设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1710|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    , U6 A, a8 f- z$ S: e5 h8 q& c3 ?; }  k5 V+ r& I% }1 y, w  @
    解释的不错
    / \& d( }2 ~* Y6 p6 R
    7 |8 T% W" W: M递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。- T8 U! _/ U; h6 C4 V! |" i
    7 g4 P0 u# r, i  F0 K0 O: a3 u: k" s
    关键要素' d  v, K3 D3 B' x8 t9 E
    1. **基线条件(Base Case)*** c( z0 c" Q3 D6 n+ q
       - 递归终止的条件,防止无限循环
    % m8 f9 F5 Z# R   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    * A. u& U0 n- z, J3 _! K# W1 I
    , G, t  c, i: z2 J1 E, \& F) Q0 v. x, k2. **递归条件(Recursive Case)**9 |8 \+ O; z+ K5 V8 N: ?
       - 将原问题分解为更小的子问题" V$ H7 ?% q' D! s
       - 例如:n! = n × (n-1)!1 V! W; Z8 @* l+ W* b
    ! _2 {% k7 s  _3 z3 N7 }- [0 l( t+ ?
    经典示例:计算阶乘
    ' V0 N- C- h$ F( j: Bpython1 M" Y4 p8 b! J& Z
    def factorial(n):! P/ q4 b% e& W" Q) U2 ]: L. I
        if n == 0:        # 基线条件' ~+ T( I9 B% F, Z5 r' }2 a0 B
            return 1
      i  `8 k& }: h' O# B/ D1 z9 A8 M    else:             # 递归条件
    * }8 R& \( F) p        return n * factorial(n-1)8 _) ^: B& ?, {+ a" p) f' H
    执行过程(以计算 3! 为例):
    0 q! [' h/ M7 L& @( G4 R. X8 R( U" {factorial(3)
    - E  O' d+ y: @7 _+ K; s3 * factorial(2)
    8 w7 W7 ~: ^# E% M- `8 @2 ]3 * (2 * factorial(1)); k7 \8 I% Z" [8 U. O7 ~' Q2 _. Y+ u
    3 * (2 * (1 * factorial(0)))' C6 `9 M1 _& L! n) K
    3 * (2 * (1 * 1)) = 6
    2 q) i6 I6 U5 V$ `: I+ N
    7 A+ N. S8 V# C6 h- N 递归思维要点
    : s  w' Q$ k( Z$ w" J2 i4 Y) ^1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 `: _( S0 ^! k* T2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    8 U; [5 g9 ~$ \$ i" E/ ]8 a  ^; v3. **递推过程**:不断向下分解问题(递)
    . O. d. |# z. ]# G0 S3 L: J8 Z% ?4. **回溯过程**:组合子问题结果返回(归)6 z8 C/ R( j3 C$ U& f

    0 O* Q! I+ |2 v8 }; `) E, B 注意事项( ~; n* y- y  j, j( i$ @5 f) ~( F
    必须要有终止条件* ~  ^* [2 y3 C  S! c
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ( f/ L* R! ?  v# Y& {某些问题用递归更直观(如树遍历),但效率可能不如迭代& ^5 u! n& v. U  w: N/ y+ L
    尾递归优化可以提升效率(但Python不支持)
    - d$ {; d4 a& Y, x, B" a, d" ?0 n3 Y$ K
    递归 vs 迭代% Y5 x! V9 p: k1 U
    |          | 递归                          | 迭代               |) Y6 g! w  S# |$ H
    |----------|-----------------------------|------------------|1 n$ a9 M0 p- [% @! [7 ^
    | 实现方式    | 函数自调用                        | 循环结构            |* |- C/ I+ [- t0 J; D
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    + i: b$ R  l% O% C| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: Z; u1 h) c6 K4 F1 s
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ! \/ i& J; g# c# i) L3 H& F; X( y( G! {$ @& V
    经典递归应用场景+ g& c% p' G% D4 x* F' `
    1. 文件系统遍历(目录树结构)4 _3 M0 K( v! g. N( j% X) ]2 w
    2. 快速排序/归并排序算法0 i0 p% F, I; F/ ^& ^  J1 v9 E
    3. 汉诺塔问题6 i" e- p4 `3 y$ O( s, l# t2 X
    4. 二叉树遍历(前序/中序/后序)# g) ]3 V) T5 Q1 }( ~
    5. 生成所有可能的组合(回溯算法)
    2 l6 f9 p0 P' o% i# w2 m
    ! g0 G" O0 c, D# b) [试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 14:35
  • 签到天数: 3132 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    $ n1 `, W1 A2 ~# ?2 b6 \我推理机的核心算法应该是二叉树遍历的变种。  H& n( Z# I. O+ n
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    # ^3 r8 j7 `4 s  P# jKey Idea of Recursion
    " W+ |' \$ a5 ^# I! u( ^" F* z& N) U1 W* T4 ]$ ^
    A recursive function solves a problem by:$ V; s3 i; {: _5 k  Y+ v. ^9 G

    4 _* }/ r) A8 y7 L    Breaking the problem into smaller instances of the same problem.: {7 n* t: @4 o

    9 {7 n& Y& e' X. d6 X, d2 D( S    Solving the smallest instance directly (base case).
    . Q6 `. W4 Q: Y4 B8 y3 B: @: J! C
    2 S6 c+ t  ~. C. n, ?    Combining the results of smaller instances to solve the larger problem./ `: k3 l9 ]! g
    ; i, s  ~* A: o# L1 z1 i
    Components of a Recursive Function4 v( J  l9 O& E' a! y

    . ^* L  N4 A0 B( x4 |0 a    Base Case:
    ) v: A1 x! q1 M( D0 u' h
    " o$ u: U& C6 T9 [+ H        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. o& @# ~) [5 Y: f" r/ x
    ; ~( V7 ^" b; L% Y0 z
            It acts as the stopping condition to prevent infinite recursion.
    8 s& A' [7 a* C# D; {( K  g/ S
    ' J- |5 {3 g% L2 Y4 ~" ~5 m. Y! r        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    7 s0 j* E' d' M0 b2 x/ Z; {8 ]- s1 M8 y7 O5 ~" L4 G
        Recursive Case:
    0 j% m, _! o! b! |; s8 [9 D  ]0 y3 d6 ]2 j5 I7 h6 m; a& d7 e+ n
            This is where the function calls itself with a smaller or simpler version of the problem.
    # I* u. {6 g/ f! R" m- ]  o: l  D' n6 L' H
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: S: f% v* D+ V8 S1 u: J1 r

    ( h1 k: E5 T! m& c( {" dExample: Factorial Calculation, y! g0 s# E2 V" A; t! e7 b+ l

    3 j+ m+ z6 B6 ~The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    5 v1 _2 \2 c* ~$ a  e5 {$ |- M  M
    - x& @/ D. @" m8 ^    Base case: 0! = 1
    * r7 u- s/ P! }
    2 c1 Y8 V) }7 m+ F% a( z5 h8 f    Recursive case: n! = n * (n-1)!0 D0 x3 B6 W, _9 ^0 _3 I2 T
    + Z/ Y8 g+ |! B% l2 `# h- z
    Here’s how it looks in code (Python):4 K. G" @' q/ `$ Q" j, @6 h
    python& O/ \& R# ]6 O& V6 R
    ( M* T" s- y/ i6 }7 X- O- B: _, p! z

    6 r5 ^% a% v+ f" c' A# r# C1 e. [8 G) ydef factorial(n):
    1 _* V9 ^6 I& Q2 ], i    # Base case
    1 o2 N: m( E3 c7 L' y" R  {    if n == 0:
    4 g8 |. q- d: B$ m        return 17 i4 q" p) C$ m5 \/ x& w
        # Recursive case, t- c8 p! W+ D, R% O
        else:
    3 q1 }( U8 c, H* ^  s: i: j        return n * factorial(n - 1)
    * R: ]) C" g) A9 b+ o8 K( L9 o8 K; A: b, v
    # Example usage2 }( E& t6 l) \4 `5 {
    print(factorial(5))  # Output: 120
    4 g3 I5 J- R% m. i
      f# _% _6 I5 yHow Recursion Works
    : I& D1 f! y, G) ~& R3 I3 z* H4 [1 @/ o+ {8 C' p3 L
        The function keeps calling itself with smaller inputs until it reaches the base case.  e+ g9 P/ X6 z3 r4 z2 I5 }

    ; O5 e1 ~7 X6 F4 h5 J7 \. x    Once the base case is reached, the function starts returning values back up the call stack.
    0 A$ |6 a! g$ D) f$ y
    , V6 J" a6 `! \. F    These returned values are combined to produce the final result.' _9 L3 r6 U2 c* W

    7 I' ]2 V1 y, c0 Y+ eFor factorial(5):4 @% |1 ]3 B  |! [
    4 D0 O/ e2 D7 f- g4 k

    # x4 I9 W. |8 N% r( q' afactorial(5) = 5 * factorial(4)
    $ e4 r( O5 }. h0 T) ofactorial(4) = 4 * factorial(3)6 R4 ]( C# C' B2 p% h& Z$ J- U
    factorial(3) = 3 * factorial(2)
    & F# n' ^5 d" \- c) S& d1 {( bfactorial(2) = 2 * factorial(1)2 z6 `9 q% F( c- Z* T8 x
    factorial(1) = 1 * factorial(0)+ F, K) ~( A& i
    factorial(0) = 1  # Base case& p5 Q, f* @9 z: ]3 r5 j
    1 \* ~! A6 [6 H$ O0 L" y3 ~* k
    Then, the results are combined:8 i# I! ]9 Z& C+ o4 ?: M
    ! j3 e+ U9 p2 W  \9 r

    ! Q! r4 z) d/ Dfactorial(1) = 1 * 1 = 1
    1 v' ?- q4 N% a! U8 j9 t$ Nfactorial(2) = 2 * 1 = 2
    * O1 B, S; m7 L/ |8 X5 {factorial(3) = 3 * 2 = 6
    * K% Q0 W5 W+ I' K' e7 }factorial(4) = 4 * 6 = 24% j- n0 L$ X8 b  H, U
    factorial(5) = 5 * 24 = 120
    ' @0 W  w9 F* d" G
    & I& y0 {% g- m  i; x9 qAdvantages of Recursion
    7 D; }& ~# }) n: h) J: C: ]# R$ m/ j4 c% ], H- t: a
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * \! w# N9 S1 r1 L3 l% _0 {. O1 |
    ) I) m% ~+ \- J9 r( f. H/ i9 \    Readability: Recursive code can be more readable and concise compared to iterative solutions.. Z% l2 l5 b* E6 N# E6 g4 ]

    . d+ k% ]: N; L+ _" a% l: y! BDisadvantages of Recursion
    , w0 v) ~. I. H2 J6 Z- ^0 d0 \- W
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 v4 J( b, O- [2 G0 r
    & r  `# E) [! r# ~/ c% i1 E    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: D9 v# n3 m' C# ~

    0 Y0 f" p9 Q0 }$ c  FWhen to Use Recursion
    9 t" v& }; K8 l+ a: N* G  T! X
    ; a. j% j7 A9 w+ v( n7 g& @# V    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* R* P! h( o7 w( F. g
    # Y% G2 i; O3 X5 O$ A8 H& A, k/ h4 w
        Problems with a clear base case and recursive case.
    4 L5 u" N' ~7 l& u6 j1 l( c1 J$ Z" V: B9 ]
    Example: Fibonacci Sequence
    0 Y3 v: a" r' O3 Y9 r. ^$ }# h* ^3 v6 y* J! Q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:7 s% ?1 j. M, |( f$ R' N
    . U, |' v$ v9 e& M2 B  m* P
        Base case: fib(0) = 0, fib(1) = 1
    ' |5 e$ z& M% ^4 p
    1 V2 _' J" E7 k7 o) Z1 E    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ( t3 X; M. r4 N
    * `. [# O! X5 ^- z0 P; h: _3 e- V% Xpython# `: J3 u2 L9 A1 m0 F% k

    ( ?" q" {2 z$ N4 m% `
    4 Y9 i! ]6 p7 b8 N6 h$ {def fibonacci(n):6 D* U$ f4 A3 M3 |" Q2 X
        # Base cases
    1 u1 F) x; ~/ A3 o- D( A& J+ E    if n == 0:
      j/ M5 e+ `, b- l& O6 O2 A& m        return 0. q/ K+ Q0 O, ?( h3 ?, q) r+ k
        elif n == 1:
    + X+ d/ }# Z! S, C        return 13 F. H' W' H9 U, _2 J
        # Recursive case
    " `1 d* M4 S4 D! [9 g5 y5 Z5 D    else:# e! V, r0 i6 o& p3 L
            return fibonacci(n - 1) + fibonacci(n - 2)
    9 V4 g5 p/ b( z; m6 D% e
    ; b. R! E9 Q0 Q5 f8 S3 T# Example usage
    3 q8 T: w; K3 N, j# zprint(fibonacci(6))  # Output: 8
    + h* E# |8 Q5 `
    . A' h! c6 J) t; rTail Recursion$ S9 r8 F, h# b, C7 V) g+ T: P
    " B2 U. G) g2 @% o8 N) |
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).# R0 V- K2 ]6 ?+ A# {
    ) m- Q# Y, u6 M1 J0 V9 m
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-1 07:10 , Processed in 0.032451 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表