设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1204|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . e$ b% w; m% `0 G6 }$ H. X% T  b
    * q2 e3 a2 p7 r/ P; R; Q解释的不错
    & _) ~( l0 ^* F, n
    ) {, U( c7 O% f# B' l4 I, R* p递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。6 z3 _* T( S; J9 a
    ; S+ U8 l: e9 L6 o% {, m, N& v
    关键要素; n6 @3 n8 @5 T* z% B1 _3 ^
    1. **基线条件(Base Case)**
    ; g# [, Y! r# ]# f! x+ D   - 递归终止的条件,防止无限循环9 B3 X) Z7 E6 X
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1; z/ B- g3 K7 O7 W0 L

    - i" ]! [8 ]' \) A7 R+ S, g' p" \2. **递归条件(Recursive Case)**
    5 r/ G' d- ?9 P" }9 ~# C   - 将原问题分解为更小的子问题
    + R! w( _  _+ V1 o+ F  {   - 例如:n! = n × (n-1)!
    ! G: \9 g( e& n- D8 s; T  v/ l" s0 ^% W) j2 I8 m
    经典示例:计算阶乘" m8 d! @6 ?" Q9 E7 J  z9 q) ]  J
    python6 r5 S: @6 i( Q; H" Z& F5 t' ^
    def factorial(n):5 q8 o$ H3 p1 j1 ~9 J4 F
        if n == 0:        # 基线条件" Y2 M# t: p6 k# y0 ~, F0 [) q
            return 1
    . i: V4 I/ U! H, M( o7 V7 K    else:             # 递归条件  p5 V9 W1 [3 Q% w& z
            return n * factorial(n-1)! T+ v" W# j3 @8 \
    执行过程(以计算 3! 为例):& O% m1 N0 t# T2 w2 a- T+ c. H
    factorial(3)) ]: p2 G! {1 F( P! K. t& N# u) Q
    3 * factorial(2)
    7 `" R/ t, v5 r' T1 j0 i( V3 * (2 * factorial(1))3 X8 g; g+ b" d& X. G
    3 * (2 * (1 * factorial(0)))
    ; O# ]: v; A# |3 N3 * (2 * (1 * 1)) = 6
    0 o9 z3 C, d! Z- b+ O9 [6 |  I3 ]
    递归思维要点
    9 l! `2 H& L* i7 Y  M1. **信任递归**:假设子问题已经解决,专注当前层逻辑4 p* a9 ]3 k7 G1 ?5 k
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    # \4 f. j  f+ S" m9 w7 u3 l3. **递推过程**:不断向下分解问题(递)0 y9 U% N% y* r# q" V* @; |- G
    4. **回溯过程**:组合子问题结果返回(归)" y1 Q  V: o, Z1 B
    4 I% p5 g4 T9 k/ [2 I. {
    注意事项
    7 i- s& a! B, y. ?% `' O& q/ U& U必须要有终止条件/ e" e) I0 c- p- V' Z7 p+ H
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
      E2 ~8 P8 E4 [1 {某些问题用递归更直观(如树遍历),但效率可能不如迭代7 C; X% W2 ]4 K
    尾递归优化可以提升效率(但Python不支持)
    8 S# i5 o5 s- n9 ]) S! L" `. ?$ o3 f2 R6 N! j; Z) \$ U6 t. A, `
    递归 vs 迭代; |, _( A5 H' ?- ?
    |          | 递归                          | 迭代               |& p0 k# f( `; U1 O  c3 J
    |----------|-----------------------------|------------------|
    ( B. X, ]* o/ m2 ]+ \) r% u% d! I| 实现方式    | 函数自调用                        | 循环结构            |
    2 G3 A9 b; @2 I2 T& r# J| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    1 S" _& T7 S/ |4 v: u| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |9 S  r9 A6 z% e9 f1 h9 D* c
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    + ~; B) P, l/ j9 H$ [6 I6 [
    9 L7 ?$ v% D3 ?+ i/ U 经典递归应用场景: _0 x$ ?' E% z' j- X5 r
    1. 文件系统遍历(目录树结构)
    - q# N4 L, m& f9 A8 M7 |* c3 Y# ^2. 快速排序/归并排序算法
    * t1 j% H% r3 P  G* j- p. q. I3. 汉诺塔问题
    + Z# c; X6 p8 Y2 B0 Z" u4. 二叉树遍历(前序/中序/后序)3 R/ \4 ~7 W0 H: j
    5. 生成所有可能的组合(回溯算法)  c8 B" K$ _/ Z

    ( _, W# H: ~: R+ T' m; m  y试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:41
  • 签到天数: 3102 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) ^: d  m- W2 s5 T: J我推理机的核心算法应该是二叉树遍历的变种。
    " U5 ~2 z" e% [, R4 ?# q: f另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ t. u7 ]8 B$ U7 ~$ VKey Idea of Recursion
    5 U- a3 X9 M2 R" C# @" t' r9 u1 q) r, L
    A recursive function solves a problem by:( n+ N1 c. l, Y5 Y" q

    ; d5 i7 e1 ^+ @! @* t    Breaking the problem into smaller instances of the same problem.+ b8 ]. Q( i1 o

      a$ X! g* G: I% O- U' ~+ K    Solving the smallest instance directly (base case).; l3 L1 a1 ^8 @9 H
    2 d6 H( b9 _/ Z' }- A
        Combining the results of smaller instances to solve the larger problem.
      X9 A/ D( [* i% c% r2 ^- f1 ]: ]; A" a; s; g' }5 Y% L
    Components of a Recursive Function
    + d7 ~5 F2 Z1 [8 T* p+ s4 q$ ]+ t+ d+ e
        Base Case:
    7 o# Q5 C/ }+ l4 K1 h$ \4 l+ `; {7 {* u0 o9 N2 [0 U
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ' _! X7 n& R6 y) T; n, `2 k
    $ D, d) ]7 j; N) h' F, l; C" p7 Y        It acts as the stopping condition to prevent infinite recursion.
    5 t; a, h4 ^* P8 _% }% ^
      n! L' f+ @& P  Q        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ! q4 M( a$ j1 t- a
    " s, {; K4 z% e5 U; u    Recursive Case:' d, p5 K7 ~- g9 \

    5 T9 o6 v  N4 d4 R1 v8 ]        This is where the function calls itself with a smaller or simpler version of the problem.
    - M* x+ P6 ]# ~) U- `9 `: k
    7 I7 u/ j' M! U# ~        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    9 V( O8 e/ C" m- }* a# _: g7 l& i5 d, I2 `
    Example: Factorial Calculation- V' [+ }2 i. a( Q8 C

    ( @$ u# Y1 n! d' @' ]( mThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    # g% W2 J/ q5 w, f( ~% f- U3 f% m! ?5 m
        Base case: 0! = 16 d- h. \4 [9 g/ l
    $ d# d" G8 V  O7 L% N1 ]
        Recursive case: n! = n * (n-1)!9 P* c) M  Q2 G1 f# H
    , V) X  A* b& _  A% ^, ~# t+ W8 l
    Here’s how it looks in code (Python):# y/ N+ G) k7 d" d
    python* E' F1 p4 Y+ r5 z

    8 X( |! ?; Q0 M% }) ~7 B/ r, Y/ j! o3 g
    def factorial(n):8 r: C$ a# k" H- z2 [
        # Base case0 e7 L1 ?' W, K7 ^4 h
        if n == 0:
    8 R  |  `# K8 W0 \% k        return 1
    5 C( D, h' W- ^    # Recursive case  L/ d% G1 ~/ A/ N
        else:
    9 n% Z- @* f$ ?5 j6 M. Z        return n * factorial(n - 1)1 f& A& h& y3 b* V8 m+ S
    : M0 s% n- `' A. Y  F
    # Example usage
    3 p( {  r0 M' h9 [( p3 aprint(factorial(5))  # Output: 120
    " B% Y% I% V( v4 C2 H: k6 x  C9 q  ^$ ]9 L
    How Recursion Works
    % o7 ?, Q' l& G# X
    : l5 e) P. \" W  e7 U    The function keeps calling itself with smaller inputs until it reaches the base case.
    5 _7 ]; a9 v1 E6 {/ `) |8 X- k
    . `: T) I$ U' p3 i# i( \* B    Once the base case is reached, the function starts returning values back up the call stack.
    5 _) N2 \) I7 l- k! ^* u  R- I! g" X2 R/ e
        These returned values are combined to produce the final result.
    ' L) ~: h4 K3 H( N& ]/ l8 ?( K4 t
    For factorial(5):2 s# J5 q# N% _: |& }
    ) g/ I5 e: y/ I2 j4 l
    - a! u: I4 f/ l2 }) c! H
    factorial(5) = 5 * factorial(4)- m7 F7 p% J  N5 S  ]
    factorial(4) = 4 * factorial(3)8 L/ N+ ?- m0 `1 R. h( K7 k) v
    factorial(3) = 3 * factorial(2)
    2 b( H; ~8 b9 ]& x- }# q: O' sfactorial(2) = 2 * factorial(1)
    8 p% W6 E5 Q& ?' ifactorial(1) = 1 * factorial(0)( r- J+ S( O' A
    factorial(0) = 1  # Base case
    ( f; d* \7 b1 I. j6 @, C- w& Q& g8 N& m: b6 }
    Then, the results are combined:8 Z! [% E  A) H. H, t+ G

    8 }7 l/ P& K6 a" J% ]
    2 H0 Q3 @5 e' C; efactorial(1) = 1 * 1 = 1
    ' g+ U1 o3 |; X1 W- E3 vfactorial(2) = 2 * 1 = 2
    - _4 W5 x0 W  ^  G; {* Yfactorial(3) = 3 * 2 = 6. s/ u# G1 r- w! h# y) S& X: u
    factorial(4) = 4 * 6 = 24
    $ }2 B" B; Q* G; o1 qfactorial(5) = 5 * 24 = 1205 N, O- n, |% H! H/ s+ a3 Z* n
    ( P& U8 b$ d, l+ \8 e0 j. I' @
    Advantages of Recursion7 C# x9 x# D! y2 l! A" v
    * f3 O8 u% t4 G) r
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ( ~5 C4 {3 L8 o- ?% Y+ Y1 b6 Y( H' e* o$ N0 V: r
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    # _4 T- I: X# l0 R9 a# O
    ! t4 m  p; }+ W- x4 ]+ K# ?Disadvantages of Recursion
    " \9 |( \' F6 @: Q0 Q/ b+ S+ |* B, R( M, V
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion." _, A% a$ I! }, C

    1 `1 T) u6 c0 C    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 z5 E, k5 v+ y6 ^

    ' K" V. q& n( n7 \. SWhen to Use Recursion% ]" @) u7 Y; O& o; @

    2 M1 o( Y0 ]# f    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    $ n. m1 G, j9 `! w# E5 {! B" ^/ L
    . b- H1 A, v1 H* O9 \- o; J    Problems with a clear base case and recursive case.- q6 ^1 n3 b" a$ G5 K* U

    9 A, S/ r* K3 q) x2 ZExample: Fibonacci Sequence
    4 C2 L8 x' m$ _9 Q8 ~/ Q
    ' z3 O7 Q' ?$ V3 h( rThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    6 b. V3 }" Z: j% h# o
    & j* R! p0 o2 g1 R% z' ^( K; {    Base case: fib(0) = 0, fib(1) = 1
    0 c4 q0 [2 k. A, }: {# {- ]$ u
    " y' ^7 C& r# e2 }  s    Recursive case: fib(n) = fib(n-1) + fib(n-2)) G; T# ~' f' Y) O# O2 P
    5 h+ r% T  x6 z2 E  h
    python
    3 v0 s4 ?2 f; b( K  o
    8 W7 U" Z7 @! t8 g( S; \; n5 c8 Q+ w- s
    def fibonacci(n):
    1 m+ k3 A8 E5 D3 Q  V    # Base cases
    ) G3 F% Y, G0 U, L    if n == 0:4 u  q( H/ v4 d: L
            return 0$ [/ N; V- T0 Z9 b# J+ v
        elif n == 1:# \7 Y3 T' ~# u
            return 1
    # C, T  ]: K6 D9 K, M5 ^    # Recursive case
    5 s5 c: F4 C$ [/ t# u, F    else:
    % r+ k5 ^' z  F2 f3 G7 O! h        return fibonacci(n - 1) + fibonacci(n - 2)* P4 z9 s( V8 a, f$ N

    8 V; @' w* V1 |2 n; i# Example usage
    ) O' }8 E( {$ d" J7 l  Xprint(fibonacci(6))  # Output: 8" C8 C9 @" t( J) ]4 i7 v

    ( B) U0 ~3 X1 R. @7 J1 JTail Recursion
    1 y- ?, m1 _; R
    " N5 b" o8 |/ x- w- TTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # L& R9 p+ L0 }( _4 G& x$ x& m# ?; p+ z6 R6 s  }2 u/ Z
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-27 20:42 , Processed in 0.031854 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表