设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1060|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    0 A+ \7 S/ ^5 g$ s% W) y2 a8 v6 B1 g3 q8 |- _
    解释的不错
    ( Y' F' b  Z/ C" X& E$ r9 G; |8 n
    * i. \6 s/ \) D* p/ \% j递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    0 [, G7 K# Y, h: |- q# N
    + w) V: t: b  Q2 ^# v6 q, p 关键要素6 m5 ~4 R8 J5 J; p
    1. **基线条件(Base Case)**
    7 {( b5 O& _" D" h( V   - 递归终止的条件,防止无限循环
    9 f# W, V: U+ x$ m% A1 C   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- X- ^. Y' W5 x7 @5 S5 v
    0 h8 r  O3 I: j- J& F5 v
    2. **递归条件(Recursive Case)**6 N1 W+ y5 n$ P9 w
       - 将原问题分解为更小的子问题* d' u  a# e+ K1 u( m
       - 例如:n! = n × (n-1)!
    ! O/ u" n# `8 A: u% q- k  y, u( p9 ~% t: w' B+ ^
    经典示例:计算阶乘3 y. K- ]  L6 ]3 J
    python( m% l' x  F7 F$ P+ W- [
    def factorial(n):
    9 h; ?: l+ J" p6 B+ x) i    if n == 0:        # 基线条件. R4 ?4 R- ^" o! U+ h
            return 1
    6 [' I) X5 `( Y7 u* |5 A    else:             # 递归条件5 D) p  V0 F2 Q& _
            return n * factorial(n-1)3 B) E6 ?1 [: P9 n4 F0 k' Y
    执行过程(以计算 3! 为例):' G1 m" z+ Q$ D! U4 I1 v7 c" t
    factorial(3)
    ; @4 G: s- K# l# B# z4 }3 * factorial(2)
    / W+ ~+ {: ~* o! j% B; n/ O2 s3 * (2 * factorial(1))
    4 I& t/ H& u& v# w) ~5 J8 H3 P3 * (2 * (1 * factorial(0)))- L" B2 r6 \' u3 }" T
    3 * (2 * (1 * 1)) = 61 ]# V& K, w: A1 Z
    % P2 D5 v/ t6 [  g) H: w0 `1 ^+ v# d
    递归思维要点, M7 D0 P$ {3 D" D
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑$ B1 o( j8 l1 l( D  x
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    - N% P( r7 o; e+ X2 ~3. **递推过程**:不断向下分解问题(递)
    ! H/ j1 e0 g9 X. |* ], b  e3 Y% |+ U$ W4. **回溯过程**:组合子问题结果返回(归)
    5 t  r1 _: W, B2 U: k# f3 s0 R. d, |  ^
    注意事项7 o9 I* I2 m6 O
    必须要有终止条件
    $ d- @' U! X# M: L递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    7 O9 ]- ~6 Y; J! s某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . Z! J1 V2 g0 k4 V4 X尾递归优化可以提升效率(但Python不支持)
    & k8 P) X% x; o* T
    ) X4 N, @" {4 Y# r% w 递归 vs 迭代
    ! K# ~2 \- d. `$ t& e6 q: t|          | 递归                          | 迭代               |; O3 b9 I( ?6 {! U8 T
    |----------|-----------------------------|------------------|. h- u* K4 p$ a' ~# m
    | 实现方式    | 函数自调用                        | 循环结构            |
    1 c2 Y" A0 ]" m" l9 S7 x, f. K& j' o| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! R& ~5 |" a2 H3 t, Z# ~( S) Y
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ( t8 S8 |4 @" {$ U. ]| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * e* N1 Q# Y! K6 t( Z
    6 R; w- U, |- @; G: N6 v8 z2 Q5 j 经典递归应用场景; t2 _  }, C0 F: `* G
    1. 文件系统遍历(目录树结构)6 B! F. s8 `" B
    2. 快速排序/归并排序算法
    ! J! _; O$ t* \/ f+ g3. 汉诺塔问题/ n- s) _. L3 P( x
    4. 二叉树遍历(前序/中序/后序)
    - F. k( H8 F( K# r5. 生成所有可能的组合(回溯算法)" q  z% A3 J% {1 n7 R
    % ]& J; P! y) }9 K0 M
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:19
  • 签到天数: 3088 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,# t. m* p- ?+ E! S! P2 q
    我推理机的核心算法应该是二叉树遍历的变种。6 r1 ]: S" l6 ]! v
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    2 N$ u; U1 _5 J# l" jKey Idea of Recursion1 `" |/ d: C) p; m1 D* ]3 h
    ' g- P# [5 K# D# k$ ~
    A recursive function solves a problem by:
    - L2 w% I* I# {3 h0 ^$ {& x, r
    ( N7 c% y8 ^: _7 D  g3 U8 b+ v    Breaking the problem into smaller instances of the same problem.
    ( J8 N8 A8 Y0 h5 z, V
    + o/ H8 P8 X' q8 M: ~* b& W. p, O    Solving the smallest instance directly (base case).
    & m6 f  ]/ g* X2 w. V
    ) ?7 u3 k2 b/ w) _. p! ^- q    Combining the results of smaller instances to solve the larger problem.
    2 C2 j$ \; Z0 R1 g8 c! b( X3 @0 j7 N5 _9 w" ?5 f3 ^+ k
    Components of a Recursive Function3 ~7 Z' G: O/ h

    ! [( h( f, P( F3 K/ c5 J    Base Case:% y! M9 M% f! Q8 r3 o
    , |" j0 x3 i# o( S' q! R
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    8 N2 G9 J! e' M! ?% i( }  m: E9 S' y! |* D! z; i  J( e* Q, ^) d6 w
            It acts as the stopping condition to prevent infinite recursion.
    4 y8 G" r4 y9 |; a2 W& t, l) r! \0 s0 N0 l, r' S
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , v, Q7 z/ M9 [! Z, h2 X% y- N, q1 O, [1 F2 W, m8 _* j9 p2 g- ?
        Recursive Case:9 u# H5 ~  ~" e
    ) Z# J$ b8 h3 c: O
            This is where the function calls itself with a smaller or simpler version of the problem.* J8 Z/ q- e2 l5 I7 ~4 g( Y* E' `: A, G; b

    : X; I' R# f& v" N9 u( Q7 p        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# r9 u, M4 \6 @0 Y& D) c9 j

    ' }4 u& j5 L# Z* G/ mExample: Factorial Calculation- J0 k2 O5 M5 d& b1 h, |5 L& `

    ! ]3 j1 u  {9 o2 j6 d2 hThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    - d4 f2 b. W$ p9 a! Y7 |. t4 J3 B  I1 i
    . Z( O% |& S3 j- N( D$ V, H    Base case: 0! = 1$ V# V% d9 T3 j# B4 n, s

    " J. |0 I" u9 y9 c2 b+ l3 J    Recursive case: n! = n * (n-1)!1 i9 P5 x. ?1 d4 r2 L9 X8 w+ \7 b# y/ {

    # O0 N3 V% ]( _/ B% \9 YHere’s how it looks in code (Python):5 C+ P- r; h, G$ o
    python/ D& n: y0 o& ]; c! c4 f

    , p7 [  |" @4 W3 X  I
    # p# z# \6 D! d  Wdef factorial(n):
    ( U& i3 @) C" b( u# `    # Base case) H: O+ j# H4 W8 Q' t0 r" u
        if n == 0:
    . z- M! H6 \( _- t- I0 O" \0 }/ `3 o        return 13 [# F6 @& O& l: H. d3 a) Y
        # Recursive case
    ) q. D; F% m( q, \7 U& Z7 J    else:- u! p! g# s: |. R( G% i/ f' h
            return n * factorial(n - 1)# `* n( `2 a9 [% K2 w. n
    ( H( n/ q! q+ W) [
    # Example usage
    9 C  K3 Y- ?% p- rprint(factorial(5))  # Output: 120
    0 `- N, R3 A" E! |0 y( h2 `* Q4 T4 r; p( y+ N  b+ n  q
    How Recursion Works& J- @; X  J! u( L' h, _; y" c! r" E
    - {6 ]$ t  O" [; |/ h. w
        The function keeps calling itself with smaller inputs until it reaches the base case.3 @. V8 _$ Q$ [. l1 K$ q3 R
    , w5 V! z! ^: _9 d1 a* r
        Once the base case is reached, the function starts returning values back up the call stack.
    1 |( f0 U: S4 ^7 |" r" s
    5 O; F  |. X( ?* e1 A' _    These returned values are combined to produce the final result.  y# P5 e0 y% l3 h" b4 o9 W* u
    $ a. p" [8 X* X. ^5 A2 c( z
    For factorial(5):
    8 z  ?! g# C; D: b2 l4 Q7 H+ ?( o0 I8 w- O" K3 A
    $ s. e4 l0 N6 c) c' _$ K
    factorial(5) = 5 * factorial(4)
    7 h: `- E1 B3 k- K! b: Pfactorial(4) = 4 * factorial(3)- S6 H9 P9 g8 r4 [- R
    factorial(3) = 3 * factorial(2)" E7 c3 ~2 P5 q  P
    factorial(2) = 2 * factorial(1)$ c% s/ A  w5 H! S, C
    factorial(1) = 1 * factorial(0): L' p# W" d' j0 T
    factorial(0) = 1  # Base case1 W: k6 \- _) h2 g! Y

    ' e. A) g: V3 }; ^- E: d. fThen, the results are combined:) G: O) c8 d5 h/ X1 R

    2 R; D9 R& u5 W9 D( c% q( N& Z# |* S8 R2 `; v* t5 i
    factorial(1) = 1 * 1 = 1
    $ e# K) o! d, P" u( [factorial(2) = 2 * 1 = 2) F% O4 S% k* W
    factorial(3) = 3 * 2 = 60 s1 o/ q3 S" T' B, `5 U" }
    factorial(4) = 4 * 6 = 24* G& @$ l: |5 J: p' `- F. _
    factorial(5) = 5 * 24 = 120+ j! n0 H( w% D$ {0 e* G* K. O

    7 @9 x- i8 ~+ E6 ~1 U" b/ lAdvantages of Recursion
    - O8 |6 r  c" i% r" b4 H5 X0 j5 \; E5 B# X: O. M
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 k2 v+ Q; @' x8 p; `$ ?7 s0 T$ z+ p5 O* N6 X8 |
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 n; Y% {* X# h! M; g& T4 o
    3 J, S; M( p# {+ m$ C9 Q7 YDisadvantages of Recursion
    . q/ n$ |: F$ i$ j( _2 h& [. O; r* q! d
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# E  `+ S) D! o3 x
    - |: d% j+ P& I0 w
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    7 f4 Q8 \* m5 G1 p
    0 v  Y. Q# u; x; R, ^/ y& bWhen to Use Recursion( I# ^/ G* ^6 ]5 o% l7 |  q$ U
    ! m, e4 ?5 C9 L1 j& o6 S* x
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* k3 y2 o  ~1 v0 B6 P: g
    / X! }/ |5 s/ S( X: ^- P
        Problems with a clear base case and recursive case.
    * |/ O2 J( u( h3 }" `
    1 t1 g/ i# [6 v( ?Example: Fibonacci Sequence
    $ G( O7 N0 j( v) G, `& I0 D: C7 K0 c; [$ f8 ]/ G, e& I: F
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    + a2 f/ ~# B- P* s
    , V3 x0 {" N- V% c    Base case: fib(0) = 0, fib(1) = 1
    8 u2 a* k% @0 ?, r/ U( R
    / ^1 \/ P) q6 k" o1 \  ?% [    Recursive case: fib(n) = fib(n-1) + fib(n-2)! y  r1 I7 C. I/ g/ _$ \0 P
    % ?; w" F( h0 j" ]
    python
    ' m! Z2 x% K, H' H2 V* y# F. w4 |  c" {1 q4 {- x- x4 G2 Z2 _; o7 H
    $ C7 H* D0 o* E  {  T/ V/ ~
    def fibonacci(n):$ u1 M' A  f! c. x7 J% U6 q; f
        # Base cases4 {  }( X6 n1 e4 G$ F+ ?
        if n == 0:
    4 r- Y& j5 b! \        return 0
    ( J) [" `; H$ I  {    elif n == 1:
    , U' S% q; K  j' L( A5 _4 o        return 1
    ; [) r1 D7 |2 }; ^3 x, M; v    # Recursive case5 P" q- j- b7 |! S+ X1 h
        else:
    * [& @: J3 ]( X0 P4 @- H        return fibonacci(n - 1) + fibonacci(n - 2)" w0 F+ n( Y9 U  A! q* W/ E5 [! z2 ?

    9 B2 W- C7 t4 d4 J% y# Example usage
    # z6 S4 k, Y& a; \  ?5 ?print(fibonacci(6))  # Output: 8
    0 F4 F* v6 d2 K. r0 F) s
    9 `. ]. M) Q9 b# vTail Recursion
    4 P/ x& ~2 {5 d1 l! ]3 }3 `7 w! w. [( w4 C. i* p. \. d
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / p4 q. y! ^6 D7 d* M, O, h% ?/ x. w* h
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-10 00:49 , Processed in 0.031069 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表