设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1780|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    - v* Y0 u8 R4 `. H5 [
    8 n" ]! S2 `; X解释的不错
    1 M0 W1 G* U' [
    1 |& C  J; [* k" P; D递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    3 x/ f0 D' x- s9 J3 u1 I: N# R
    5 k% C, _& U' s; N 关键要素6 g  u! ~1 A( ?6 a' b
    1. **基线条件(Base Case)**
    . U( ]: ?& x# v! S) G4 R+ u  e   - 递归终止的条件,防止无限循环
    4 ^* X, k) X: n- ?( f) k3 {   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    % ]! _5 t( C8 Q& S' C
    7 `* x: z& u, J4 f  y7 S2. **递归条件(Recursive Case)**8 L# Y. e+ n. ^, o  R4 w7 o
       - 将原问题分解为更小的子问题
    ( W  d) }$ E6 }9 U# l   - 例如:n! = n × (n-1)!/ ~& G. C$ b' k+ ]
    ) q; m8 Q! n( X6 b; |" ?
    经典示例:计算阶乘
    $ z% a4 |% c) U! Upython
    , Z- P$ s* w0 _0 D' f- P6 y! K$ K1 Bdef factorial(n):
    & q# v: n4 F6 a    if n == 0:        # 基线条件
    % m- Q# z/ M" O0 D! m        return 1, R3 w: |' {" [% A' R7 V
        else:             # 递归条件
    / t$ [; h3 {: n6 [& z        return n * factorial(n-1)
    - I4 Y1 p% t5 U: N执行过程(以计算 3! 为例):; T* q. S* L0 @& Z, }
    factorial(3)* i, e# q+ ?: _+ q( @1 d
    3 * factorial(2)& z( q; x  y2 H' \6 R. R8 m$ t8 M
    3 * (2 * factorial(1))8 k! X- r- G- G9 Z- [
    3 * (2 * (1 * factorial(0)))! F0 R6 b/ Q5 C9 g1 n1 j
    3 * (2 * (1 * 1)) = 6
    ) K8 p- p9 G( j3 t& N( M) S- R* r1 t, m, Y$ H  b9 K5 K7 ^
    递归思维要点
    4 u& d4 M. y7 U5 E% L" L  y# I  {1 _1. **信任递归**:假设子问题已经解决,专注当前层逻辑2 b# _! O( _& V$ Z$ N% R
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    8 ?' H( O# h. ]; z' E9 [1 Q6 ^3. **递推过程**:不断向下分解问题(递)
    % s7 x; N. ]/ B* f, h) {4. **回溯过程**:组合子问题结果返回(归)
    ! q. W, p: M/ D( I( O% Z( T6 g9 ]" `! e0 k( M
    注意事项! B+ T2 f, J# Y* a- E
    必须要有终止条件: u6 f+ q+ b/ w( m( Y
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    . S* d; V5 m% W. Z+ a+ x某些问题用递归更直观(如树遍历),但效率可能不如迭代$ s% [$ I& F* [/ q# M+ a2 V& `7 @: h" j
    尾递归优化可以提升效率(但Python不支持)
    4 ]6 j6 ?% o8 e. E' r5 I4 f, e0 N. g) X3 y. R
    递归 vs 迭代* q, e6 ]/ {' t2 j' ^, ~5 k
    |          | 递归                          | 迭代               |" F3 |6 |! H' _8 _8 s" n: Q& N
    |----------|-----------------------------|------------------|
    2 F. z) S: u9 ^+ \+ @| 实现方式    | 函数自调用                        | 循环结构            |
    * v% Z& u( p! F# C0 C| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |' c: s; w  Y. r
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    4 H* @5 |! ?* J+ M2 B| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; s+ U/ C/ q  t0 H$ ^0 J0 F  C+ ?5 z: }2 `2 e& o* k0 A% ~+ A  z
    经典递归应用场景$ E+ l' _0 D& D/ Q: l
    1. 文件系统遍历(目录树结构)3 O* W) u" i  n
    2. 快速排序/归并排序算法
    / j0 b5 G. _: ]6 G( A! L3. 汉诺塔问题
    2 B6 p) n3 T  U2 ]4. 二叉树遍历(前序/中序/后序)
    * N! h* z9 o5 ]6 F+ K, P5. 生成所有可能的组合(回溯算法)
    7 M3 Q3 o4 m* O7 F* |6 K8 i& |9 W; u
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    13 小时前
  • 签到天数: 3143 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,% U' ~% L7 K0 H4 l
    我推理机的核心算法应该是二叉树遍历的变种。
    + z  \! {2 F/ s( V另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:( ~4 w' ~: ^9 d2 C9 G# j. t& V
    Key Idea of Recursion1 C3 f. I  @$ x; J7 y: n

      d7 O/ p; v! `6 q& nA recursive function solves a problem by:& R2 P7 x' n- h( I
    & g7 q' n3 M2 u; K2 m; ~# h
        Breaking the problem into smaller instances of the same problem.
    4 @1 {' |) i( H5 Y4 P/ q: b+ F, d' i, _9 P6 F* c
        Solving the smallest instance directly (base case).
    + ^7 O9 N+ `: R* A$ ]# @4 Y, Y( g4 w$ p
        Combining the results of smaller instances to solve the larger problem.
    5 w/ C: E$ f& K3 g8 z% ~; _! K' ^2 {6 L$ q' Z8 S
    Components of a Recursive Function
    : S' d" `6 L+ d9 E0 v! x( }4 W# D3 t2 D4 p& x) f$ U# {
        Base Case:
    - P5 J" |* i* }  o. z
    ! T3 F, }& V* S" ^" |# k( g( _) `        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.! ^) K9 K9 C9 @5 j9 F& {) ^" W

    3 s0 Y0 {2 J. K, w& {  I( ?$ [        It acts as the stopping condition to prevent infinite recursion.
    % A/ o6 `" a4 J. y, _! r& H* r9 x  q
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ( \* `- w6 V; B" g/ S/ Q' R
    : c8 {5 X! M* n$ U9 I- y    Recursive Case:+ ^) C- P; z) K6 y& x/ U3 [
    # U& |! g- `+ e4 r  |# E
            This is where the function calls itself with a smaller or simpler version of the problem.) \( v  G! g' v

    3 E: v3 F4 B" Z+ [+ k2 |8 O        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# ]$ Y  V' K6 z9 l) y. }/ O# _

      @* a5 ?# \$ D- s  g. w: rExample: Factorial Calculation
    ' L0 ^! B1 G0 J3 l9 E8 _3 }) ?- C
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:* S6 T$ G8 _( z" d3 |/ b9 a6 P

    4 E! |" V0 t- a7 ?5 j( N0 F1 B    Base case: 0! = 1
    ! u5 m. r  F! v7 {2 P' b6 O# }. [# x0 ~
        Recursive case: n! = n * (n-1)!
    $ G( x: u1 v0 R6 o
    4 A- Z: \$ G2 p9 IHere’s how it looks in code (Python):  T% ]9 r4 F, E1 u9 ^7 t
    python
    , A9 [1 {5 K1 k$ E
    . [2 i! ?- Y$ q* J8 E
    ! L* i% X3 {6 ~$ R  ?' h6 Adef factorial(n):
    ! \" q. x0 L+ E+ [9 c    # Base case
    ! f* c; V) x* }, m; {    if n == 0:6 N. K4 L% u; t0 l5 d" y
            return 1) B6 \. y0 j7 x
        # Recursive case" f+ N/ T. n! A' w
        else:% X, ^7 z5 n  N. [
            return n * factorial(n - 1)
    2 h' D/ j+ x" P" y5 u9 Z( m' @9 ?7 e: ?
    # Example usage, j8 T, Y- I& N
    print(factorial(5))  # Output: 120  `: y4 s* A5 P( y$ a* n, T

    ; n) `- e0 G% J+ ?, Z& v  `How Recursion Works
    " v: Y2 [1 a$ |2 P* ^% R
    7 b) s1 l% O4 c  k. r$ i  I    The function keeps calling itself with smaller inputs until it reaches the base case.2 E4 g6 {: W9 t6 A

    9 }) T( t; p  _2 \    Once the base case is reached, the function starts returning values back up the call stack.
    8 g! f; o* @# S8 H* |) J$ O. ?
    ) t$ {  I0 Z% P6 k1 ]6 Z    These returned values are combined to produce the final result.8 a5 ?& s4 ]* C# Q6 Q

    , s% m  H; z- ]) K2 SFor factorial(5):
    - H4 k$ ]5 O; r, U1 Z4 d& w! P) `& D
    " ^+ E/ S: m1 U0 G, E8 s$ p
    factorial(5) = 5 * factorial(4)
    ) K6 c! y/ j/ T( C5 @7 Xfactorial(4) = 4 * factorial(3)# ~. V) L! j$ y7 r
    factorial(3) = 3 * factorial(2)3 o7 |1 o4 r1 \( O3 c  {
    factorial(2) = 2 * factorial(1)
    ; t/ c4 S0 \7 O3 w1 P$ U- }; g: r, Tfactorial(1) = 1 * factorial(0)5 z! \6 ^4 k9 g1 m
    factorial(0) = 1  # Base case7 S, ^4 G$ w9 O. b" `

    : {: ?. |5 w% P1 b6 B' s8 G; |Then, the results are combined:
    - Y, T+ j. Z) o0 J
    $ s4 @  U4 n* H$ y8 _% T- \7 h. k* E- p6 z9 y
    factorial(1) = 1 * 1 = 1
    * e* g' z6 F* wfactorial(2) = 2 * 1 = 2
    / r/ `4 H6 k/ U6 l7 [$ ?' ]factorial(3) = 3 * 2 = 65 F4 ^1 F  x. m0 n; i, L5 _
    factorial(4) = 4 * 6 = 24
    2 p7 ^& m+ G9 k& J3 q1 j; Ufactorial(5) = 5 * 24 = 120
    2 Q4 ]4 l+ u  _$ T
    1 E  Z1 g3 X! u; n, k/ _4 nAdvantages of Recursion1 s4 P  n; X7 u6 v( e

    & Z( r, ~0 x4 T    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).7 W- m; q# E& k  K
    3 j& s! h9 l4 v+ W  q' I
        Readability: Recursive code can be more readable and concise compared to iterative solutions.0 j1 d: c0 p' M+ q9 U) V* e
    ; f1 V9 n* s2 _+ R0 ^$ e$ @
    Disadvantages of Recursion+ W1 F: k+ A' }% D6 i
    % R3 z1 m* i: |/ J
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ n1 M4 k+ S, O+ Y3 \) ^& v; g
    + X- U. A7 u& u) v
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).0 t  A# Z/ F3 D# d0 H' K9 \+ x5 y
    , U  a5 @# j( @( J. F
    When to Use Recursion
    1 f1 K$ T8 J. s. ^; A6 ]0 A) J" _" V  h: O3 D" Z5 K0 ^/ G
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: m) D% g- d6 j( p3 w
    ( m- O3 U6 I) ~% }+ m- a7 n8 \
        Problems with a clear base case and recursive case.
    # H7 F0 T# U0 {4 j% z3 T- t$ e
    Example: Fibonacci Sequence- M1 X0 ~& \" Y0 ~- w

    5 t8 i4 X! M% T3 B$ z2 V1 wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:# c5 ?0 ?4 I6 A- Y' N& Z

    ( l0 O& g) ?2 H0 y5 ^    Base case: fib(0) = 0, fib(1) = 1+ q  S/ h# M6 Y# n% [
    + H, Z' \; C5 `- ?: {1 C4 j
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
      x7 m) N- r6 l
    0 |! B' `8 K" @% e. zpython0 p2 ]2 \# @+ c9 z; J: q  ^

    ' K3 Q' W9 S3 B' U" K/ p% N
    ) C  j  k" n# O& H* ndef fibonacci(n):* e' e1 F; R6 k+ E, x1 h, V
        # Base cases2 H$ [4 @) R- x* [- |
        if n == 0:& H) ?8 q- d* Y0 ?
            return 08 \/ R$ r/ S& K; }; b
        elif n == 1:/ J2 v6 e) k& b% u
            return 1! a% ?9 h. O+ K% ^
        # Recursive case9 |1 A& q" K6 v0 w2 ~0 P0 E
        else:
    " Q( I# G% [# f/ a' ^; b- V1 F        return fibonacci(n - 1) + fibonacci(n - 2)/ J6 S" b, J' t6 M
    8 U( L3 x6 I8 c9 n/ r+ S: U7 q
    # Example usage
    ' K2 _% g! f# @( |! ?! Kprint(fibonacci(6))  # Output: 8
    * |5 M. v! L% r/ f5 Y
    / _0 ?3 h/ a2 O- a4 _8 Y" |/ {2 D% cTail Recursion: ^5 f2 b+ B0 v7 ]) h0 h; j- V
    $ K- ?/ o  a" U4 Q; h' y8 i. z
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 J7 N) \9 O# n6 t
    6 b7 K& p5 z$ V# dIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-11 20:55 , Processed in 0.030101 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表