设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1215|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . S+ S$ q6 x/ o8 ~/ Q3 A+ V. m" o: C9 ?; n  r7 w
    解释的不错
    - G6 N& U5 u# e( w
    ' E) P$ p  R" c! l# o# D0 w& N递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - x. n/ {# O; p! r- Q! u- L8 F. g1 `. L
    关键要素; |- U' A- k# w0 y' @% q3 Y( |6 d+ s
    1. **基线条件(Base Case)**$ u' i# h# n% r9 |
       - 递归终止的条件,防止无限循环0 E( v' I* s/ E! _% d7 y
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- }/ S2 E- _8 i3 Z
    " B5 P& o% c; ~) ]5 {
    2. **递归条件(Recursive Case)**
    - }2 \* _4 U# _3 }) U   - 将原问题分解为更小的子问题8 X+ `8 x) P. h7 J
       - 例如:n! = n × (n-1)!
    ; B; W6 m  O% h" P0 Y
    : W" Z% {- A6 f! }( E9 [ 经典示例:计算阶乘* [5 M: ?# M; z& l+ B* D
    python
    " K& _! [8 K2 G- |# `  r6 u! Cdef factorial(n):
    1 I; q$ A( f: @0 o' c: X; {    if n == 0:        # 基线条件) ~5 g8 o6 \- G* \) T
            return 10 \; `) q3 ], [1 X& v
        else:             # 递归条件3 v! g+ e% ]9 z9 c" z% w
            return n * factorial(n-1)
    0 Q! }) I* [; b9 G执行过程(以计算 3! 为例):
    * _! T* j6 Q+ _$ t9 nfactorial(3)
    . }6 O% `2 @' O: _: @1 R3 * factorial(2)6 d5 M6 |$ t3 |% U* M
    3 * (2 * factorial(1))
    $ x+ w! V" v' q* R3 * (2 * (1 * factorial(0)))
    5 S1 p: a$ x  t  g4 b7 P# Z3 * (2 * (1 * 1)) = 6
    , I8 C4 L, F' z0 m0 K
    8 _! H  W6 K- W 递归思维要点: m  z% Q6 j- g1 C* U3 Z
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ! e  H+ m( @- \2. **栈结构**:每次调用都会创建新的栈帧(内存空间)2 ^! h( g8 W3 c- R3 F
    3. **递推过程**:不断向下分解问题(递)
    & N- ^$ M3 A& I" K4. **回溯过程**:组合子问题结果返回(归)
    6 N& V' h3 N1 D4 t
    # o# Z& B5 r6 f 注意事项
    4 ~  e% n+ a; h# P' t0 L必须要有终止条件
    3 y  Z0 b$ T( B递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    7 T( |* Y% D+ T) M$ l2 G# T某些问题用递归更直观(如树遍历),但效率可能不如迭代
    + E7 |: q3 n  F# d. E  k尾递归优化可以提升效率(但Python不支持)7 a0 [: m: k3 C8 y! x  Y6 f
    " c4 P5 u7 m1 P6 _+ V
    递归 vs 迭代
    . i, M& V- T3 W3 d6 r|          | 递归                          | 迭代               |
    & ]' P4 T; j, X6 X8 V4 V' y! e|----------|-----------------------------|------------------|3 T5 X/ d3 ?* Z( @, b
    | 实现方式    | 函数自调用                        | 循环结构            |
    : z0 k% g. Q7 h! s0 k: O* G4 J* \| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ! Y0 k! R% }3 Z9 Z6 _| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    8 K0 @* s: i3 }  K0 H( O( E| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: e. L4 U( I0 l* G, i

    3 l$ l4 }' y( k; j  t 经典递归应用场景
    + Y' T/ J: x( A' {+ S1 v9 ]7 `; W1. 文件系统遍历(目录树结构)
    # W2 U* F4 {$ s/ G' _9 b7 v2. 快速排序/归并排序算法) s$ ^$ r, t' W: i: Z! I
    3. 汉诺塔问题
    9 M6 I" N% g4 ?) I0 c5 Z4. 二叉树遍历(前序/中序/后序)
    4 K7 `  g4 k3 _5. 生成所有可能的组合(回溯算法)
    0 U- J% j# \- I# ~% D
    , g3 _( A# w, P7 t2 _3 H试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    8 小时前
  • 签到天数: 3103 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    5 q& k1 {; K( |4 q9 P- X我推理机的核心算法应该是二叉树遍历的变种。! h! Z) Q3 Y! ~7 N: F
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    7 v  n$ i3 F# P, j0 yKey Idea of Recursion3 [' {; C* K/ W7 r) r( S# v
    - Q  c/ V6 g# `
    A recursive function solves a problem by:/ o2 R! l3 q  Y* U: y
    " K! [2 q  a- O: J! `
        Breaking the problem into smaller instances of the same problem.; _9 y3 r9 t( }7 U- A' b% d5 @
    6 J# Q. ~/ _4 a
        Solving the smallest instance directly (base case).3 w( W& u. e$ T! h

    - b8 y1 u$ [# Q- U0 R/ }" C: w    Combining the results of smaller instances to solve the larger problem.- x* z/ i, B! L8 r* s

    5 E: e6 \7 w3 j$ y! K; \Components of a Recursive Function, `0 u$ d( _0 G) o* Y6 s1 m" Y9 e

    * E! E( o) D' y, B    Base Case:: L. m+ J! j- H) R" Z
    * h  a& N( _2 S
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.9 R1 |5 z: @: G1 r7 r. N' m
    & M! ?% _/ l) y. b& L: F" f$ C
            It acts as the stopping condition to prevent infinite recursion.- ^+ V+ J3 S, s" {% |

    ' w; C: h$ ~2 i# H$ Z8 A" y9 o        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: X0 k% k. C, h2 k2 v$ Y

    ; b8 p8 \' x3 m1 B% a    Recursive Case:
    & @- I" D5 p9 h3 Q) y6 Q  p  S' w. u( d* t. P3 f
            This is where the function calls itself with a smaller or simpler version of the problem.; O& R: N1 w6 e; W- d' X( N

    , N& P7 g' b3 A( k8 f        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).2 ^9 @  Y3 z) j7 }
    # T( U6 H' z" G# A
    Example: Factorial Calculation' Z) u3 F1 ~& Z) u0 i; a9 X

    ) D. K/ ]' R7 zThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:) @4 N/ T- G( r! Y
    " H4 ^% l# O+ F# M# B. s1 p" W' I* C9 x
        Base case: 0! = 1! T3 Q; O- s+ F4 b3 k
    7 J9 E- R( o: A
        Recursive case: n! = n * (n-1)!6 M  ~" \! [2 B

    $ |6 |. v# I1 X# ~- iHere’s how it looks in code (Python):
    7 `& C% G% E! N4 t% t) C  Cpython
    . ?1 y, E0 L* |. r- g1 ]+ p; O9 y
    - H% V$ Q3 {3 ?+ B
    2 ]0 `+ J+ s/ Z/ b& adef factorial(n):5 h' P3 {( J$ H) b
        # Base case) m- Y) F7 t6 Y) [' _
        if n == 0:
    + j1 @6 D7 T" p        return 1
    2 V" r& @+ f! `8 M) t9 z  [    # Recursive case
    9 |) H' e. N7 U3 P9 i8 ~5 ^& a    else:
    9 p3 d9 l' P1 L- }) k        return n * factorial(n - 1)- @- @5 ]6 d, R+ u) }( @% I
    ; R2 _# t( s5 s. U
    # Example usage( l1 t% E% [, a' Y) @
    print(factorial(5))  # Output: 1202 \4 @+ T* [; Q

    ' n8 m- T$ u" UHow Recursion Works
    - I% ^# @; \. m( F& N& @
    ; I; u) l% D2 S7 T: }6 b    The function keeps calling itself with smaller inputs until it reaches the base case.! [* P, O$ k) N
    0 f, ~, h' k; L# }
        Once the base case is reached, the function starts returning values back up the call stack.; |  T5 p6 g# c2 t
    0 ?+ M3 f5 P$ g2 F9 z
        These returned values are combined to produce the final result.
    & C+ C0 U# F/ \7 F( V0 n
    1 o, }( [; q/ L) N. X, z/ u) ]For factorial(5):
    5 C: S* D( l0 S9 G0 {' U1 O/ S; w+ C/ s' V+ u& J
    ) ~7 _. s5 R  J% h6 E- k. j
    factorial(5) = 5 * factorial(4)
    ) y8 ^/ U6 q; v4 E0 kfactorial(4) = 4 * factorial(3)
      v5 R7 v/ z2 c2 V; _2 ^factorial(3) = 3 * factorial(2)
    / a( E6 x7 I: K  g& ~2 Kfactorial(2) = 2 * factorial(1)
    6 N/ _2 p# [6 \factorial(1) = 1 * factorial(0)
    # z2 ], N% k1 p' f- }factorial(0) = 1  # Base case
    ' @, o8 z; p+ A) r* T2 @8 W4 M+ ~7 h/ E
    Then, the results are combined:1 k' Q/ h: X' U$ {9 D# f
    1 _$ k4 {' h6 o# E. Y) |

    2 p% d! h) b2 O: D( ~5 }2 ~factorial(1) = 1 * 1 = 1
    + f: j' l" ]6 h6 A9 i% O- Z: Ofactorial(2) = 2 * 1 = 2
    ( G- D9 b4 ~0 V% gfactorial(3) = 3 * 2 = 6
    7 _* Z2 \: |) cfactorial(4) = 4 * 6 = 24
    ! ?& {) e8 l' d6 Jfactorial(5) = 5 * 24 = 120
    4 w$ E: i9 }+ d6 J7 f9 m! W/ }0 [4 F7 r
    Advantages of Recursion4 @; g7 {7 n. j8 O. J. M1 J
    ) f) |% w9 V9 U1 z
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ; `% z5 r2 |, ?0 }2 g* J8 @8 o1 W
    / ?# u; O( p6 K2 g. v    Readability: Recursive code can be more readable and concise compared to iterative solutions.; V+ r! G! O7 Y% m+ _" a0 p& T7 Q/ t# h

    % t. b( L4 m& ^3 ~2 QDisadvantages of Recursion! L; ^1 a3 H6 O. k3 s6 J+ Z# {5 a

    ( q. q* ~- Q- x% x0 B1 X    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% F8 h/ L: ]2 c, J3 |
    1 @" n' r3 M' Z, H
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ; r. W! M& h8 s3 ?. ], r* w- X5 F3 ~) R2 Z5 S
    When to Use Recursion
    & l4 [, Q5 g! f9 X' J) {
    3 ?7 \7 I% R% X    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).1 x6 [$ x0 @4 F( y+ J
    & W# a" h/ \( f7 l/ A: o1 E
        Problems with a clear base case and recursive case.
    + _, P  N" C- |
    ' b0 ^7 a% h# K3 R% z6 S" HExample: Fibonacci Sequence
    0 d6 z: l# l' G. P' b3 n5 G
    9 Q! S4 W! f& Q  ^The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:: s- D* \# _8 y# q4 v$ b
    0 A* {$ n- C; d) d4 g3 q
        Base case: fib(0) = 0, fib(1) = 1# }2 [. Y7 K* \# I* @

    : v- u0 s: t' V    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) P4 g4 c: a3 j1 I' }% S: @& R0 ?' }1 H% [+ q5 {9 r% h8 z3 }
    python, v5 b, [. J* q- W3 e
    , g  `/ w2 J% I
    $ T& q2 _: T* Q3 L, l4 g. S( Q
    def fibonacci(n):
    ( E/ D8 q; ^0 B/ t8 H    # Base cases
    ! I: e. X, @, j- q& F    if n == 0:
    % a/ G8 [6 i2 O9 K        return 0/ W6 M+ J$ j5 `# G
        elif n == 1:% m3 O% @* X( x, B" q/ D* W
            return 1
    + u) x3 v0 t) y$ M5 [3 @5 C    # Recursive case
    ( c. w8 ]# Q) ~6 w    else:; |5 p$ {0 g$ L: `
            return fibonacci(n - 1) + fibonacci(n - 2)
    $ ~# }* _' U$ L0 L* Q! C
    / K3 C+ {/ ~! z3 Q3 e# Example usage
    5 k" N0 T% J0 lprint(fibonacci(6))  # Output: 8; I# ^" N/ M8 z8 t7 h4 G% x

    " z& \6 X& P1 ^. ?6 ITail Recursion$ i) P; ?. v$ A) ~' N1 z$ [. R

    % r: e/ g9 |- C' v/ z( @! kTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).; S, C2 y  L$ s5 o* k0 l& \
    7 L8 A8 N1 T: i8 @
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-28 16:08 , Processed in 0.031313 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表