdef factorial(n):
    : @& S! M- o  b    if n == 0:        # 基线条件
    : N+ @% ^6 E6 r( n$ M        return 1
    ; v. |8 t/ _) I+ w7 t    else:             # 递归条件2 Q7 g3 v7 B, w% r! V9 @) ~  B5 z# p
            return n * factorial(n-1)
    , }3 O( Q2 j4 f执行过程(以计算 3! 为例):7 w4 d6 ]* o, e+ T* ?1 P0 n) q
    factorial(3). A- p- B' S0 A3 `3 N
    3 * factorial(2)  E/ O# N: i$ F2 x1 P
    3 * (2 * factorial(1))
    ( j. `1 w+ ^4 W* ]9 ^" E3 * (2 * (1 * factorial(0)))1 I. e$ y& k  d; v0 i/ t1 K8 V; m
    3 * (2 * (1 * 1)) = 6
    / `" |& S6 Y7 X5 t; ]- N# V6 a+ V2 F
    递归思维要点
    + J8 @6 f9 r3 |. i3 M2 N% U' k: j1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + ^" W# D# J+ c. A2 q$ I2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    7 u$ ~2 X: Q5 \/ \; l$ Y9 _  `3. **递推过程**:不断向下分解问题(递)- _" k/ g! ?3 U7 R
    4. **回溯过程**:组合子问题结果返回(归)# y- r8 `3 R$ }

    * U/ z6 E' F4 B2 _% d9 d 注意事项! y" q" G% _9 C2 A
    必须要有终止条件
    & E2 H0 Q' a- T" [. l- T, i* o" Q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* ^+ L! ^+ \- j
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    " s9 n6 o) U3 o: P# h* x尾递归优化可以提升效率(但Python不支持)7 m3 A( S3 K! }
    : ~. }' J; c% F. ~4 s
    递归 vs 迭代
    / y, t5 Q0 f9 N9 I, P2 K& Z|          | 递归                          | 迭代               |3 y1 V) j! l: @+ [: g
    |----------|-----------------------------|------------------|
    5 W$ c$ R) \$ H5 S! o8 E| 实现方式    | 函数自调用                        | 循环结构            |5 c8 }2 @. U; G! A
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ; L+ I4 _! n4 W7 E7 v! U| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    4 C+ x+ \6 T2 g- J7 k| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( m3 \  G. k0 s2 L3 X

    3 ^) Z. C( B% J- F. k 经典递归应用场景1 M3 Z( u& g2 [; v! K0 K
    1. 文件系统遍历(目录树结构)8 e, T9 C" W2 Y$ Y
    2. 快速排序/归并排序算法, J5 E( K! R$ V5 |; N" y# {
    3. 汉诺塔问题
    * [% l; r3 z$ F4. 二叉树遍历(前序/中序/后序)
    1 K& a2 S! U. E8 F: N9 `7 `! d5. 生成所有可能的组合(回溯算法)
    0 r5 y4 V7 K" c8 v2 }! p+ ]' n' ?7 o, T$ k
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 07:14
  • 签到天数: 3129 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,7 n% R  e( l  F; Y2 k
    我推理机的核心算法应该是二叉树遍历的变种。
    ' V1 S! }9 n; U  |% V, e* r/ P另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    4 k; Q2 p6 h& JKey Idea of Recursion6 M; t8 r6 l& `: |
    - _2 B$ t6 b. {' W+ a
    A recursive function solves a problem by:
    5 y0 ^! N2 ^) t3 P) [$ u$ N( s- U  M' W9 j8 R' ^% e
        Breaking the problem into smaller instances of the same problem.: w4 y( k1 m8 R- r; V0 I/ x* n

    ' k7 R& U! C5 O( \/ j    Solving the smallest instance directly (base case).
    2 X1 K# `* t' H$ r% L( \7 \0 i5 c* t4 V
        Combining the results of smaller instances to solve the larger problem.! {% B7 |! o8 i9 o8 I

    5 _3 J5 P3 g& K5 ~6 VComponents of a Recursive Function
    ' q& n9 H* r+ b3 Y
    , G& u7 b/ x( U2 A6 {    Base Case:, |* s% s6 |0 u+ b( C7 F

      w" b0 _2 K$ F/ E% P$ f& ~0 x* ^& v, ?        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.3 j- y- z9 B5 S1 b6 Z, A
    9 A3 v* M3 X# K2 u" ^
            It acts as the stopping condition to prevent infinite recursion.7 q3 o% V; B) z: V8 \+ r: S& v

    2 I% U5 p6 k( u: u5 t8 x; @        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ; c" |8 I+ ?, q- G( Q4 l6 ~- ~6 \1 n  s( [# N* b6 v, ]* p
        Recursive Case:; a7 W) Q, |/ N6 _

    2 t; a& Q5 D8 ^2 J        This is where the function calls itself with a smaller or simpler version of the problem.& s9 g. {! o; T% V' r  s
    8 r' b7 a* F5 `/ b2 w1 d
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).; P! {" G$ z3 V3 |1 R; L: }3 T
    5 E6 S% i7 K: S/ @
    Example: Factorial Calculation/ P! T/ g1 ?1 c. n. O5 R+ F
    ) @9 Y- T( V' t
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ( C4 [% X* s5 ]7 l8 y; D2 `; C
    % r% f; R. P/ o7 e+ b; c% i    Base case: 0! = 16 d4 Q4 F$ b1 ?
    0 q, N! T* }1 ], f. |- J
        Recursive case: n! = n * (n-1)!$ `1 f% [( u6 T9 t5 @; A
    $ |; c  B, D9 k4 v( G
    Here’s how it looks in code (Python):' @5 W6 E6 y' p- O( M
    python1 Z1 d; j  A- S+ B$ P3 l
    , s/ Z" P1 E) e" w

    2 b" i" }& ^' H6 Sdef factorial(n):
    5 z. |$ q- N4 G. I. S    # Base case8 l- e+ a0 {) P  R
        if n == 0:
    . W: _! ^3 L  W; p& z' ~; ?1 |$ [        return 1
    : K( ^4 l  ]$ e* r" Z8 X. l# W    # Recursive case$ I3 ]" V# l& F; E  x- ^
        else:
    $ A4 l" ], e) m$ s        return n * factorial(n - 1)) Z* h, {/ d) K& |
    1 I9 ~7 g2 x5 S0 b; d% i
    # Example usage
    ' V- N5 z3 w4 B5 j7 bprint(factorial(5))  # Output: 1208 e0 r& K- d; {; |& L; Q; c7 \8 _5 ~

    " \+ \: K4 X8 T3 F/ l$ P7 d. xHow Recursion Works" z( |( f$ Z2 {  M
    3 I8 g; R1 k" H7 [  ~. q
        The function keeps calling itself with smaller inputs until it reaches the base case.
    $ X* D8 a5 |; h; \2 a; O4 W% f) r0 n7 }6 F
        Once the base case is reached, the function starts returning values back up the call stack.! T6 A" o' W" t2 a, ?% P7 W( U

    & f9 I, K0 b+ r# ]; O; B    These returned values are combined to produce the final result.
    , o  y( z' o, @4 E7 g$ v5 x+ i3 B8 W" V; I2 j0 [' r6 w" o, H
    For factorial(5):
    4 Y# M2 d9 {+ t. S, R% z; E% J; X4 B* Z! U6 o: s
    , N. g! t7 m/ m+ q
    factorial(5) = 5 * factorial(4)
    ; `- R9 a: E) R: F/ Qfactorial(4) = 4 * factorial(3)! D+ E9 a- c# {! @
    factorial(3) = 3 * factorial(2)
    3 z6 C+ C0 `8 c8 E/ R. F2 `2 }factorial(2) = 2 * factorial(1)
    8 ?0 a/ g- Z; T- ?4 `% @factorial(1) = 1 * factorial(0)! m' j1 w5 T* u) [
    factorial(0) = 1  # Base case
    0 d7 P% G& b( o+ U% y
    4 b, E6 i" O) d/ k# l# pThen, the results are combined:
    + ?+ ?+ h7 v0 U  L
    6 ?- N; g$ ?6 E
      C+ y" l1 K5 [5 g$ yfactorial(1) = 1 * 1 = 1
    ; t& w% c7 A7 [- qfactorial(2) = 2 * 1 = 2
    0 Q# K9 U+ B( _; y6 z/ U1 [9 [! Mfactorial(3) = 3 * 2 = 6" s3 L- N$ W% m! Y! T& t# N3 }$ F
    factorial(4) = 4 * 6 = 24+ j! u7 c7 L6 g: ?6 ^5 T- q9 K& `
    factorial(5) = 5 * 24 = 120. u$ r! J; ~4 c
      L5 h+ L  H/ s
    Advantages of Recursion
    * ~: z* B; [" U. g
    * x! v- [* j& a; E& a1 ]! f0 q% [8 I    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    $ p6 G' F6 l/ [  L
    ; C* t; b# W, ^) X    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) ]% p" V6 U# a3 s2 P4 d+ M
    6 |  v% i5 F6 ^5 ~& M$ R/ k. b  LDisadvantages of Recursion
    ; o. t; s5 O2 l0 F! T
    8 ?! h9 ~0 _+ q# F# j" p    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 r. o8 }& E5 X3 h9 X% K+ W
    ' D# f$ d$ Y9 j  V2 c    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).( M* O6 p5 f: u  P+ `& V+ P
    8 j- ~, q7 I# W
    When to Use Recursion
    6 X/ x( b- P, K4 \  i$ ?" l0 t. D6 `. o8 A- @  O
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    3 b# s1 S: y. e- p. ~
    5 Y" n* _" W. {8 K    Problems with a clear base case and recursive case.
      q  g" i  X- k+ \' L4 M1 U
    , X) t# d0 C2 ]/ q# U0 m* WExample: Fibonacci Sequence' P2 f+ N& s, q. @
    + `- d4 q8 K8 k# N- K" n! f
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ H3 R" N5 D" _4 x" }' A5 G; c; F' |3 _3 s& s$ H
        Base case: fib(0) = 0, fib(1) = 1
    : f! _* p* ^: a
    * l- P9 A1 D. c  i/ i    Recursive case: fib(n) = fib(n-1) + fib(n-2)4 e6 J" B# Y) y9 Y3 Y  U( v# _

    . x: I( ~. t- ^0 y' D; Lpython
    ' u2 W) p* m( I" P( J* O* F8 Q( |" _  _: ?7 e

    0 w- Y0 Q7 q" |: F: `def fibonacci(n):
    " Z) j) r& n$ V8 }5 M9 u$ @    # Base cases
    . Q3 G9 K9 j. I; C    if n == 0:
    * Y4 \% |$ R5 S' o        return 0
    3 h$ \3 E5 R+ M7 K; D1 J    elif n == 1:
    5 O  l" z7 f6 t& y* M2 s        return 1
    , m/ \' P# l; _    # Recursive case
    4 O7 V/ Y; S8 |8 C9 k( N) u5 `9 d    else:
    . G+ p! }! ~. p7 D2 b- [        return fibonacci(n - 1) + fibonacci(n - 2)
    ) b# E5 q) B9 |( _% B% [% B, w- \% X7 B: m3 g& O% w- @
    # Example usage
    # N6 c2 N+ I0 r/ W3 Kprint(fibonacci(6))  # Output: 8
    ( w9 F; c$ q1 b
    " B" C- c9 P8 H. v) m5 k6 OTail Recursion
    . G; z+ b6 f) b! W4 p2 ^7 ^0 a# Y* a. ~7 c4 Y1 E; ]6 V$ O; b
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    9 @7 H2 K3 F$ N( P* m. Y% A+ q! C6 @8 O: R& _
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-28 05:49 , Processed in 0.032064 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表