设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1526|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    " v* s0 L! O  Q9 c. o/ B0 d0 W+ s- g- P9 r  h/ X. ~7 ]
    解释的不错
    1 [- Q% w& _$ G1 h! k* |
    ; L, z! g2 r# N4 N) O. T% e  D* B* s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    / D  i6 o1 B: b0 T, K
      B* h+ B( Y, i* x4 R1 i5 S# u# Y 关键要素, j, ^$ ]1 P% c9 {& ]6 z3 a1 u
    1. **基线条件(Base Case)**: L& [) s5 P. |" o3 Q9 X
       - 递归终止的条件,防止无限循环
    ' D/ `- @9 v, ?- o) `9 ~- J   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    4 t6 Z0 T$ O- _+ T4 R
    : t- Q* K( {: E5 ?3 s- m2. **递归条件(Recursive Case)*** |" `3 X; `1 |2 ~
       - 将原问题分解为更小的子问题
    7 ~, ?$ J5 L& \+ I+ b   - 例如:n! = n × (n-1)!1 E$ U9 N: U& ]- f& v
    3 b* a7 v6 t6 @& k
    经典示例:计算阶乘0 u1 \5 ^5 L& u: j9 j6 G8 |9 J
    python- s7 w6 f4 `$ p1 l
    def factorial(n):( ]# D8 G' l8 |( e0 c  n% }; X& v
        if n == 0:        # 基线条件  w' s) o2 |( p# ~
            return 1/ ?  P! @# m0 S# G5 u
        else:             # 递归条件- _3 X% z, t5 ?0 Y; X; b
            return n * factorial(n-1)
    2 G% Y* Z8 U* J1 d执行过程(以计算 3! 为例):
    6 [) z4 w" M7 T( Zfactorial(3)
    % `5 H$ A& F2 o7 w, r/ X3 * factorial(2)
    + Z% T, a/ f0 Y( W- Z$ r5 U3 * (2 * factorial(1))
    - w( [1 w, O2 c# l/ l3 * (2 * (1 * factorial(0)))/ H! B  G' Z& t
    3 * (2 * (1 * 1)) = 69 K) R9 ~' G6 Q1 a. O. |; `, s

    & f5 \1 Y% s+ k9 m9 @" P5 ^ 递归思维要点1 j, x9 Z+ D# T: ?- u; Z" \
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑. f# j% f9 R; w3 i  y
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    4 K- G1 i/ \9 R5 f3. **递推过程**:不断向下分解问题(递)
    , x+ e# l& m, P% A/ h4. **回溯过程**:组合子问题结果返回(归)& s9 k/ E' o1 t) o2 l

    , Z4 T2 N; j, b! l 注意事项  g) x1 G# {! C8 U* F
    必须要有终止条件
    & }9 v+ [7 K5 z% Q- G* g# V1 p1 C递归深度过大可能导致栈溢出(Python默认递归深度约1000层)4 P) g2 z6 O2 i3 i7 r! v
    某些问题用递归更直观(如树遍历),但效率可能不如迭代: q0 |$ I5 A* r9 |; C, j
    尾递归优化可以提升效率(但Python不支持)
    8 @! Z6 |# S0 Y, ]: q. k% ]$ A' o6 t% E7 |
    递归 vs 迭代
    $ n: H! Z" @7 `% x- \|          | 递归                          | 迭代               |
    + Y4 v& C1 q. o8 r5 T+ z: X4 ]' F|----------|-----------------------------|------------------|* @" e& Q/ ]5 q- ^! U) Q3 y( v
    | 实现方式    | 函数自调用                        | 循环结构            |* J* P* l& l, b' T6 o# u( M9 W: H
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |& y0 h3 Z& ?; a- e
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 A4 v8 B+ L% t: K& R' Q, I' M
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |3 Y9 R7 O, K* G+ C7 w

    7 \2 p: E. r" j! p0 i 经典递归应用场景
    ' x0 j3 S5 D' c; ^3 F+ f  o1. 文件系统遍历(目录树结构)1 y8 O- }% _+ ~1 z+ Z! G
    2. 快速排序/归并排序算法" k5 E& j  ^3 m: p  C; m
    3. 汉诺塔问题. ~4 }6 h4 c; H- S
    4. 二叉树遍历(前序/中序/后序)
    " X# N1 c3 w# z0 u- u* w5. 生成所有可能的组合(回溯算法)( l0 a! S1 z3 a- u

    2 l6 e1 ]2 A5 I: c# b2 U试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 07:03
  • 签到天数: 3118 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, N) |) t* g7 o" D1 s
    我推理机的核心算法应该是二叉树遍历的变种。
    $ [* T7 \& U! v: |另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:! P: b* Q) _' C
    Key Idea of Recursion
    2 H7 f) g2 d. u5 y$ G8 h7 T8 ^- R) R4 ^# Y) ^
    A recursive function solves a problem by:: E$ G: t9 U. O3 c. p, w% T

    ) q; m. V8 Z' W7 y6 b0 B) V7 ?    Breaking the problem into smaller instances of the same problem.
    * K6 _1 Z9 m: h* ^# K% G  R3 n0 A) Q  v
        Solving the smallest instance directly (base case).
    ( q6 D+ ]! Y% {6 H9 L) r
    ( u" J5 P  ^. j' a2 Y    Combining the results of smaller instances to solve the larger problem.
    : H9 g4 v7 a; P( j& i- R7 e+ ^6 J
    Components of a Recursive Function- U, H2 x* Z4 @: E% I

    0 V' E# |: ?+ Y$ s9 ?) s( {3 t    Base Case:/ h0 m2 k. N, I$ y& Y- O6 ?

    7 i: K0 i8 Z. ~0 V, ~6 W( u' Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    5 v8 f3 I/ I4 v; y- [# Q) P8 U- i$ x7 C2 T( A' d6 _
            It acts as the stopping condition to prevent infinite recursion.
    9 x% m" D% Z5 J% f  y7 Z, h" v
    3 K$ ]9 ?3 {( T+ \6 Q3 {        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.7 H- @8 a2 U" v6 x: i
    - {! t( d8 F) ^9 x; x  |
        Recursive Case:
    7 Y9 \# y' J% @7 [+ H: p2 w
    ) n9 \9 q3 N) X        This is where the function calls itself with a smaller or simpler version of the problem.
    1 H4 R* n5 i9 D( L
    ; }; {; N) y' n! ^( \) @) T        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    + v# n, s2 N5 i3 u" M1 u1 E1 F# ^0 @! W- p
    Example: Factorial Calculation  [* @- u. @$ c$ D8 m, @1 ?
    : e7 V' E& `' E4 m: V2 p
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    & N& W, G  _9 l( I) @$ q- a
    0 g& z- v7 I# p6 p, V& k- h$ C' R    Base case: 0! = 1# \# x. t7 G, V8 G4 s( k# O7 ]

    - `4 I) z: w4 X    Recursive case: n! = n * (n-1)!
    4 t* ?. z. e5 {& d( }$ a
    + q+ e$ n1 F2 k) p0 Y+ mHere’s how it looks in code (Python):
    : R8 G  n0 J/ `( |. D; gpython' k: r, }/ G% y" u7 g& a
    6 z+ A3 ^% {3 e2 [) [
    2 A. p$ O- U( c
    def factorial(n):9 F6 j# I6 q5 k' ^! w) q5 @
        # Base case
    . f7 \4 R1 h& ~0 l    if n == 0:
    * p& I' M. b( g+ R4 k' ]5 @        return 1: K2 [  c# J* u
        # Recursive case
    2 [; x" z  h6 [) S9 \6 C, v) t    else:6 q! f+ q: L6 E4 M6 ^0 O: U
            return n * factorial(n - 1)
    + V7 g- W5 f( ^! T- n1 z
    ) m5 a. n1 S+ b" g+ b# Example usage5 C) T5 M; x: H3 a( m6 z
    print(factorial(5))  # Output: 120  ^( x1 l2 @" }; C

    / i' y9 I1 L1 F7 R' x6 P$ zHow Recursion Works/ ^5 o1 g! q* x8 M  f9 V& D

    & `# Y& t' d" t. R9 q    The function keeps calling itself with smaller inputs until it reaches the base case.
    ! j# s+ l6 ?2 n; P5 S4 D- Y2 {$ _* g( ]. X
        Once the base case is reached, the function starts returning values back up the call stack.( G8 t) {& g" Q7 U, u* Z5 `2 I5 r
    # m! Y' ]0 V* j, N' E2 Y
        These returned values are combined to produce the final result.
      \3 s, q& c7 M  B6 Q9 V2 Q$ D9 v: n
    " b) j9 O: D% Y' b: Y$ `For factorial(5):' t4 m& |  p8 S; K) e. G

    5 H# {8 R7 A8 B% A7 l9 j; O
    - Y- y9 R" t7 K+ Ifactorial(5) = 5 * factorial(4)& N( A! E  c' l1 |7 T
    factorial(4) = 4 * factorial(3)/ T' {5 I$ q1 ^3 t1 @# `/ `) j
    factorial(3) = 3 * factorial(2)5 i  g% K  f0 {1 Q" l1 _+ W
    factorial(2) = 2 * factorial(1)' Y- y- k9 q" z" A' B
    factorial(1) = 1 * factorial(0)1 B: L6 Q: b: y! [4 E
    factorial(0) = 1  # Base case
    0 W; K$ U' @: S2 x  A
    8 x5 ~$ r# b) H% B0 \; }* eThen, the results are combined:9 B# p; o1 R2 X
    ! s! y' y* c* D; b' J" b

    8 A6 I. ]+ x7 D$ t! i' ufactorial(1) = 1 * 1 = 1
    : u; S: L1 i5 x; O) P0 ?factorial(2) = 2 * 1 = 2
    ! B! a5 u7 X, ?. V# rfactorial(3) = 3 * 2 = 6
    7 t9 A: p- I- `! G+ j3 Dfactorial(4) = 4 * 6 = 24
    1 p( H7 @7 \# @7 a  H0 W; }factorial(5) = 5 * 24 = 120# H- t" {( g' x  \
    $ H  C( g- O+ a* ?1 X* F7 b4 g
    Advantages of Recursion
    ' b- |# z  K* I/ p- T% |! O6 @$ D/ E% t5 c
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    4 H" A+ e2 [- W$ X5 l) C; C4 N! q) x6 E
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    # e7 v2 b0 r( h- _! P8 S) V- c5 b- W6 h% r3 G, U# j& W  H
    Disadvantages of Recursion: o- O: p( i: e  _1 h6 W

    ) [) K4 M6 ]) X0 f, g& z3 J$ X* W- H    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 V7 c+ {  X: u- u' ]' F0 r9 p+ j  z( J) _. }& o- w
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ; i$ ]2 q6 p% a# p$ b7 ]8 V9 R
    6 H; S  k8 v5 [+ O) P& g9 f  P2 GWhen to Use Recursion
    - _# `9 b- x) q: G5 J5 R: M  A* J( R7 a! O% M5 Y7 i  ]& h
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).! Y  V0 p5 M8 S% L& `- i, `- f: E8 T
    1 h' k& e1 N5 M- y- x" o
        Problems with a clear base case and recursive case.# K. P- Z/ V; a; B- [
    + D: z, A$ n* n: A
    Example: Fibonacci Sequence
    1 l& m- B/ C. i0 Q1 P8 h% N
    1 i0 Q* }( ]# Q, q& @The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:7 `5 t7 c$ q9 m* I1 O+ r

    1 j. J) W: ]/ l& I    Base case: fib(0) = 0, fib(1) = 1
    7 S2 B: Z8 L- w1 z8 h/ ~8 h& h0 v, e
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    % f6 \' s" R- i$ j1 e. x
    9 p( K1 s/ }8 q7 C3 `python, [$ |2 o  ~' Z3 c" @
    7 }0 v# F0 w! O/ N2 p8 N

    7 G/ ], d" c( Q6 Mdef fibonacci(n):
    3 D: U; H; W* }, p( f! Y* H0 T    # Base cases* k: Y  z, n* F( ]* I" ^' a
        if n == 0:# u+ f3 g- ^3 A1 x7 Y+ F' k0 S
            return 0
    ( B' P" s& w' i: i$ d5 u3 t2 J    elif n == 1:
    # b, e, q7 W! Z3 T( w, v( c        return 14 j) M$ e, V; m) N7 a$ j3 b: }
        # Recursive case9 q" N& k9 v2 z- `
        else:
    0 D# R; A" D. U8 u- Z! w' e, ?        return fibonacci(n - 1) + fibonacci(n - 2)
    . {, P& U. J- t0 U7 D4 k# ^& N2 G  b; k/ v! F* r. S
    # Example usage! `1 j8 s5 t1 @. `
    print(fibonacci(6))  # Output: 8
    ) J& Z2 ^5 O* A% x: I
    ; s" L; [' D6 n1 v# lTail Recursion  {6 P  n8 G5 P1 k( D
    7 O& v% k# l# C7 @8 [# h! z
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. L& F, n- b; x! p- i  n  D

    ) F" e9 x6 \& sIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-16 04:24 , Processed in 0.036630 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表