设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1130|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 0 S$ c& j7 U9 T

    8 f( u9 t1 ?$ f7 V3 {2 i( |解释的不错. h' g+ C6 w+ o7 K9 w
    7 h% `' v/ b4 ?9 a
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。3 f4 e/ X+ D, N% I; ~. @! S
    " u' m1 i9 `* F5 n$ ?7 [# V
    关键要素
    3 L4 @  w2 n* z2 L6 C2 `/ j6 h1. **基线条件(Base Case)**
    4 ^+ H1 B& x3 f5 R; m* A   - 递归终止的条件,防止无限循环, A0 F1 c: [' h' @0 g
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " y$ R1 e; [1 C3 s) ]
    # f# n2 q( N8 L1 ~9 M2. **递归条件(Recursive Case)**
    $ f6 x4 o" I. u$ F   - 将原问题分解为更小的子问题+ k* t; n. L" K7 Z. {
       - 例如:n! = n × (n-1)!
      W; j, c& y/ j" Y7 O+ d6 b
    2 C3 u' ]  |4 t" a; Q1 m1 a" ` 经典示例:计算阶乘
    2 _) ^" I, ^1 zpython7 c* p2 ]+ a  r
    def factorial(n):
    $ d3 y! ^( C8 j7 K9 g5 R    if n == 0:        # 基线条件
    * F3 ^, S) |5 n        return 1) f" {9 ~4 r8 T) j! I" U
        else:             # 递归条件! z5 q- F- b  H6 Y: h
            return n * factorial(n-1)
    - ~$ |1 X8 u0 A% {6 c2 C执行过程(以计算 3! 为例):
    - j# U7 X' u  h( M' jfactorial(3)) H; U$ J) H! ~; \5 d! Y9 G
    3 * factorial(2)
    " J8 b- _$ {' o1 d% y: ~3 * (2 * factorial(1))2 [4 G0 r+ E' [& T! s( t
    3 * (2 * (1 * factorial(0)))1 r! c0 ~: n  Z
    3 * (2 * (1 * 1)) = 6& P9 d$ j4 j- X  m& e
    5 ~5 Z6 v9 `$ {* m2 Y9 a
    递归思维要点9 i& E/ g7 v4 x6 Z
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    0 J+ Y- I8 o: Y8 }& N2. **栈结构**:每次调用都会创建新的栈帧(内存空间)! U- C0 i3 F2 \
    3. **递推过程**:不断向下分解问题(递)! J7 w8 T0 ^; E; g
    4. **回溯过程**:组合子问题结果返回(归)/ R5 o+ j8 @7 o; {+ ^* r5 P

    8 Y2 W7 `; d: S3 U. [# D 注意事项
    & ^0 r( F) F# Y3 {5 L  f必须要有终止条件7 p2 o+ f" s1 f# P9 c+ z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    8 w- B/ m4 S, w, X6 c1 V7 b某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ( s( Z3 ^  |$ }0 R2 l" v+ m尾递归优化可以提升效率(但Python不支持)6 k* \0 B% H  {
    8 @9 w( X* G" j" j0 E& t
    递归 vs 迭代! e( ^4 R% X, |, D! o
    |          | 递归                          | 迭代               |
    8 `+ y/ j1 O5 j8 ~; L! h|----------|-----------------------------|------------------|7 ]+ [& D) d) J( P9 \6 C
    | 实现方式    | 函数自调用                        | 循环结构            |, X" d) Y! l$ ]
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |4 Y! B- m9 K9 D7 X6 H
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    . k! ^6 T  t  ~| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: p, l9 Y: O2 R* `* @% u
    5 ~5 W. ?- D" F& c
    经典递归应用场景
    ( n. ~6 b  F. |1. 文件系统遍历(目录树结构)1 l, \4 B0 d$ C
    2. 快速排序/归并排序算法3 q$ c& B" W/ b# U
    3. 汉诺塔问题
    0 H1 @9 p* X7 U4 Q7 y: [4. 二叉树遍历(前序/中序/后序)
    " R, N7 P6 l% h- S2 S) F; T- {5. 生成所有可能的组合(回溯算法)
    / E4 w% t# E9 Z8 N3 B; |/ x, g, P1 G& J3 y
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    10 小时前
  • 签到天数: 3100 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,# t0 W, i* w, t
    我推理机的核心算法应该是二叉树遍历的变种。
    ) R" L0 ~: ^+ w1 g: n另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 m6 Z! t% d, S4 h, d; K* b
    Key Idea of Recursion
    . M: L3 J  T, Y6 A7 U# O8 w! X
    , \7 A: W0 ~7 F9 J$ C- TA recursive function solves a problem by:
    - _9 n. j3 g' i* }' T4 K! q) C% l2 o8 M7 ?7 ]4 j
        Breaking the problem into smaller instances of the same problem.
    , [3 L2 {- Z: Q) C0 \% k, J$ ~& I  L4 z9 Q
        Solving the smallest instance directly (base case).
    ; r/ b. N! S- l
    / |! j' O$ @' }    Combining the results of smaller instances to solve the larger problem.
      J' U7 F7 J6 J8 Y6 j1 {0 u
    7 |: z; S: E+ YComponents of a Recursive Function
    & X0 A' I! K+ L: o+ t( G$ F$ Z8 u5 O# n) C+ w/ n
        Base Case:; j0 _# ?9 z: i! @) p3 o' O4 p( R9 p7 i

    / K2 C4 \' ~1 R1 J$ {2 Z( C        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    1 n$ `" x( o6 P' V% ~8 u3 x+ p+ G9 V: Z: I& {" @; F
            It acts as the stopping condition to prevent infinite recursion.
    " W  x& ?. k* |% E, g5 c$ D4 s; S* W; R, U/ a
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    0 w7 {) h4 s8 [) |
    % N, i& S: Z0 R    Recursive Case:1 ?6 |- R& g' V3 }4 J+ h

    ; Y% \4 \2 d  j% `6 t3 `( n9 Q8 q' @        This is where the function calls itself with a smaller or simpler version of the problem.: K( g" a$ v& x) U7 ?$ j' C
    , j! x) P. A1 r- K  O2 i; I  f
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    * |7 |4 z! {# [1 Q! X4 @! X1 k: p4 [* s$ P5 \9 b8 _( H
    Example: Factorial Calculation
    + c  G# z/ h' F$ @( o2 `2 R/ P/ _9 F9 y# g! \4 l  h
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    7 V+ K, b/ e2 C8 j/ z4 F' ^2 d! ~" t; W# i* _% b  Q
        Base case: 0! = 1  v1 `6 M* p" I8 u6 ]
    1 U# G+ j8 p  I2 P6 s1 n0 M$ j
        Recursive case: n! = n * (n-1)!
    4 `2 v, y3 {2 J0 x/ }7 N
    5 f% t- E& m* @8 CHere’s how it looks in code (Python):
    & N) ^1 B2 p, [' \python" i; `! K  X. E3 V/ n

    2 y# \6 u; M% q" n5 s" b$ @1 v( ?  D9 b( _
    def factorial(n):
    ( g: F5 c: D# D" g$ M    # Base case
    7 ]0 Y) M* G; ~7 k* B    if n == 0:( X9 }& H3 F6 \6 ~+ i1 \8 `
            return 18 ]' f5 i9 O- {- ]5 J) ?/ z5 v
        # Recursive case
    0 L( U" l1 H, m% d    else:3 d# n) [8 c% ~
            return n * factorial(n - 1)
    ) F1 ?& i6 s  o: f9 g1 Y
    , C8 w. P. d" S& f0 s, O# Example usage- ]* B5 U7 H6 f+ h& j0 F4 H$ V
    print(factorial(5))  # Output: 1208 U: j: R4 r: c

    * l# q& I- U* ^How Recursion Works
    ( L7 Q- R* G! q: L9 e$ J  F2 Z3 k! h. H! J
        The function keeps calling itself with smaller inputs until it reaches the base case.- D- {4 ~, g/ k& x( T' N
      x/ O4 h- a! q% A9 W( T9 i
        Once the base case is reached, the function starts returning values back up the call stack.
    - ?( g( f9 ?( a+ R; {9 W4 m8 d9 X% l9 |% j$ a+ I7 D
        These returned values are combined to produce the final result.+ M) m/ D: F' e

    2 c+ _) N$ G4 Y3 A. W7 jFor factorial(5):
    - z' @: l. W7 @( S8 o+ D& L
    7 a; |7 S1 \! D
    . K( u' p& U$ o. _factorial(5) = 5 * factorial(4)9 z' [# F1 r3 v0 a( w
    factorial(4) = 4 * factorial(3)
    " n& ^1 S, M& B8 \1 X: nfactorial(3) = 3 * factorial(2)0 n, ]1 a2 K& T" j% J  ^
    factorial(2) = 2 * factorial(1)
    , [* d: W5 [3 C5 F' O2 f' hfactorial(1) = 1 * factorial(0)
    2 q6 ?" Y, x3 a( t! u- O' C! q* Ifactorial(0) = 1  # Base case9 w4 e" q* {  k% f
    # G3 a0 ]+ b) S1 R. L: Q, o! C
    Then, the results are combined:
    * o5 k7 r8 J. j, [
    # `8 w% `, P/ B( U3 d2 d& h
    0 X' t3 q( I) K: F) w2 ]7 ^1 ^0 ?( Tfactorial(1) = 1 * 1 = 1
    1 q8 K5 Z) W4 y4 K2 E8 w9 [; mfactorial(2) = 2 * 1 = 2
    . R. e" A3 g$ R# A% b$ wfactorial(3) = 3 * 2 = 6/ f* [, h/ f# T) w3 \
    factorial(4) = 4 * 6 = 24
    $ ~; ~& N0 }& m# G" @( k. W2 I/ ofactorial(5) = 5 * 24 = 120$ S0 N3 J; V' u: u

    7 n2 G. L( g. H4 _% b# Z; hAdvantages of Recursion9 {! h  q% d  L8 {3 u: D8 S  p
    + L7 b: d  g: M6 P$ r- E
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 `+ ~( o& {3 G' L' `7 i6 |' e; E0 T7 X& N. s7 t+ D: ^
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ( U& u0 ]& i  B% y% j
    4 c/ x3 p3 [2 H: u# p2 I* ]Disadvantages of Recursion
    / c0 y' d" b% y' `" }/ R$ ^$ O
    ' U1 M% h" j9 n, B    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ ?$ j5 b; n4 r8 w% u/ u' a7 ?

    - E# x3 O: Z6 Z6 a* l& T    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).; r! b8 b2 e* d$ A3 O) ~  n* z9 f

    " C1 Y9 R! K' M; XWhen to Use Recursion% W" C' ?1 m) k% l5 ?9 T+ t
    " y& f, X6 @, M6 o7 o$ s
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: P5 b1 u1 y, O; {. |: f& I# s6 s1 E9 {
    & o' ^% i7 p, _. ?4 Z' U
        Problems with a clear base case and recursive case.5 ^) @5 j7 F- F( J  ^" W5 D
    ( S0 {  W0 p! `9 b
    Example: Fibonacci Sequence
    # R% m, B3 L* W
      S& L; x$ l& L: aThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    3 w! [: l% q6 f' e* P' y9 z- u
    - S6 A4 b: y0 q' j9 ?8 D2 Y* ^    Base case: fib(0) = 0, fib(1) = 18 G- a" ]4 X, I. l# W: w7 h
    - \; s4 x+ e6 I, x8 W, J
        Recursive case: fib(n) = fib(n-1) + fib(n-2)9 M+ r# h9 b7 l$ f: C8 ^' x
    ( o" \% T/ @$ c" g# ~% N1 ^
    python
    2 b+ t- l. ]( w6 s7 m8 z
    % Z! G7 u/ H3 R( J$ ]
    ! g  T5 c. I! s- I0 S8 Vdef fibonacci(n):1 s1 G: K% v) H9 B# s2 P. Z  x1 I
        # Base cases
    5 {0 G8 g3 \& s3 j$ g+ v' C; o    if n == 0:
    ; ?! b/ X' B% Y8 ], [5 O) W* X        return 0
    4 k7 J: C+ j3 [$ ~5 b4 D    elif n == 1:( O" B2 T7 t+ {7 }9 ]7 Y4 S1 \
            return 18 R" ^( S- Q) I: Y
        # Recursive case# @5 d9 @! b3 D2 m
        else:
    6 k2 n& O' O: l9 t0 h. j/ U6 B        return fibonacci(n - 1) + fibonacci(n - 2)
    # `3 [4 S& [; c  y8 e$ \( u- `9 Z5 Y+ y3 S5 v
    # Example usage( k% _" E6 y, k. J
    print(fibonacci(6))  # Output: 8' n6 f& k# F0 G/ r

    ! x4 I: n6 J9 v0 F8 i! {) E  xTail Recursion
    $ G4 ^. f: D3 N/ r1 O6 V
    * n2 ?$ V0 t4 _; H0 ?# CTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 l! N; Z  q, y  W5 e2 k

    1 y' B7 O3 C) ~# Y" cIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-23 10:10 , Processed in 0.032632 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表