设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1362|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    - Q+ l1 ]+ h9 A% t) m7 c8 h4 s' J# y- n
    解释的不错
    % A1 Z5 ^9 y1 r; k5 G1 r8 D
    : K1 x& G( m) f' A4 h1 d7 C递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。+ _" K! e- W4 H) ~: e

    ) F' N( Q% h  w 关键要素: D0 h, t6 s( j+ C7 m7 z
    1. **基线条件(Base Case)**
      [- {2 ~, R) h* }: R& {   - 递归终止的条件,防止无限循环
    $ |# Q" _! v* Y% k1 L0 i   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- k  t/ J& z. ~
    1 Y0 @1 D) Y( o' Y
    2. **递归条件(Recursive Case)**
    3 b& t4 g+ z3 i7 ?0 T   - 将原问题分解为更小的子问题* V9 x/ Q3 E% l
       - 例如:n! = n × (n-1)!# o+ d6 j0 e% S: O

    4 J5 s' U0 ]2 A0 h: G 经典示例:计算阶乘1 F9 @/ d+ U( |
    python
    9 F8 Q( j1 `" l' V3 V+ C/ k$ odef factorial(n):* b& M7 ]% r* o/ P
        if n == 0:        # 基线条件0 r; C+ U2 F: s# Z- G
            return 1
    ! n: U' }) Q+ A2 r$ R    else:             # 递归条件, H& u+ M& N6 ^1 _; Y. U2 Y
            return n * factorial(n-1)$ d! T% s/ B# Z
    执行过程(以计算 3! 为例):4 D4 V4 \# L) Q* b
    factorial(3)2 \  b2 Y, X& ^) Z. `% X8 ]
    3 * factorial(2)8 V  v& d0 ]+ h' v& E9 W
    3 * (2 * factorial(1))
    ( ]2 A4 g' H3 R9 i, n3 * (2 * (1 * factorial(0)))
    & K- f3 T1 b" C( m8 c3 * (2 * (1 * 1)) = 63 Z4 r) n4 o. t( Y: c* M
    ' E6 A( a! d! w; e
    递归思维要点
    / \4 ~# P8 ~, {7 e( `9 o$ f1. **信任递归**:假设子问题已经解决,专注当前层逻辑) ^" v6 z6 h  o1 W
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)) c7 G7 v- @$ c1 p5 m$ q% _6 r
    3. **递推过程**:不断向下分解问题(递)
    % G5 ]) `+ t0 F3 n! D& m' ^, p5 k4. **回溯过程**:组合子问题结果返回(归)
    ' [! ~' z/ n. w  U% V$ ?' V8 O
    ; x6 D3 m% I' W3 A 注意事项
      b! h  I9 E* c, t必须要有终止条件, |" ^6 ?: n( n
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    + o" V. ?, `% r( H! B+ z某些问题用递归更直观(如树遍历),但效率可能不如迭代7 E. F1 [, T/ ]
    尾递归优化可以提升效率(但Python不支持)& @! X4 d9 Z. ]
    3 V$ [' }6 r$ ?$ S8 _+ O3 x
    递归 vs 迭代5 P: T! r0 e4 g6 H& g: Z
    |          | 递归                          | 迭代               |
    $ Y- Y) x+ A4 ^  ]5 x2 j|----------|-----------------------------|------------------|
    : L1 ?) ^, ^2 y9 x2 s9 {1 p| 实现方式    | 函数自调用                        | 循环结构            |
    4 x! W; u/ I- l; R  e5 || 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ a! r( t' }6 z: f
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ( [3 u5 q' k3 i8 |" \7 R| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    0 p7 `  a! c: M6 C$ g
    3 Y! S2 J1 ~4 n$ O 经典递归应用场景% f( N% V3 w  \9 N* I7 Q5 K
    1. 文件系统遍历(目录树结构)
    % P8 w( T7 Y. L* R) p& `* {2. 快速排序/归并排序算法  i6 T/ n) v* \6 g: ]
    3. 汉诺塔问题
      ^: ?3 ]# Q3 @0 b4. 二叉树遍历(前序/中序/后序), Q' ~6 X7 V  B" u  s
    5. 生成所有可能的组合(回溯算法)( S8 A' z7 v2 Q

      E6 N$ `: Y9 \) m! a2 e# _2 r试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    4 小时前
  • 签到天数: 3110 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,4 u- |5 m* \! ^( d9 _% Q+ u2 L6 M1 ~
    我推理机的核心算法应该是二叉树遍历的变种。
    " V) R; V, |: t- `9 F3 \另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:9 ]  |3 \" @! O5 S' B+ V
    Key Idea of Recursion* ?4 Z1 @0 R5 U# S  s
    8 |4 n4 f. Q5 {; ?
    A recursive function solves a problem by:5 F) Z8 v) ?- Y3 {
    ) G8 R8 {. c1 Q* y/ ]2 H$ P5 [% N) V
        Breaking the problem into smaller instances of the same problem.! Z: K- b& r' f7 B: {
    5 c3 x. F: k6 o0 v
        Solving the smallest instance directly (base case).
    4 F) V. Z8 U7 v- K) `/ |  u- x4 @( ]
        Combining the results of smaller instances to solve the larger problem.
    " a3 i! @; p8 w( _. _. V
    9 l* P9 e- v' E+ c: GComponents of a Recursive Function: F' |, i& v# x" K6 R

    " \# s# e' }) ~: v6 ~    Base Case:6 B/ u* m1 A3 O& o" z3 ~
    8 ~4 o  @1 R2 t5 U* G9 J
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; j* w5 d# v/ l0 g" A/ x6 b) P) [; X8 \( p
            It acts as the stopping condition to prevent infinite recursion.
    - v4 ~  ^9 U* @/ {* N! B7 b+ ?
    9 ^9 h& p' \6 C( L        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.9 G* A% K! L- v' K# }! ~
    ( U* H* S# n" s8 q, O
        Recursive Case:
    + v/ L. _5 M- S
    + o7 v  G- V) m7 V/ P        This is where the function calls itself with a smaller or simpler version of the problem.% k! s+ b$ @: k
    6 G" R0 n4 {" K) y1 y! ?' T
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., c0 f$ I; }* p/ c3 u

    ( K& O+ B5 S/ p! |Example: Factorial Calculation3 q" g, V: y/ @) R% d& ]
    " ]4 R: r% v- M# _, }( L
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ( y# T+ U/ I0 K: ^) Z; Z1 T" r. i0 P+ _& m6 y& R) H5 [  @
        Base case: 0! = 1# [5 P9 [0 U7 c$ h- A* i" Y" g& y
    4 \  @, K. j1 G1 I
        Recursive case: n! = n * (n-1)!7 o: ^1 e5 R, o% g$ @5 ~

    9 J) O! z# a9 t! bHere’s how it looks in code (Python):
    3 n0 f! ~7 o. S+ T, d' g% jpython
    - N$ O  s& N4 L) y1 W. c  |% B3 l& J0 F3 ]. N

    2 m4 o( Z* e7 _; ~6 odef factorial(n):
    ) R4 x- n6 x, r* M5 X    # Base case
    / w% G  H' d1 y1 @8 {! Y    if n == 0:+ H+ h( n9 }' L9 w; u* ~/ w: q
            return 1
    ! f/ C/ A$ `6 A8 {    # Recursive case
    ( }- O: L9 j2 H" D  P    else:4 T( h" h4 Q) q3 o  |6 s3 V( K
            return n * factorial(n - 1)
    6 T2 o/ q% j( z) K# S0 s) D7 ?
    % j) B& {3 H0 T+ ?0 v+ |7 a! K# Example usage
    . P: u  z7 U4 w; J  ?print(factorial(5))  # Output: 120
    7 K2 h! G1 J6 G3 A7 I" A0 |% n8 }' ~: n9 u; h
    How Recursion Works
    ! M$ m# e) D) @. N/ F- ^6 i0 ?5 b1 ~5 F: ~4 r
        The function keeps calling itself with smaller inputs until it reaches the base case.9 b, o# H; |# v! g

    0 n: ]( I5 b2 G6 {: }7 X3 O8 ~3 P    Once the base case is reached, the function starts returning values back up the call stack.
    # G& |+ h1 I' ?% W8 i
    0 [. A) l2 O) \2 }' W1 g. R) j1 z    These returned values are combined to produce the final result.
    / h  h0 ]1 H4 U" k* C. Q9 P$ a% u% O; ^6 p  @
    For factorial(5):
    $ w$ \3 m# L* y  B: B" ?
    % B5 h- m: S5 f/ [
    0 B  @5 m) v* W5 lfactorial(5) = 5 * factorial(4)$ C3 w6 \% |- U; y8 Y0 I# t" Z
    factorial(4) = 4 * factorial(3)
    ' j  p+ H( Q9 Jfactorial(3) = 3 * factorial(2)& S4 c) G6 J1 N: i
    factorial(2) = 2 * factorial(1)0 p6 M" e. Q8 r0 E1 a
    factorial(1) = 1 * factorial(0)7 s+ |. ~2 [2 D& e
    factorial(0) = 1  # Base case
    # u6 G! ^4 M+ d: X6 ?, [0 d' Q! I3 N2 h$ V0 |! V
    Then, the results are combined:
    / k8 a6 i& i  E) G: k4 z' \! e! K9 W# m# i8 v
    4 U, K; f4 f" c5 c) c
    factorial(1) = 1 * 1 = 17 Q, k% |- w! ^/ a* H
    factorial(2) = 2 * 1 = 28 M" i! ]- z  `8 u! \3 n9 q
    factorial(3) = 3 * 2 = 6
    . i+ g! G8 I/ u2 Z2 i- _( Qfactorial(4) = 4 * 6 = 241 _6 Z4 o% V0 C  W" [- x2 u* ~' i
    factorial(5) = 5 * 24 = 120
    : W& {% g7 ~$ D. d8 R' A. }
    " ]' W* \$ p8 u; V  _! z: {7 ~Advantages of Recursion
    8 E8 Z' I7 u  t# t# P' y
    $ N, C% N1 H3 J- u8 r3 |    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).  d& ]8 B- O) m: t4 }

    / _8 j( X! Y. o9 t5 u' w% q+ M# K    Readability: Recursive code can be more readable and concise compared to iterative solutions." K3 p; j  w( e; I% {' g1 _& {# b
    . C' b, w! \' e- o" p5 Q3 N) X
    Disadvantages of Recursion
    / ?, y8 S- ?7 z" T* ~
    , Z* Y& X& \( ~    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 S6 {1 B1 D1 A) U& h+ R
    % Q# g  y+ H( W3 F7 y1 h- U
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).- E. u6 k( L  a; \# I! Q: K1 }8 s

    & k, s" Y  t: }' j- B, }- C/ {When to Use Recursion
    * q2 {) \$ i) r' W! v7 W7 S
      L0 C  l1 W+ l$ x& l! ?    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).4 X+ _- B8 o4 ^# d1 k

    $ k: X- {5 ~/ @& S7 [8 f3 Y+ Z    Problems with a clear base case and recursive case.
    / ^  K2 x. |1 S
    . E7 E9 g  Q5 K  ]6 wExample: Fibonacci Sequence) H1 \2 u" Z8 s# V# x4 E# S. \8 d
    ; @9 U, M8 k$ p& f* i7 Y' z0 h
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:- B2 y9 W; y  \. K+ K8 ^

      n9 `2 w& a8 O; F$ k    Base case: fib(0) = 0, fib(1) = 1& v- @4 }& ~# @0 P& o5 [; [

    : i  D7 K$ d1 e2 E    Recursive case: fib(n) = fib(n-1) + fib(n-2)5 k% ]! L! N% a1 I8 [

    1 C4 N& k6 J$ v" b& D+ D& f; a  Kpython
    ; s3 O$ |9 @) G1 b# s% l' E1 u+ A8 [  D8 A; M
    7 E$ }3 h5 [2 k& W" v3 |
    def fibonacci(n):. `( \# b2 S, E
        # Base cases; a; b- D) H/ R8 X: S( \# ?
        if n == 0:
    * l" Q$ L) h$ w; b2 o: T7 {6 B) n        return 03 H" _5 e' n1 ]8 i5 D
        elif n == 1:2 [) [) h2 i' m6 l  }0 z$ Z) t0 R
            return 1; Z2 s" W- O" k% K/ j7 W9 n
        # Recursive case
    - V" ]1 K: }3 o  `( m% \    else:% m# b# d: v' v$ k+ H7 Z
            return fibonacci(n - 1) + fibonacci(n - 2)- k4 j0 H  Q. T
    % d, ~' D0 ?6 U1 E
    # Example usage, M3 ]  a/ ^, c, _, W* q( C
    print(fibonacci(6))  # Output: 8
    ' z5 e. W$ ?! O) }1 G' s( l* w8 j9 d
    : X8 y  y! k' `) jTail Recursion
    ) |2 g4 }( @+ l; M/ ]- b1 a- U1 b+ ?  V" ~  d
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
      ?# a" X% J. Z) {' T. H/ u) `# m
    9 c: u: r  |) C% n, v: W! Y. XIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-6 10:40 , Processed in 0.042198 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表