设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1995|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . f9 i# u0 }4 Y# z' B  E
      ~5 V2 B$ A& j$ F解释的不错
    ( b; i- G3 U! ?, C
    " U. R9 r5 M6 L递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。  P5 q' T4 [7 g4 V
    $ t$ V, N' [' X
    关键要素
    . Y) Y7 }# b. s5 A! \1. **基线条件(Base Case)**
    & _  ?0 O7 W) D   - 递归终止的条件,防止无限循环
    # u9 Z" N5 A( [; H   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ! H8 p! U0 b! ]( s1 X' y4 ]7 k! v, J1 ~- G  y9 o/ V: |% G! U
    2. **递归条件(Recursive Case)**7 T# }0 ^3 j: e3 ?7 {- G6 {' G
       - 将原问题分解为更小的子问题
    ' n' B) L' d2 d1 E; t7 R8 N   - 例如:n! = n × (n-1)!7 n, K  }$ g; M1 G- V

    * F0 j, @1 A" h, ^ 经典示例:计算阶乘( `" q4 s  |' Z. L
    python
    6 w9 B4 C3 \7 Y7 o; v+ cdef factorial(n):
    # v6 d1 d0 p! F    if n == 0:        # 基线条件! E. z1 z: _- J
            return 1
    & n) I! Y) R: P4 z, N- W9 x    else:             # 递归条件# H+ R0 g' {5 u: R
            return n * factorial(n-1)6 }; H) K  W/ N1 d2 B% P" }
    执行过程(以计算 3! 为例):  a/ E" ?" b  ^: y$ G* d+ A, d/ J. ^
    factorial(3)
    1 T9 O% g' x+ S7 U8 \/ s3 * factorial(2)& ]1 ]% F( j! V- r: |  x
    3 * (2 * factorial(1))
    : d1 k$ S7 t# D6 q* a3 * (2 * (1 * factorial(0)))
    & i2 U+ w7 J! {& H, x# P9 d3 * (2 * (1 * 1)) = 6% O( ^! [$ a8 R: S7 o  S. M
    ( l8 M$ t( p3 f6 p4 `* b6 G5 F
    递归思维要点$ @9 x; f( v* V
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + A: z9 m& k# M% o2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    1 J+ C9 A9 f, f0 W. u$ \3. **递推过程**:不断向下分解问题(递)
    : u1 @2 Y2 Y$ `4. **回溯过程**:组合子问题结果返回(归)
    9 {# V& s# b5 M& [) f$ A- e* Z4 q) @7 c5 F
    注意事项" H0 l/ F+ K; _% n# l5 n
    必须要有终止条件
    / i1 Y( O) ^+ d2 B% R& ~# A递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 t" |  W; C3 ?) G% r2 p某些问题用递归更直观(如树遍历),但效率可能不如迭代% J5 {2 @) a$ n7 v9 r
    尾递归优化可以提升效率(但Python不支持). j8 T7 @) f* h, O- Q3 G6 w

    1 Q& M7 S4 s; O% G+ w) Z, | 递归 vs 迭代
    ; z! t9 A+ I# u|          | 递归                          | 迭代               |
    2 c& G; g5 N5 b5 X# J' l|----------|-----------------------------|------------------|/ A+ {- H- `% L4 w- M
    | 实现方式    | 函数自调用                        | 循环结构            |4 G/ N( o& o2 b2 n7 u! s
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    % g! m+ w- a$ y) \| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    6 c; |( K$ c4 p5 ~" g1 C  m| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    2 i7 `4 l+ o0 j) D0 J6 t4 X' N' K. M) ]9 G
    经典递归应用场景
    . h$ ]7 I5 M. f3 i! {1. 文件系统遍历(目录树结构)1 {7 |! A6 ]. |
    2. 快速排序/归并排序算法
    ; w; o0 s9 I: ^) |& o1 d  e3. 汉诺塔问题
    ; Q& P( j; I; |6 X, }6 y6 o7 `4. 二叉树遍历(前序/中序/后序), ]' A' `% a; S3 l
    5. 生成所有可能的组合(回溯算法)( y) O6 `: a) \7 O
    + y% {8 ~; t3 s  m+ n
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 08:23
  • 签到天数: 3160 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,7 U( A, R. l7 Q4 ]; c
    我推理机的核心算法应该是二叉树遍历的变种。
    6 p6 @9 Y8 J) N4 K* G另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:5 K3 `; R& r" ]3 E) I$ J
    Key Idea of Recursion) G# B. c  s1 `

    - e1 j2 A/ Q! Q7 ZA recursive function solves a problem by:
    - ~" b& h+ E' q5 \
    . j, r3 R  ~( I* B5 Y6 \; q    Breaking the problem into smaller instances of the same problem.
    ! j- D* w- e8 i$ S* e' ?" P& u* b" L2 m$ B
        Solving the smallest instance directly (base case).
    ! H: r% `0 h4 g+ Y* h2 C# J/ Y7 u) }7 u6 A$ y
        Combining the results of smaller instances to solve the larger problem.8 P' P- y( M9 s$ J3 T! v
    ( ]- `" H, u  U3 S- {
    Components of a Recursive Function4 |' C2 K4 \: v; ?
    # V! H: x9 |3 u+ s
        Base Case:
    - T, f1 \* A+ L) n+ o$ z
    * K, V7 s9 u; A! q$ F4 z  U, G4 A        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    : _* N0 h1 c  \7 y" d) C4 d' a0 `% F, K
            It acts as the stopping condition to prevent infinite recursion.
    : V% `  d% P' E5 S8 \/ m
    8 R4 F! D* s8 a! ^! R/ h        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , W3 A8 }9 }. L' \7 c
    " U# s" U$ v. c* h    Recursive Case:. n- f) d. R: K  B* z' ?

    7 c/ |7 x7 Z, r8 E1 \        This is where the function calls itself with a smaller or simpler version of the problem.
    3 ~8 \- E, \+ r2 B1 q6 V) M; q) K3 B
    5 U! I3 x. t  M# |        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ {' y2 C- E- L1 O

    6 Q1 ~/ \( ?. c' e1 e2 kExample: Factorial Calculation; b" \' g9 e3 t/ E4 W) _
    5 k/ }" b" O$ p8 ?9 _9 Y
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:- R  M8 y' \  V* y
    ; W- o  ~4 b+ r. \( O6 o6 T5 n  z
        Base case: 0! = 1( [" T) U- Z+ E" u; ?

    ) s7 c# O$ c9 E# |% J9 h$ k    Recursive case: n! = n * (n-1)!# [' e  h( Q: R8 ?( Q9 [: h

    % \& @/ X" O& h( C6 `Here’s how it looks in code (Python):
    2 v7 ]7 n% \9 M8 }% b( Y* M4 |python! F9 p: h7 T* n* l1 S  G7 V6 |# I

    9 R% D" H# v; e7 n% x3 _; h1 L  h4 `9 V( x1 T0 ^: T: s
    def factorial(n):8 m% o2 R2 W1 A4 }7 d+ c# n
        # Base case& d1 s' `, L* {- C8 m- Q7 p
        if n == 0:3 X: \% r) T+ t$ P1 O9 `  u3 k9 R
            return 1$ q- k7 s' `' E2 o! |9 T
        # Recursive case( N0 K" F4 X& r2 p
        else:
    / K0 b, W, n7 X0 V        return n * factorial(n - 1)' Y; `$ Z" ^2 l2 p9 t  C6 l+ d: E

    - _4 a' }; C% @; n6 E5 P# Example usage
    3 c9 O+ v) D7 n0 J! F% D- K, f2 Eprint(factorial(5))  # Output: 120  X8 m" D1 P3 A+ A  `& l, m

    4 U: o/ y& n  }" A: sHow Recursion Works% ]  K7 C6 m8 `% j1 K8 Y* i

    5 Y7 C5 |4 ]% h# \    The function keeps calling itself with smaller inputs until it reaches the base case.
    ( y+ g3 Q0 j' v6 p
    6 `* o$ v& h8 P* k4 n9 d    Once the base case is reached, the function starts returning values back up the call stack.
    ; T$ }/ \1 p, a& r/ g, j. n: y) Y% N
        These returned values are combined to produce the final result.
      u  ?2 p( g9 V0 d+ Q" i& r& t7 d9 O) O6 n  `9 t  {
    For factorial(5):2 H0 @  m0 e  e5 `6 D: d; K

    $ V0 {" e# s; }2 b0 p% K! [/ w- i0 C
    factorial(5) = 5 * factorial(4)
    4 T0 s) I9 I% K) O$ b8 _factorial(4) = 4 * factorial(3)9 i/ y$ I, a" f' u3 h7 T
    factorial(3) = 3 * factorial(2)% C" |- A3 k  O) L9 {- A7 B
    factorial(2) = 2 * factorial(1)4 Z) }2 o: r. Q' J. N: C
    factorial(1) = 1 * factorial(0)
    & N4 |% k- R( o$ o: d8 k$ Bfactorial(0) = 1  # Base case
    7 b7 E& E% P; q; c0 r2 O$ c1 ~9 g, N# u; S% ^
    Then, the results are combined:: S) v& T4 s: M7 A
    0 l& d5 K& f1 N" I: \
    0 i2 A, m  I; O. s  p. ], e/ u
    factorial(1) = 1 * 1 = 1
    ; x, V0 w( z" g" S6 ~; i& H- nfactorial(2) = 2 * 1 = 2
    $ }7 K3 v! q3 Wfactorial(3) = 3 * 2 = 6# K& N2 j4 _+ r
    factorial(4) = 4 * 6 = 249 z% x: F4 O0 T( X8 R
    factorial(5) = 5 * 24 = 120" e( L9 Y1 k1 I; l7 e8 E

      p. d2 h7 q6 V1 Z+ N8 zAdvantages of Recursion
    ( v7 G6 y; `5 v1 C6 a" E5 P8 e3 O. g1 B4 h
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * u( i; w6 t3 O" k9 I- d/ E) N
    & v* O0 v3 H' o    Readability: Recursive code can be more readable and concise compared to iterative solutions.) }! }! h2 ], F' t
    $ U  _+ s5 i- N/ G  B- b
    Disadvantages of Recursion
    6 a8 R/ r) E6 f1 B* R2 a) |
    2 p% i) {7 C* H    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# C! P/ F. d# ?

    ; n/ z1 \# `" J3 g: r# `+ M. H! H- V    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)., B2 L- e2 r0 p
    / \. }. A4 z1 b, R( s- n4 e
    When to Use Recursion
    ' M3 P+ K; f. y/ m/ @. [8 }# p+ Q0 n, p4 Z" o6 V
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 u1 ^; _$ \# I, n$ X, Y, X
    ; W5 e' m8 p& l    Problems with a clear base case and recursive case.# N8 Q, k# \+ Y* [
    - D$ L3 N# b* j9 {3 _" w
    Example: Fibonacci Sequence- @" ?2 o. s3 I; s6 o
    ! a: a2 s1 V! q) m% w. @
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 @% Y% p7 ~8 L% M( i, R. `
    # I. R8 X* t: I0 q    Base case: fib(0) = 0, fib(1) = 1/ T& {2 V2 ]( F* s
    + ?$ M9 S; q! m. r/ t
        Recursive case: fib(n) = fib(n-1) + fib(n-2)5 I2 K) D3 `1 P& \  G

    $ v) p4 k  s/ e2 o! ~( upython
    * R# s2 A! V8 n* |- D
    7 [$ P6 N$ k: D
    : z- Z( t# K  G" Wdef fibonacci(n):- p5 D  E. @9 P1 J8 B) o
        # Base cases
    % F5 S9 V3 [! }) A; ?1 m! a1 H. ?    if n == 0:
    ' g  B  m, E$ _' k" A2 W% z- F        return 0+ S) E" x4 F# u- J4 u5 D
        elif n == 1:
    % V: V3 U4 Q; s6 z7 E) r        return 1# b$ G  m2 X; N* G% t) s8 h% U
        # Recursive case
    - U) g* S! J3 M# e+ g4 J' p7 Z: f    else:$ h) s' S# ~' \5 Z# W) Y
            return fibonacci(n - 1) + fibonacci(n - 2)# f" d% h# g1 M+ O- q
    + @, X9 w& Q& c9 y' z, c, z
    # Example usage
    . r# a/ w3 Q% d/ U0 ^& e6 y1 Hprint(fibonacci(6))  # Output: 8
      J# s$ O2 N$ w* x2 Y8 j/ S7 J) R3 D( W' c  t& @( i! K
    Tail Recursion$ }1 p- Q  Z, _2 v

    6 r0 d+ y* g. W  V/ fTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    7 Z" j! s7 v; s# R1 N
    + L4 _8 m) v/ l" J: oIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-2 02:49 , Processed in 0.055592 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表