设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1166|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 6 f4 C. @! K# I

    " f% N& T! |6 Q- |( F$ x/ J. _解释的不错  R& I) }3 d. u4 ?( b
    & _' N( c  N' f9 w5 R
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    1 P7 K6 w  R# n
    2 L7 M; i* _9 D/ C3 |5 H 关键要素
    # _; l) H$ I, Y, d1. **基线条件(Base Case)**
    8 s1 i4 K1 }6 V  }. ~   - 递归终止的条件,防止无限循环
    / J2 N( l" y& \   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1( ], R$ g# c8 e
    , H) ^! B3 B/ L. ~" f, z# w9 i
    2. **递归条件(Recursive Case)**6 U( P/ P+ c/ r  r1 z
       - 将原问题分解为更小的子问题2 n/ g! u5 I- |1 j' g) w7 r) X  A
       - 例如:n! = n × (n-1)!8 P% ~% G$ q2 e: S7 T

    ; A# W( b( E+ v1 r/ s0 a 经典示例:计算阶乘5 e) Q5 }  C: [! R6 W3 q! D
    python$ x' y; L! t1 k* v3 m
    def factorial(n):
    % f3 j: A- }3 s1 A% h- p, G! R- [    if n == 0:        # 基线条件
    5 |9 |+ E3 ~+ l# p( j+ m5 T        return 1; \4 w, p; @$ w- Q! |
        else:             # 递归条件4 _# ]7 F# F* h( W) m. o/ _
            return n * factorial(n-1)' z5 ~; l- q. a2 j5 M
    执行过程(以计算 3! 为例):( ~- y8 p- U+ w1 p2 I
    factorial(3)
    ' ?" u' N7 l% G" R+ w( s0 ]& d3 * factorial(2)  v/ A5 c8 w' @3 J4 y
    3 * (2 * factorial(1))
    - W/ p# v" \, e: M! A; S3 * (2 * (1 * factorial(0)))
    : W8 ^, v* n( ^: ^; i. r- z3 * (2 * (1 * 1)) = 69 L8 r! O( u4 p7 G; a
    ; g* C4 v2 ]9 t: W
    递归思维要点' k' Z2 |2 G, b- C
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 _7 G$ T3 {- Z; u
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)5 k, `& O+ h$ }* l
    3. **递推过程**:不断向下分解问题(递)
    " w: A6 A4 \9 z' ^- J" a4. **回溯过程**:组合子问题结果返回(归)  L4 k" _/ h0 }7 t6 l/ [$ \

    " y6 R8 P! ?0 R$ { 注意事项1 T. y1 |& w/ c7 ~. |: W
    必须要有终止条件
    7 l3 b+ e( V  l! S* g递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # S. Q# c0 d% c7 R某些问题用递归更直观(如树遍历),但效率可能不如迭代4 _3 l" @9 p: k, f- K
    尾递归优化可以提升效率(但Python不支持)4 V/ L$ q$ {& V! A
    0 [7 q; R2 `. W
    递归 vs 迭代
    + a4 \$ s8 z9 l' Y" @) u% I|          | 递归                          | 迭代               |- }2 ^) ]' Q& C% q9 w) Q
    |----------|-----------------------------|------------------|
    7 l) e# g/ Y/ ?( L* ]| 实现方式    | 函数自调用                        | 循环结构            |5 e7 ?- `) S4 d6 R$ j; g5 o
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! K2 U0 q3 q  a, f4 n- R3 o$ k: X
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ k5 |0 L0 T; T" z3 i: z
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ! h7 z' Q- _) v; T3 O/ I8 r: S; V: h
    经典递归应用场景
    ' h9 W( V$ M" w+ @; p: [+ i- A# z8 T1. 文件系统遍历(目录树结构)
    : _" ]4 @9 M% p* t% u: I% d2. 快速排序/归并排序算法' I& X2 B) m% F& s+ Q+ d
    3. 汉诺塔问题  i, A% n  r; a, m- i
    4. 二叉树遍历(前序/中序/后序)
    ' q6 j% `" G' v. c5. 生成所有可能的组合(回溯算法)
    / L7 d4 W7 Q" Q" M" B7 N  U$ A0 v7 S8 l0 u6 B- g: y& ^
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 06:43
  • 签到天数: 3101 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,1 j3 U  A/ `( `7 O% r6 N7 d* Z+ `; x
    我推理机的核心算法应该是二叉树遍历的变种。
    0 T+ a+ l5 z1 ], |* N4 `, H4 Z0 U另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    8 H& W/ r" ^) nKey Idea of Recursion# G' D* M% W/ }! R& {8 {4 w

    3 z3 F0 L+ V/ k3 RA recursive function solves a problem by:
    % n  z  \5 Z! }* B% S+ L' l* a7 x7 t) B0 f  ?# k- n
        Breaking the problem into smaller instances of the same problem.2 R: R7 w. A; T! Z& L  f

    ' P& X1 G4 t6 [* s$ F8 |/ Y1 D    Solving the smallest instance directly (base case).$ P: U' @3 [+ i/ S) w
    % u! W- w, S" ^* x+ }, s+ |
        Combining the results of smaller instances to solve the larger problem.) i  O9 s7 l- d: _

    / X& j' M! ~& [0 K  i, o& E" y0 ZComponents of a Recursive Function
    6 y, T/ i2 L. a7 B: p6 S  |! _) O* A6 O& G# y
        Base Case:5 f2 z' i; p1 w# Z
    + J5 @6 d7 h" t" i) H9 F4 m
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    % }( Z+ I9 V' _7 F+ i5 b. g; W  y9 q6 U
            It acts as the stopping condition to prevent infinite recursion.
    & H% p% u" U6 L5 l' j5 `
    0 p  ^" ]% i7 c7 x% ]        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    # D, P* i# B1 W3 @' l9 |9 Y! X& ]1 `' J, W2 e" Q/ k' N- g  b, K6 s9 W( A
        Recursive Case:
    * |2 S3 ~( n0 }' K  ]2 i# I
    " W+ L3 ]3 e3 H        This is where the function calls itself with a smaller or simpler version of the problem.
    % e: ]! W! @; |1 [9 _
    & k' S* }: d2 x. A        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ; }! l$ `& _2 h" h6 S- v
    % w0 p# H* Y7 W% x. {+ y9 u/ A. iExample: Factorial Calculation: D6 F9 q, f/ W6 H# m7 F
    1 O0 Y, j2 P. M' u! d% c$ O
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ; X7 t8 D/ N) X! \5 O
    4 E. O% ~4 m" l( J# i    Base case: 0! = 1
    ( x; @# R1 W( o* q; y0 K' C
    ; a" q" I9 S% y; v# i* c6 u) T    Recursive case: n! = n * (n-1)!/ S: N  U2 l& J  q
    5 a. J- f, @* L8 R7 [$ R
    Here’s how it looks in code (Python):/ C2 G7 O2 c$ F1 @$ x
    python2 X$ s$ i% p, A" A* y) ?

    8 b6 l' n, x& {: D6 o! G8 z& O; `
    ; K, z# k/ d2 C* t/ P7 B* Tdef factorial(n):
    * t6 h) {/ K% d, T2 |5 B9 d9 u0 ]6 Y    # Base case
    1 ~1 g# w4 i: D* a; y# ~' ]    if n == 0:
    " p# k- R4 P4 o+ S$ X  G        return 1
    4 e9 i  V, {1 T1 [    # Recursive case
    7 e/ I7 N& h6 w0 @    else:. K% M' [, H! p* F: K" N
            return n * factorial(n - 1)
    2 o, ^9 T" I* [/ H5 H
    * I: v+ X* G" `( m# Example usage5 ^. A. Z+ ?* q& q9 F4 C
    print(factorial(5))  # Output: 1205 i, _/ {) ]/ k0 \* j

    7 T' ?7 [$ i: f: y" PHow Recursion Works+ E) A( o6 R+ @! ]  ]4 d
    # P$ Y! z. @$ `; x  \2 S6 Q
        The function keeps calling itself with smaller inputs until it reaches the base case.
    . |# l2 z! ?% P7 @5 |3 J1 Z$ g- l9 G% \/ o* w# X8 b
        Once the base case is reached, the function starts returning values back up the call stack." b# @5 f  {1 Q' F, G+ y( h

    4 M7 U% R& A, T" a- T. |7 Q" r4 ~& k) p    These returned values are combined to produce the final result.2 v5 g4 K% b0 X: j

    * F/ c6 ^! F! f/ PFor factorial(5):& c) ?9 Z% _& u3 M/ l1 }
    . n0 N' f2 V" y8 M4 I
    3 Z1 D2 V% O( |+ z* ~
    factorial(5) = 5 * factorial(4)
    9 Y6 f- g5 u; X- yfactorial(4) = 4 * factorial(3)
    : |/ ?# d( V3 K5 _factorial(3) = 3 * factorial(2)
      f+ O# V- R3 L/ Q3 Gfactorial(2) = 2 * factorial(1)
    & {, X4 A. V# V1 T: N9 I9 l" Rfactorial(1) = 1 * factorial(0)
    3 A0 V; g( b; _factorial(0) = 1  # Base case( Z8 ?- h1 u7 w- m2 Q* {$ T

    4 N# s# e) u! k) J* K( U7 E4 k2 NThen, the results are combined:) j$ }  X. @$ ]4 a: M6 h2 n
    5 U9 G8 F* @, b8 l/ V8 D
    # P6 A: }/ s6 N  {3 n" R2 V" J
    factorial(1) = 1 * 1 = 1
    " Y1 z( H/ I4 Y4 H+ mfactorial(2) = 2 * 1 = 2
    2 a% g9 i% u' C9 B  w" Lfactorial(3) = 3 * 2 = 6
    4 e  M7 e) B' ?# F" |. Dfactorial(4) = 4 * 6 = 246 s3 H0 s6 S8 ]; R+ F3 t, G7 P: e$ G
    factorial(5) = 5 * 24 = 120
    ; t0 F; u% O; q# r
    # o6 U% a# b4 g" cAdvantages of Recursion
    : @( q" l; X7 u. }2 U7 t- y; @& x+ e4 j, y# K2 W) _! r
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# _+ L+ A* F4 C
    - G- _- i$ v2 O& |" q( f9 X9 J( L
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ! M6 C1 {! |6 Z6 }* j; ~/ C
    " S6 ~2 d7 }- Q- _5 MDisadvantages of Recursion
    / d+ O$ }0 x" D% O& m3 J
    * B( x7 J3 @8 {$ T    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    . b  I' a, ~$ Q+ m2 c
    4 s0 f3 z9 E: g. B$ }    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).- W- J. {" {1 K) S; ?
    $ Y, M/ D$ l% J- `1 {$ [7 c8 M
    When to Use Recursion
    0 j. u1 l7 F0 Z+ j$ d5 y0 w* D* b; I& C, f4 o$ H- f5 m% ~& @
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    & B: e+ q  ?9 I3 n; D- c  j' i. U0 M
    & t4 H( i- t* w" K- t) t    Problems with a clear base case and recursive case.
    : ~2 q3 {' P6 U6 V& Y  f
    7 V  ]% }) M, U% p, AExample: Fibonacci Sequence' I  b# R8 {0 k0 v- k* z( c- F
    % u, j8 N' Q& c8 f6 o: R0 Z6 [' n
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:: d( O1 d$ i6 V4 \/ z+ C7 o
    + k* `; n( q+ U
        Base case: fib(0) = 0, fib(1) = 1) Z( b# {7 b9 t/ J0 J  f4 n; M

    2 K& R) w# t0 W9 U" N    Recursive case: fib(n) = fib(n-1) + fib(n-2)* l6 `" W0 x- S4 P8 \$ \3 U
    : R/ p7 S, h* ?$ v% q7 {
    python
    : \* s! B# D* J& e0 [% \0 H: Z% E* W: F: l5 ?* j4 y; a( P

    , ~0 T! V  X9 G5 i3 Vdef fibonacci(n):( |. J# Q: z) \0 v' a1 Y1 S
        # Base cases
    ' n; |# m( a2 ?- A& _0 g    if n == 0:/ D4 ^  Q  P" V: P6 X7 I
            return 0
    5 `- F1 Z9 G  @6 |    elif n == 1:
    : T0 y6 A9 B3 K$ m4 D- S' q( z# C        return 12 ?7 p! P6 H8 c6 Q" v0 e- ?, @- B
        # Recursive case
    / J& Z: x. _6 Z  f( E# o. x' A    else:8 Y1 g& H) L& }
            return fibonacci(n - 1) + fibonacci(n - 2)' h( _+ U: z2 R" Q) M9 r

    8 O1 G! v1 x5 c% v# Example usage
    , z- h- b0 x& N6 y: Lprint(fibonacci(6))  # Output: 8
    8 Q" y7 @% u3 k  R
      O/ s! T4 ]1 f3 zTail Recursion7 V+ y0 P+ [4 V

    " d" g: f6 h: N% o- I) r  X: N3 PTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / k; [# Z0 M# L2 t) j0 b: g" q& H) \: }( h) i) B& b+ }
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-25 13:43 , Processed in 0.038943 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表