设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1190|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    % r5 j) f! N8 }# V5 Q6 L! K3 R0 _0 N4 J; C
    解释的不错
    1 U" }6 d) I1 V
    1 O- K! w3 }/ O% ^. Z! j递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。2 E0 `, ~5 C5 v

    2 s3 F) ~/ h! @# y 关键要素
    * `( s5 T# @# J" t( ~1. **基线条件(Base Case)**
    8 P# E$ g3 n( z5 w. ]   - 递归终止的条件,防止无限循环& d- F* w+ |4 k, P* k/ K
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1% m) P% x$ V  D+ l- g: W# n  u  u
    1 u# {( k3 _9 ~8 {$ Q/ F2 z
    2. **递归条件(Recursive Case)**
      t/ P2 H, V- {% t" J   - 将原问题分解为更小的子问题
    % P9 A8 U# a* A   - 例如:n! = n × (n-1)!1 h+ r# v( x! N% }* P3 L2 O1 D+ K

    ' ?3 B* y- [3 M2 s- O. S+ t 经典示例:计算阶乘
    2 y7 u$ u% i% O3 K3 _python. N1 c9 ]4 B( o9 I( c
    def factorial(n):2 o7 N8 y" H+ u6 ?8 H5 H
        if n == 0:        # 基线条件
    / k: L; t1 k5 r, ]( Y        return 1
    ( V$ j, B1 H! p- x    else:             # 递归条件: U0 i6 i" V0 ]" g% E
            return n * factorial(n-1)
    8 }5 ?% W3 J6 h" b* Q执行过程(以计算 3! 为例):3 J  e- x% `6 `/ r8 X4 b% F! l7 t
    factorial(3)
    3 z6 x) q+ {2 w5 \* s- o9 I: j3 * factorial(2)2 r1 S0 a) {, ]% @
    3 * (2 * factorial(1))
    ; e) G7 K; }( v7 s! F9 L! T* k3 * (2 * (1 * factorial(0)))
    : K& c  W5 @: h( Q# u( l3 * (2 * (1 * 1)) = 6
    - n! l2 a! E. S4 r& O! k" P' z+ x& c9 Y6 }+ L" H6 P" I; Q
    递归思维要点/ J2 G" W$ Q1 d+ Z0 z, n1 k
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑: @9 w7 }$ l7 G) Z2 C
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)- A/ S1 v: }# W, N% i9 T; S
    3. **递推过程**:不断向下分解问题(递)
      p: d) F, j$ ?/ B1 b& {. [1 g& A4. **回溯过程**:组合子问题结果返回(归); O9 K! f8 c6 ]* ^, o

    9 R8 f& W+ L2 n- D/ f 注意事项; I# ?6 S. }1 \! V
    必须要有终止条件, ]) q! \! R4 M) ^6 `4 r4 n
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)4 C6 ^  i2 t+ ~, ]* [8 g2 W* O
    某些问题用递归更直观(如树遍历),但效率可能不如迭代6 s, Q4 R' \8 V4 \+ X
    尾递归优化可以提升效率(但Python不支持)
    6 u8 g6 i: O  W+ c( C9 C& h- t  |# C2 I9 ^% ]8 c
    递归 vs 迭代
    " ?( I# @" ]8 G4 Z; f- ~/ S|          | 递归                          | 迭代               |
    & |$ d8 T6 ]% [( m2 }|----------|-----------------------------|------------------|- K5 U) n$ o, \; J
    | 实现方式    | 函数自调用                        | 循环结构            |& t! K6 [" H6 F5 v
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    - s& j, ^7 V' k. K4 r/ a) i) p| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |% P, O1 C, B- _8 v6 w0 P
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |# K8 n/ W. C  d' V1 H. a, M
    3 k2 S% L/ c- |* k9 s
    经典递归应用场景
    8 @3 D- A6 U* s* Z1. 文件系统遍历(目录树结构)& b" R6 _' ?1 P8 R
    2. 快速排序/归并排序算法, ^8 Z8 N, t  s$ d+ p2 @
    3. 汉诺塔问题, D# d& L9 W' X$ A
    4. 二叉树遍历(前序/中序/后序)5 ?" ]# K' y9 u$ m
    5. 生成所有可能的组合(回溯算法)
      M3 A% c5 A5 i" J+ {* ?
      v, s9 E! u$ H$ B/ p/ _试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:41
  • 签到天数: 3102 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,8 Z: R$ q8 D" i
    我推理机的核心算法应该是二叉树遍历的变种。" Z  ^8 r- i% g1 {0 l2 |
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:$ _. @( w( Z3 V3 L
    Key Idea of Recursion2 N; T3 A5 G2 l( y) @

    5 J* G) @7 C- C3 ^! `" @A recursive function solves a problem by:
    : [# R% [$ t& b
    4 c0 R* }5 Q& A' H8 z% j- c  w    Breaking the problem into smaller instances of the same problem.5 a+ h$ @' T% F1 g+ l* T) \& ?' p- U

    0 j% m5 |# Z% P' N# U3 @+ l0 l7 e    Solving the smallest instance directly (base case).
    0 v& H1 Q& ^5 Y7 P$ U1 d( S- r+ c4 @' b; V- O/ N
        Combining the results of smaller instances to solve the larger problem.
    * [8 w0 c3 m: e6 x1 {/ `& ]3 E- u% ^, a1 {5 u! S6 s# C! q
    Components of a Recursive Function
    : {/ I. ~" ^8 v- y' I1 o# o4 Q! h2 h
    4 @/ U3 R% _9 K. {* n    Base Case:
    0 z2 j7 `+ q2 F0 g- v% v* I3 L, L" ?2 H9 k4 \
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    2 P" b( @+ ^, s: R
      `7 E) x' g2 U        It acts as the stopping condition to prevent infinite recursion.+ h1 x5 S; a5 b* M: H5 B

    + j+ I( b5 v2 q. [6 o8 Y6 I: D& E. ^5 _        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' a; e2 R2 K. m2 z4 o) f- n! K) x! [6 u; o
        Recursive Case:& o4 v  {- \$ p( ?' H- ^

    3 F1 @) g9 K9 D+ g8 V$ _4 C        This is where the function calls itself with a smaller or simpler version of the problem." t5 D& \' _" Y: s$ `
    % O3 t) m8 ?# X4 w& q6 M8 x
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    : f6 j1 M; d4 D! [
    ) r' ~; v  i. c" b6 ]) F4 cExample: Factorial Calculation
    ; C- g9 V0 t3 i4 h# V) G% F' @1 ?( I1 ]$ k% m8 p
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:. }( c; t* `& e( N1 C
    2 K+ A/ a7 l( l, X2 E, U
        Base case: 0! = 1
    - F1 F0 S& T; i2 x6 g' C
    ! w7 w+ ]2 ?! @3 `    Recursive case: n! = n * (n-1)!0 W$ T4 ~3 |& K, v% R" J! e
    ( b: \+ _+ H- [
    Here’s how it looks in code (Python):) K. [1 M  Q5 P
    python. u8 ]8 f3 u6 d! ]: c+ W, F
    : Y  C0 y' _; P" v

    ' }( y) k0 l0 N; ]+ V  edef factorial(n):
    % T0 K+ d0 H+ N' j3 U0 B" ]    # Base case
    $ B, B0 Y/ p  U6 `% G5 h+ [' ~0 t    if n == 0:3 e/ {, J2 i7 J( m
            return 1
    & D0 h2 h8 k) R0 o) a( @7 F    # Recursive case
    # \4 H3 d. h" B9 }- ^5 O% q    else:1 o$ B% z0 d7 l1 ?( L2 \
            return n * factorial(n - 1)
    ! @) O) |' Z  _3 X; a/ a( v! {$ T" I7 N3 T$ j8 X3 y; q$ q# x
    # Example usage
    : L! D7 ^8 W+ i* K1 f1 ]! U' l8 Hprint(factorial(5))  # Output: 120
    * a6 a' C2 d* R. m' E5 P# Y$ b; g( w( x% e9 d  O& o$ b
    How Recursion Works
    ) b. Q% p3 M8 q" h3 n) ?, p+ J8 F: _- y+ D
        The function keeps calling itself with smaller inputs until it reaches the base case.3 V- N0 a% d1 [$ O0 L, O

    # n+ d2 }8 E- \" P- Y) i    Once the base case is reached, the function starts returning values back up the call stack.1 G% C0 @! y2 n' U+ y6 R8 c
    6 W7 P- ~% o6 s& b* K
        These returned values are combined to produce the final result.% _8 ], X' D) E3 R

    - Z1 w/ B7 b7 S8 e: W0 b% tFor factorial(5):/ r- A6 Y5 Z. q) q

    9 Y$ |8 e" s8 q1 h5 M$ @: J2 G& \, x6 c( e5 E4 m4 l
    factorial(5) = 5 * factorial(4)
    : \: n' F, R  M4 lfactorial(4) = 4 * factorial(3)' s! b5 W6 h3 U( j0 p/ Y
    factorial(3) = 3 * factorial(2)
    9 l1 Q' O8 X0 B6 C# }2 I, Kfactorial(2) = 2 * factorial(1)+ K+ x5 n& A3 f
    factorial(1) = 1 * factorial(0)4 |& ~  C  K& v0 B6 h
    factorial(0) = 1  # Base case* I7 o8 c9 w2 a$ s/ j% w: X
    % ^% O( ?) @! K6 P- C  X3 H$ y
    Then, the results are combined:6 a/ T& x. i! A- |6 b
      }6 [" [( a+ Z# f& M- C
    " }+ Q8 z* d9 z( @# K! A) y& T
    factorial(1) = 1 * 1 = 1- _4 n' Z. w. U  K! N
    factorial(2) = 2 * 1 = 2) q6 B- \' w, Q9 z" W) q  G
    factorial(3) = 3 * 2 = 6
    ) e7 y  w: }' ?factorial(4) = 4 * 6 = 24. d! V9 w' y2 h1 x% m' o$ k# ^
    factorial(5) = 5 * 24 = 120
    3 {* N0 w* p5 m2 U2 {' d# f9 H9 b4 }& C) z% Q) M
    Advantages of Recursion6 }, {) o* P- |, |& H* X. B
    5 d: B9 ^' h5 ~9 w) f6 y
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# j) q7 ^4 \' ?2 Z. T; P- F) D
    ! B. n# j) F: H. ^" ]1 h- B! U
        Readability: Recursive code can be more readable and concise compared to iterative solutions.- d4 W% V' h+ w/ q7 g6 P- b& {

    3 F& ?& b* h$ B. F6 p! g  P! rDisadvantages of Recursion; B# P5 p: k+ h  g* o+ J) i9 Q! k

    7 e% n+ j. A! y+ Q    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.3 i* A. [4 B7 v7 g/ c% D& S6 v
    . o4 v) M0 D* I2 n
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! g! O0 k( B7 d- S' o3 h, ^
    * A# M# G8 i+ K# RWhen to Use Recursion. P) g7 c, f# O8 e

    / L2 ?( Q& C! I, x    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).! a, u* `% F4 T8 N0 k, F; d4 T
    ; ^6 U3 y/ ]) }: a
        Problems with a clear base case and recursive case.
    1 m% ?+ W- k. J7 ^4 U/ ]3 T0 U
    7 z/ d* x& m. M2 h8 A; e! {" u' @7 y2 ?Example: Fibonacci Sequence
    7 x8 v$ I- m0 _$ A1 }0 e* c8 S9 h" x* I  V2 P" U
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    + S; w- M# r6 W. A: j/ }' @, F( N8 u6 v
        Base case: fib(0) = 0, fib(1) = 1
    ( S9 ~6 ?$ H4 }" h9 D0 u; Z0 H' t; w' o
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    : i$ f9 w- t* t4 Y/ L% k. u
    6 ^- i, p, V, C0 r7 z, P- T) Jpython# G3 h( f$ S) R3 T
    ; p! d+ m, x  N7 E, }- }; r6 o
    $ U3 L8 d' ]4 N; O! T
    def fibonacci(n):2 a" q" ?$ N& F+ O! l& g
        # Base cases
    8 \1 C- ?( M' v9 F    if n == 0:* _6 a% ?+ |0 _! L# \7 `) b
            return 0
    2 j$ L: G+ l! M  P    elif n == 1:
    . r5 n& G, J* Q, k. `& R        return 1/ w( D8 r  K( M! u+ r
        # Recursive case
    + o/ v& B' v% r; d  L7 p" `    else:$ v; w7 A" d0 Q3 u6 \+ v6 T7 N
            return fibonacci(n - 1) + fibonacci(n - 2)* R4 ^* e, T; `* H
    2 T5 I5 g3 K' Z
    # Example usage# K" f$ K0 w1 I# X: P
    print(fibonacci(6))  # Output: 8' y$ r- A  B9 f$ O- T& O
    6 G/ Q# d" h9 P
    Tail Recursion7 I! l; g* Z$ J0 b2 S
    , p1 R7 M6 O3 C  h4 w5 b+ b
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 {- @- M/ W0 P" v. `; ]
    0 [  h) |4 C1 v5 a2 n! @. o
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-27 04:17 , Processed in 0.030417 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表