设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1605|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . R. w. [5 `  J" }: |2 a* m2 M6 @, n6 D. i& l) N
    解释的不错9 k  {" e. P/ e3 ]& d8 c- w/ y( h, _

    5 i9 f1 P# d, T$ F: w6 v递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    0 L" X- x/ [8 z; |! N+ H) U/ n% `5 S) y% ?1 s, b
    关键要素
    / p8 o, i6 ^% a/ i/ M1. **基线条件(Base Case)**! F! X3 i3 A+ s7 @+ U
       - 递归终止的条件,防止无限循环9 c) j+ ?$ ^5 M8 I" t( K5 B* p
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    + h1 d' @0 K$ p. d* p/ c! @- N% q) Y9 X
    2. **递归条件(Recursive Case)*** {$ ^! w, p- U( f# o! I
       - 将原问题分解为更小的子问题$ W6 Z- p& c7 V7 L7 ?
       - 例如:n! = n × (n-1)!
    / N0 ~/ b. o" R3 j7 W0 Z
    . ?0 E7 e" D! [/ i6 b' ^; q 经典示例:计算阶乘
    & z: p% L2 @8 v( S% m: Cpython- b# p6 O  U6 I; c
    def factorial(n):. d: U( s- }0 I
        if n == 0:        # 基线条件( h3 l. Y' W7 n' N9 X5 ^# q
            return 1
    " F3 f: Z5 t9 r% M$ R: \8 b    else:             # 递归条件1 @0 h3 w1 t1 U5 U) a1 u, }
            return n * factorial(n-1)
    ; ]% R$ K7 V9 t7 c执行过程(以计算 3! 为例):
    ) j- M4 _5 U) B; p: N6 [8 _factorial(3)' a# G7 A; w$ G+ }4 v# n2 O
    3 * factorial(2)
    7 k7 L+ ^+ {+ _- @7 o& ^3 * (2 * factorial(1))
    6 Q0 R5 |* B/ X& B0 F4 C3 * (2 * (1 * factorial(0))), t3 C+ S% _) B" u# |+ m
    3 * (2 * (1 * 1)) = 6
    " P% w* a. U5 s2 \, H9 T# c1 B6 O* L9 ^; a7 R8 E
    递归思维要点
    " z+ x4 z5 ?: L3 S! q% {1. **信任递归**:假设子问题已经解决,专注当前层逻辑" {. i3 ]1 s% i+ R
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 h4 U# R4 |. u3 O( x' g  N# ]
    3. **递推过程**:不断向下分解问题(递)  g" @+ x, Q- x
    4. **回溯过程**:组合子问题结果返回(归)
    3 R. F2 Z7 X/ a: Q  v2 L4 k* K. V' X: O2 A
    注意事项
    ' }& U. a. f+ T! S3 t1 {; M; T$ R必须要有终止条件
    6 d) ?6 E# o- W6 n  W递归深度过大可能导致栈溢出(Python默认递归深度约1000层)8 ?! S4 ]% s  i
    某些问题用递归更直观(如树遍历),但效率可能不如迭代$ P) t1 e5 R9 l! H0 @! g
    尾递归优化可以提升效率(但Python不支持)
    ! v& \! K, o* ]( `0 |- S6 }: l4 q% x% T
    递归 vs 迭代
    6 \! U5 d" X( V/ K|          | 递归                          | 迭代               |
    $ b/ e7 \1 [# y& X" Y) i|----------|-----------------------------|------------------|
    5 y3 D* W1 I* N0 O, E| 实现方式    | 函数自调用                        | 循环结构            |) h; b$ z' `" n  n) B1 Z/ u
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |, A2 a( f) G2 ~0 o
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    2 ?8 ~" D* @6 L' p! R| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    % g3 W; p& E5 X! ]) q# L/ Z6 a$ b# J  x5 n2 z' Q
    经典递归应用场景
    , o2 b& z# a" U# i1. 文件系统遍历(目录树结构)
    : F1 K0 `1 p4 G2. 快速排序/归并排序算法
    1 a  |8 e/ r, _  t5 T6 C. ?3. 汉诺塔问题$ J) W# C, m$ Z3 X3 A( ~
    4. 二叉树遍历(前序/中序/后序)0 D& Z- o, K) ^  f+ G
    5. 生成所有可能的组合(回溯算法)
    4 }; ^* E; k* U" Q9 Z, Q- t4 g/ t! @9 h5 I# S0 U
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 08:45
  • 签到天数: 3124 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! Q& w+ ^$ v) p  Z& v2 I4 Z9 ?
    我推理机的核心算法应该是二叉树遍历的变种。3 F/ _, Q! z  w$ o
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    9 q  }% t+ A9 k' M7 \Key Idea of Recursion
    ( m6 p: F4 r) x/ U/ e( w
    , b- z" o7 F- H/ p8 TA recursive function solves a problem by:4 |9 @, ~# `& e
    ) t6 p& j6 F  T
        Breaking the problem into smaller instances of the same problem.
    5 K) W  E$ [/ b/ B! }" G6 q% L
    2 {2 O4 ]! C, H8 h  d! u    Solving the smallest instance directly (base case).- \0 w* i/ _. [. y
    3 m" p) X/ j. u5 c2 Y/ E
        Combining the results of smaller instances to solve the larger problem.% s; F* N& r1 e
    ; o7 K: c7 x. l! _
    Components of a Recursive Function9 [3 _6 N1 P" m( L% B

    : W% z0 ~2 g' c: M, Q, s8 R- C    Base Case:4 K- C) L. d/ h5 H: X
    ) ~, B+ W4 [  W+ L5 j, |
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion." u# _) c3 R# g

    8 O% @8 ^/ l) k' Z        It acts as the stopping condition to prevent infinite recursion.
    ! N# l! Z* |6 O' L" B* [  _5 N$ r( y' a
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ) m5 Y/ ~8 R6 H5 \8 y9 d5 r1 A- R( x' e- q- P
        Recursive Case:
    ; m8 L) j# z% M8 X! c% n& C; y* q
    8 e" k. d& k4 [0 ?( V        This is where the function calls itself with a smaller or simpler version of the problem.
    0 F2 ?; M' K2 I# A8 W, M4 p- ~9 }2 L4 \5 J
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ y  Z' x7 i; v3 c
      o8 K* d9 o. Y) L+ S3 C
    Example: Factorial Calculation
    $ `/ w) t2 |! T1 q" |1 {% L
    6 ~0 y2 T9 H: R3 v! PThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 O; ?5 y, f8 a
    - Z+ x. h5 ]' u/ q5 u7 _
        Base case: 0! = 1
    * h! C0 n' ~" W  V+ Y& `5 c" X% [# \$ G/ I! R2 A
        Recursive case: n! = n * (n-1)!/ w: p! Q7 c" V/ v7 f) H

    2 u( g. m- b; ^! A# S8 D4 S9 e1 QHere’s how it looks in code (Python):& H$ W# S  k- m7 `: ]
    python
    % |+ G8 {* Z* r8 |
      W- b! H* E$ B8 n( I$ {! a0 @
    % `9 [+ g6 z- j* I3 `7 Ddef factorial(n):8 u, ~! ~4 ?5 E  n
        # Base case
    1 _: u# z. O( W! z1 G2 {, V1 w    if n == 0:$ f: \- B/ N! G
            return 1
    8 W' H! O- V+ {7 U4 y2 \0 A    # Recursive case: x! Y# @( p1 M! N
        else:
    9 p$ ?. Q' d+ k- b' {* c5 R        return n * factorial(n - 1)
      v' S( x6 h: j8 |& ~  s: E* P" [- P- {$ N: w) Y) T, x0 D) V
    # Example usage/ C4 E2 c3 X8 y, v7 D! E5 \4 M
    print(factorial(5))  # Output: 120/ h5 G6 {# T! G( d/ w

    6 A; b- }+ ^+ Y2 _2 h7 H- S) P; sHow Recursion Works6 V+ ?" G% O+ u, e2 V7 ?' B

    " ]) \, N- ?7 G! z0 s5 P* b    The function keeps calling itself with smaller inputs until it reaches the base case.5 M- O  k% Z7 K- R: F! b

    ) ]# b0 g9 {, W7 y( r    Once the base case is reached, the function starts returning values back up the call stack.& W+ s5 D. C. T0 V# y

    / o$ C  |2 a6 |1 X. W5 y" G% ?    These returned values are combined to produce the final result.
    ) z. u% h" B' f9 A9 M  m6 O) ]: J; D6 n6 |: t: B9 Q: p) X* a
    For factorial(5):4 _5 p( ~$ `1 f

    1 g) A# B2 k( w; e# e8 R+ B+ c& m. c' @% p. l' F  g1 w2 [7 c
    factorial(5) = 5 * factorial(4)" u7 j4 v+ h$ b. |
    factorial(4) = 4 * factorial(3)
    3 U. H' `" V! a( kfactorial(3) = 3 * factorial(2)
    0 o. v2 j# {4 j4 b# @factorial(2) = 2 * factorial(1)8 T; A- \4 q7 [" s) v  w
    factorial(1) = 1 * factorial(0)% \! X& A1 {6 m; F% U" m' |
    factorial(0) = 1  # Base case
    % c* f! N- K; A' [
    4 f) ^' }# t# F( W# Q- N0 e9 F1 o1 IThen, the results are combined:" O& N$ f  E. a; y% U
      s' z; A( v. Q
      g) F1 ~# g" {4 x: \
    factorial(1) = 1 * 1 = 1
    ' x8 }- l" q6 `+ u1 Cfactorial(2) = 2 * 1 = 2- [7 t: l4 x9 @2 J4 Z; V
    factorial(3) = 3 * 2 = 6) }& x. R7 k2 a# v& r! M
    factorial(4) = 4 * 6 = 241 J* m: d& _" J' g4 H8 e$ H& [
    factorial(5) = 5 * 24 = 120
    1 Y5 t/ ^- q0 L. ]1 M) K" k; N+ |- ?+ k
    Advantages of Recursion+ X3 |6 A" {% h- Q+ s$ o5 N- e
    " |8 W2 N) u  {0 l4 Q1 d9 C7 `
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).5 U" Q7 C% d8 Y& H

    3 D+ q" e% b0 ?3 J9 ^    Readability: Recursive code can be more readable and concise compared to iterative solutions.0 W1 b/ T+ R/ q$ [, Y! j' u* {8 L

    / E8 a$ ?% Z; F# T: O! ODisadvantages of Recursion
    ! d) C  v+ k5 l1 S2 l, F: O1 w0 n; F7 r3 c! U5 H
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    2 @& ]+ p9 w6 |; Y. U
    - Y; ?' i  r- S+ v: H# d2 @" d    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    9 P4 ]0 X0 H& h& l2 ^4 S. _0 P* M2 t, W
    When to Use Recursion
    ) K9 g- j* T! S4 l& j' W
    1 h3 a7 S0 W# ?    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ; q; j* Y& {6 u: T4 P* f' H
      `! K& K' h6 k* q    Problems with a clear base case and recursive case.% @/ \8 g2 a  N/ s% j! R# X- I8 j

    , Y+ a2 Y. q: h/ C# T! x  q) AExample: Fibonacci Sequence0 o/ T2 d8 H3 {: W* I1 L/ U5 r$ Y+ ]  j
    $ @5 U+ g! Z0 ~9 }6 s# S; `7 f
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:: I* @/ a" O0 J- L5 C
    , t  T( g" Z$ j" ~9 r+ T6 A
        Base case: fib(0) = 0, fib(1) = 1
    ' d. q2 ]+ O1 C. G# s  D8 b0 @
    ; Y9 h; ]! U; L# h; d    Recursive case: fib(n) = fib(n-1) + fib(n-2)! Z/ |  g  K) ~% O$ E7 r
    ; ?- K# u' |1 C
    python
    + S( K, |9 r% W" ?4 F8 L' L9 R  B! q4 S# R" u: ~' X$ R( b
    3 c# O! N" R9 F; X
    def fibonacci(n):
    : N3 X- k" c* \2 I6 j    # Base cases
    0 D- h; l$ a; j+ o% r    if n == 0:
    ! ]5 o# ]' ]/ o( A        return 0
    1 T# N9 I0 B: O! ^: L    elif n == 1:- t; C8 p  O* m* _' P" R
            return 11 i+ ?2 b, K# O4 o
        # Recursive case
    $ i( _5 N1 {! O9 @/ D. o3 _    else:
    & U0 f2 T- N: L1 f+ b; ]4 Q2 x        return fibonacci(n - 1) + fibonacci(n - 2)
    4 t# Z) s# Q8 D. Q5 `, ?* Y3 m2 \3 f8 V8 l* a/ Z5 t1 c
    # Example usage1 S. T& y# M0 N$ C; P- x" R
    print(fibonacci(6))  # Output: 8
    ' x; n8 d, ?  V; B' o! h; I0 m9 R) u  u; [6 k
    Tail Recursion2 ~2 l- n" W2 n1 r

    " y5 \3 m2 d: Y, [' BTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 {& G) P3 U. [4 O# o& ^/ X2 z  z& o! c  i- E$ q
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-23 01:32 , Processed in 0.030571 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表