设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1910|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' i! S! @; |/ S3 R( m% k! f! E+ C
    5 B  \( i3 W4 H9 c, n3 |. n
    解释的不错) c' }- v- x% [" b) b, s  {
    + r* X4 C. O/ V6 ?" j5 f8 c
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。4 g+ V& \+ E# h7 Q( q
    8 ?% D0 Z7 x  V8 p/ n8 v  f9 P; J# \
    关键要素
    . W6 @) W* W; l3 J1. **基线条件(Base Case)**2 r( c3 S3 n3 D& w( N
       - 递归终止的条件,防止无限循环, s4 k5 t2 D; I7 U
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1; ~* r1 ^+ h! _
    1 y& `$ ^  C. ?$ z& n1 w$ f
    2. **递归条件(Recursive Case)**
    7 R! F  X* A& ~  w6 l+ V   - 将原问题分解为更小的子问题" H+ e. a6 U& f0 ~2 v" M1 X" T& n+ R
       - 例如:n! = n × (n-1)!; C) R* G+ E0 z' u0 }$ _  {0 ~
    + n3 T4 p/ F% |  S* z7 F- g6 x
    经典示例:计算阶乘
    % E: d. |, m0 c: Spython* i4 m$ l3 r# b7 @( N. t- v3 M
    def factorial(n):- P8 |% ^1 H9 ?8 s5 e
        if n == 0:        # 基线条件8 H) U* @& D+ D% T' s: ^6 h
            return 1
    7 ?% p+ a0 G, Y. l4 O4 C- l9 I    else:             # 递归条件
    ' v0 Z4 e  P) O8 r  I        return n * factorial(n-1)9 D$ x: |* n# |. V" c2 _
    执行过程(以计算 3! 为例):# u5 j( s7 {+ X
    factorial(3)
    : J4 T7 s( B& _3 * factorial(2)) W; T! v/ n: s) B
    3 * (2 * factorial(1))" F' \  D4 `1 K% Z& s. n, r/ U
    3 * (2 * (1 * factorial(0)))8 U4 n' W: e3 u
    3 * (2 * (1 * 1)) = 6
    3 p8 d' N7 v1 e9 z0 j' A8 m* x& S) g
    递归思维要点! E% Q7 f& A: X9 `
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    0 y+ A1 i7 k8 ]' G2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    5 K3 M9 T& W! O, x! x5 H2 h4 H3. **递推过程**:不断向下分解问题(递)
    - S0 T1 v! j2 c  f$ K4. **回溯过程**:组合子问题结果返回(归)' l, w) w& ^6 C: H5 M( D
    ; d# D$ _+ P1 f! G
    注意事项+ F5 i" w! Y: [% B; R0 ?4 c& U
    必须要有终止条件0 q9 C6 l7 t2 ]5 V( p; A6 u6 i
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    . j! H$ J( V; H7 o$ l: Q某些问题用递归更直观(如树遍历),但效率可能不如迭代6 k  w" ?$ v  D! J( p4 P% V4 F1 D
    尾递归优化可以提升效率(但Python不支持)
    ! q3 r$ _' m# m7 z6 h2 b( s
    $ ~8 B* R% {5 @* i: H0 w0 Z 递归 vs 迭代
    ) Z: p0 G" c! d9 u( v+ a" Z2 _|          | 递归                          | 迭代               |
    # y7 P' d# a. c2 _% F+ w|----------|-----------------------------|------------------|/ I4 U% ~  q( R* j
    | 实现方式    | 函数自调用                        | 循环结构            |- q9 I/ i3 f. Q( N3 G: K
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# N' ?3 V1 E: u
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ' }! G- t7 L0 Y' C| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |) K$ e" O1 @" _$ @, t& E# {
    ) C" C/ E3 K8 m4 C+ b
    经典递归应用场景
    2 i; E# ^1 r2 P7 ^( F5 q3 }' C1. 文件系统遍历(目录树结构); D9 f; m% e6 a8 t- h
    2. 快速排序/归并排序算法
    " I4 j/ q- \$ b0 e3. 汉诺塔问题! Y2 H7 U3 r: }" \' s1 Z  H( m' M
    4. 二叉树遍历(前序/中序/后序)$ ?2 G$ W/ \4 u1 L
    5. 生成所有可能的组合(回溯算法)
    3 X" y: @& Y7 l' X$ i" i4 Y
    6 O, L$ S' \' ?试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    前天 07:11
  • 签到天数: 3150 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,' c( L5 i. j3 e
    我推理机的核心算法应该是二叉树遍历的变种。* E$ |7 n& x0 ?9 f6 ~
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    " h9 x" E' P0 H& b1 c0 Q+ [4 _8 uKey Idea of Recursion+ g" }2 [$ V8 ?4 \7 S
    4 u% c* M6 |' ?& ?% b4 R: k# J
    A recursive function solves a problem by:; H- N; J# c. N: v
    - Y% M1 `) L  U
        Breaking the problem into smaller instances of the same problem.$ W, V# e$ h3 l- G
    3 H8 i3 s% W4 c4 e
        Solving the smallest instance directly (base case).
      v" Y" c- e  l: h. _3 F# o
    # _; N, w* {8 |  v    Combining the results of smaller instances to solve the larger problem.: b. t5 K9 ~, r1 H' \% V; y( t* I
    ) G0 {5 A: f+ ^5 N9 |$ R2 _
    Components of a Recursive Function/ F. n) f: {1 Z/ j$ L' n; e+ h8 k

    + o. x8 ~# w, x    Base Case:
    ' q% @" g4 h0 a; R: Z7 b5 `5 r' ~6 F+ ]
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ U3 X: ^9 G; m. h$ }  k- @) E4 s5 W% k

    0 `  F* l3 }6 F! u* l2 @        It acts as the stopping condition to prevent infinite recursion.
    % X% W& b0 J3 x: l5 R4 G% H6 ~" T
    8 [' y$ i8 [- }: Y5 P- j( a& J+ a        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ) U1 d* @7 `  Q5 k4 e4 x# ]' E5 [3 ~$ ~' b2 g' ]+ L& w9 L9 O
        Recursive Case:$ _5 ]; a/ J1 {
    " }. V( Y: g* u8 B9 c5 r
            This is where the function calls itself with a smaller or simpler version of the problem.
    ) M! U3 Z" w/ H1 U, r
    $ b5 E. Q5 C+ [% Z6 ?        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' W/ p0 D( P/ p. b6 Z) w1 D
      W0 a  ?# ?# n5 f# _9 o
    Example: Factorial Calculation) b0 M1 _* P. F" v/ V: f2 [

    ) z8 q! t  Q0 Z1 M9 A! D$ FThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:5 ^' W7 i0 B! Q$ I; w4 g4 K
    6 e: W9 h0 {4 ?+ k( ^$ O) @
        Base case: 0! = 1
    1 h. {* \- R) v/ v% p& l; b3 c9 r+ f$ Z" e% t
        Recursive case: n! = n * (n-1)!
    9 ]( U' y# o6 e4 j2 ?& [
    $ T. c1 x6 k* n. L0 j5 \6 `, V" oHere’s how it looks in code (Python):
    ' S+ X& S" `1 c' opython! H; H, d: r- v1 h4 s; f

    # e" b9 A: I- @6 F- |& x* P$ M$ d4 U5 t8 X6 x
    def factorial(n):* d9 M1 F3 Q% T6 J5 H0 h9 B1 E8 z
        # Base case# [+ D; E0 I& F) [( U/ m3 Y
        if n == 0:
    ( N. k3 O4 q3 [$ `        return 1: D; w' o4 ?: ]
        # Recursive case) Z( {) W* c6 X0 {* V& k2 Q
        else:9 X0 o) ~' v% L; t( u/ I. ~
            return n * factorial(n - 1)6 i( L. l/ m& w/ x7 a, J; A& e

    2 r) D& u* T# o: V+ s. I# Example usage
    . m" z+ _1 S3 s0 Jprint(factorial(5))  # Output: 120
    ; ?, ~( |2 ~- |' Z
    1 k+ _! D' F  }How Recursion Works8 e8 s# P8 b) D# p) N8 g

    7 |* F7 z& p! Q' g4 i) h, s    The function keeps calling itself with smaller inputs until it reaches the base case.
    & X" d6 H+ o2 A! {! ]- t  G% L  d$ I% t/ Z
        Once the base case is reached, the function starts returning values back up the call stack.
    : z- M/ f" ~  R: {' Q8 j1 {
    . U2 K; Y0 D. p2 Q0 z    These returned values are combined to produce the final result.
    9 y0 F' I* @. O* T$ H9 h& {
    0 _+ k# F/ n% [$ a( ?For factorial(5):7 ]- p; {9 T* i2 ?

    % a1 c+ @, a6 R; S7 Y& U# x: t2 s% a5 F
    factorial(5) = 5 * factorial(4)
    0 `7 r7 U+ x0 r3 F5 K! n$ Ifactorial(4) = 4 * factorial(3)
    4 q* n. @# X' T7 C; Dfactorial(3) = 3 * factorial(2)  A2 v/ A# w/ B( K  E# u
    factorial(2) = 2 * factorial(1)
    ) q& Y+ q4 `/ Lfactorial(1) = 1 * factorial(0)4 [' z+ j7 B& I7 n6 q* Y
    factorial(0) = 1  # Base case
    2 D% v" Q# V8 }  G9 J" X7 b8 t! @* A3 t2 y. I5 x
    Then, the results are combined:9 S2 i' `4 ]) A' B

    . c% ]% ?6 }0 V0 y' Q% T' P
    " y0 `" X6 {) d( a: r9 F5 Afactorial(1) = 1 * 1 = 1
    ) `, j4 a6 m/ M  V& `8 h9 o: Gfactorial(2) = 2 * 1 = 23 x- L& i- n( Z$ g. ^
    factorial(3) = 3 * 2 = 6* \6 u7 c& ]/ S( Y& R
    factorial(4) = 4 * 6 = 249 m8 }4 V2 ?. V, o# f% t
    factorial(5) = 5 * 24 = 120# g8 q4 i( L1 a1 ]! g2 `4 \
    5 \) W9 |& s; f
    Advantages of Recursion) m; I9 t( p0 ~5 M2 u+ A
    7 J0 P% j7 E6 p6 K* {* J
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ M" Z5 l! D8 x1 ^

    ' p3 U! B  C$ o, ^9 {( I  _    Readability: Recursive code can be more readable and concise compared to iterative solutions.# H- G3 Y) |# G2 |
      `4 `5 |& `$ a) s
    Disadvantages of Recursion$ b0 B3 g8 E$ J

    5 `: ]' y8 d; x) p1 ~    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.5 s/ C( i0 a" @+ S8 _" K- k
    0 V$ }$ d0 A* n! @5 @
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).  ~- T! e: C) s
    6 H6 Q. x, U3 q% I4 d
    When to Use Recursion
    : |+ \/ P( B: Q, E9 F6 L. ~) M6 M0 ]# J' H
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' N$ ~+ q: Q0 U0 H$ I
    / V: v5 w; }, r3 p8 z. A8 U; I. f6 Q    Problems with a clear base case and recursive case." X2 z' j( x0 e% s# B' P
    . B; K9 }% O' M$ U
    Example: Fibonacci Sequence
    & _0 w0 I+ J- K3 A$ V4 ]6 n3 y
    ; O; ]: ?8 q* |: OThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    . M: Q; p" F) `- K" `& i" n; L& n+ R: L! w
        Base case: fib(0) = 0, fib(1) = 1
    # q4 }; L- |0 g( f# ]
    , \5 j- j' V. N6 u! z    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 a/ v4 s1 o0 y9 m; i
    ! o$ N- c- A/ [+ j$ X0 t5 Kpython
    + K0 U5 z1 o9 }2 b: ^4 h7 R2 E6 O  W4 `0 H0 k8 q$ b

    , H5 C5 b' f. U7 D+ f" m: Pdef fibonacci(n):
    : q% W2 |. m5 I: W3 t    # Base cases
    4 E7 u* D8 Z5 J- d0 k5 h    if n == 0:( {$ `3 y* p8 m1 E, h# z$ Y
            return 0( e9 X; }  U% W- d; }5 c
        elif n == 1:
    / z& j4 C; W7 o4 C" Y0 F        return 13 {) [6 E- r2 s, L
        # Recursive case
    : }. E0 Q1 t. {; d+ [+ h    else:0 ~- o$ P8 e6 f0 T! v# Z
            return fibonacci(n - 1) + fibonacci(n - 2)* E4 ]  U) r5 B% I1 n4 u
    8 [5 r6 b- U% t; o
    # Example usage5 k9 ^3 c/ x! [+ e: ?; e* _% v
    print(fibonacci(6))  # Output: 8
    ; f7 |! w% l- q; g* _( S
    ! w0 `& K1 F6 [9 F! O3 ?" C+ yTail Recursion
    : Z" d: i8 |( J' [! w$ E, }: _& w+ I9 X7 Q* A4 H' ]5 x/ x) W5 T
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).; ^* C6 N6 Q9 z* M+ N

    6 Q  r0 z) x9 r* K& O& CIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-22 03:00 , Processed in 0.058482 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表