设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2046|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 0 F0 j2 q) F$ t+ W/ R8 L

    6 P* P6 `. i3 G解释的不错
    : g. H- v' j2 x" K: ~
    & V& }. [! r5 M递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。' r1 ~% ]3 e# z2 ^0 |$ b7 V
    & l+ q- o( `! I% I' b+ \
    关键要素# P" p# @2 @: r; R3 h: t2 B% B
    1. **基线条件(Base Case)**
    ( F( @  S3 u4 \  B   - 递归终止的条件,防止无限循环7 P9 z1 P. |/ I) Z- ]
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    3 ~; f& t; h! z) c# D  H4 N5 D6 a- O
    ) `* j6 N$ ~: `7 m  k9 O! j7 ~' q2. **递归条件(Recursive Case)**
    : b5 Z2 `  ]; @  ~  J5 A4 n   - 将原问题分解为更小的子问题2 P( a3 T. U& K7 H; u; @
       - 例如:n! = n × (n-1)!
    0 y7 D( f9 J; b# q6 J$ W& |9 N9 S* M8 j  l6 C0 X
    经典示例:计算阶乘
    ! q8 ~2 \5 ?. b$ `python
      ~8 L. o- H( E& F& N7 s! adef factorial(n):
    + L% W+ U- E* m    if n == 0:        # 基线条件. q5 J" ~! c- [
            return 1+ R% L$ u( P$ E5 `: n* L$ {
        else:             # 递归条件! @: k) q; \2 N/ p2 K, z
            return n * factorial(n-1)
    ; `1 h/ r6 n) R; r6 d执行过程(以计算 3! 为例):! D6 b& N7 i( f2 ~0 l  q" J5 h3 d
    factorial(3)
    " B! L% a; i. r$ K3 * factorial(2). G. B: p1 M# u) Q  ]- @
    3 * (2 * factorial(1))2 I% p8 Q% u0 Z# r( t
    3 * (2 * (1 * factorial(0)))
    ) Z2 c3 i6 I! u3 * (2 * (1 * 1)) = 6
    5 ~  V! b% f9 E5 q% ^. m- `- T7 x0 x! ]( ~& _3 G, `
    递归思维要点6 w* t! R  j3 o& w- b$ {
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑8 F% p  Z0 P: X8 x) h
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间); X' Q6 q$ t( S" x% n: `
    3. **递推过程**:不断向下分解问题(递)" a" l- ~# d" L7 m0 Y
    4. **回溯过程**:组合子问题结果返回(归)% J0 K6 x2 m* s: f0 o3 i' `* }

    ! F( P2 o+ T' \. A8 q9 b 注意事项$ m: X; q$ c6 v$ o
    必须要有终止条件( T, r) O9 T- ?
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 U% I# J/ X# ~9 z) ]! n; T' @- e某些问题用递归更直观(如树遍历),但效率可能不如迭代- z5 q1 ]: s( {
    尾递归优化可以提升效率(但Python不支持)
    2 k5 o& B8 L9 ]! |! f1 v; s7 B. h. ~; Q5 h6 a. i. @6 ?
    递归 vs 迭代
    + \" |) I0 T( k. l' Q& s3 t' V|          | 递归                          | 迭代               |3 W( d1 N% J7 v$ A- o, @" C
    |----------|-----------------------------|------------------|
    " ^8 t# a, m; f1 p+ \4 ?| 实现方式    | 函数自调用                        | 循环结构            |
    / `6 R# f8 j  `' a| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |7 m$ U4 P' E* a
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; U" r0 S& ?3 W- D2 V: S) i4 U' _
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    1 a+ u/ a0 }4 J) W! X% {, Y: C
    8 \+ }3 I5 W1 A2 E 经典递归应用场景; G. s7 y- l+ G/ N' J' l2 L
    1. 文件系统遍历(目录树结构)4 o- U3 D0 v: h5 S9 F6 a
    2. 快速排序/归并排序算法6 [# a* o7 H! d" n  y
    3. 汉诺塔问题
    7 }4 F2 P# x$ j) Y9 v! ~: C  X4 H4. 二叉树遍历(前序/中序/后序). U" ]$ f) A, U* I) O2 g* J
    5. 生成所有可能的组合(回溯算法)
    # O" k4 K4 X5 J2 ]' B6 w- t) }  X. R2 _$ v' Y( N7 S
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    12 小时前
  • 签到天数: 3167 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ f$ H/ H& I; c3 B
    我推理机的核心算法应该是二叉树遍历的变种。
    9 v: h- x8 S+ |. Q* G0 k$ M7 X3 N另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    # I) B$ X' ?% ~' t* M2 c4 n2 UKey Idea of Recursion
    - m; n- X- t( r5 x2 q
    - V8 p- f) D$ Y, F8 F: \A recursive function solves a problem by:! K& q1 D' a- z- j/ ]2 y# x7 I
    & d0 ]; i7 ^2 {% t1 J- v! J( y
        Breaking the problem into smaller instances of the same problem.
    % j2 Q. Z5 o5 d# W; W% S* Q
    ; Y/ W+ C' a) ^5 y# B9 ^    Solving the smallest instance directly (base case).
    ) G0 S/ G7 f' j& L# P
    ! ^0 [" d& U. i0 {3 F$ |    Combining the results of smaller instances to solve the larger problem.8 n0 P8 ?0 P! m  t9 b) a$ X. \
    - O8 B/ a/ T: m" A* n/ Q* b
    Components of a Recursive Function, D6 i+ \- W6 }7 ?0 e" S
    % Z! [7 u* k+ ^0 Z6 ~. Q) v3 \
        Base Case:' @# F1 L* R0 M; u/ z8 y  V& K
    ; U" c7 @4 J& ^
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    # b6 d8 m4 U! G5 d% E& x" w: ^. E: ?! z. @" X( B. g
            It acts as the stopping condition to prevent infinite recursion.
    9 L9 ~) J8 w0 N7 C1 K9 `$ E6 U5 w$ U' G
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    . D8 q$ b) K5 k2 ~$ S3 D" D- s* f! O. e6 W: \$ G1 W8 L4 c4 @' e
        Recursive Case:
    5 N) V8 C' Q! @- B! ?4 d/ |+ d0 d
    ; [# f! Y2 h3 L( y3 t        This is where the function calls itself with a smaller or simpler version of the problem.
    ! q  f6 l2 V; C6 h- ?4 G
    ; p. G- q3 s; U* o7 T* i4 o4 |* z        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).; F' o) d0 g5 W
      f8 `$ P9 Q! S- J& \2 W  G* Y& d
    Example: Factorial Calculation
    6 v5 X  Y0 ]6 {. z5 B
    8 `3 a7 z" m4 M* E  ]9 |The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:2 q$ |% v4 o/ t" R; \0 P( E; I

    ; y+ E0 @  r6 g% P" E: g! d* f& f    Base case: 0! = 1' D" ]. ~) I. D
    ; p* V, _% s3 o3 I; U
        Recursive case: n! = n * (n-1)!
    5 e: B" t3 E* g+ K: V2 ^1 _
    ; S% e; C1 Q; w% NHere’s how it looks in code (Python):- B# _+ k1 h4 z# X5 c% i& P8 b5 Z, X
    python; C: L4 F+ D8 t! @( Y* h

    6 P8 g! a" j( L2 H. `4 |# k4 Z: ?3 _9 p
    def factorial(n):1 q4 x& q+ T4 p& z2 |6 F7 S1 e
        # Base case
    ( J$ i9 p5 j4 n5 E4 s( P/ b. H" V    if n == 0:2 A  C: s( _+ \1 C) n# V
            return 1
    9 h: H% ?8 W5 a7 F. J0 O, i6 J! k    # Recursive case
    . d( X6 B6 J5 K9 Q7 R    else:
    4 R* }( h" K- r% j: G* z        return n * factorial(n - 1)9 O  Z1 Z0 }* K3 _9 e
    6 a/ y8 H# w% |8 d, [
    # Example usage
    & H: V3 d/ L' t& pprint(factorial(5))  # Output: 1206 Z+ m: W3 L; F0 D$ M

    6 {5 }) W3 I2 {$ rHow Recursion Works
    4 ]6 r7 l# w2 |
    5 ]$ h- C, |* x5 A* a& t    The function keeps calling itself with smaller inputs until it reaches the base case.
    8 g5 B3 s) x0 s. {2 m3 I% b# O8 R5 I7 a0 `; W8 ^
        Once the base case is reached, the function starts returning values back up the call stack.
    5 w; N- L' C5 s4 Y9 S2 v
    ) Z+ G3 E+ c' B- y" C7 K$ N    These returned values are combined to produce the final result.0 ?7 F, f9 P7 q/ P' C

    * u7 ]% E6 W& D6 }( D& CFor factorial(5):
    9 _. v- O6 E7 b, r, @- T
    & b6 d6 f, N1 r# p: e( ?" D3 l" f6 E. E* r' ]/ Q$ p
    factorial(5) = 5 * factorial(4)
    : p; y& y$ D% K- ^factorial(4) = 4 * factorial(3)
    5 z# S8 ^! p6 R9 H( t4 H7 ffactorial(3) = 3 * factorial(2)
    2 n4 f9 N/ |) nfactorial(2) = 2 * factorial(1)3 ]5 O0 F$ @/ W+ I8 o0 y
    factorial(1) = 1 * factorial(0)& P0 q$ }! O6 E% c& W9 V& o* J# l* M
    factorial(0) = 1  # Base case
    1 C1 A: f$ q" K3 _8 D( G! Y
    0 o2 {, J+ h2 i1 dThen, the results are combined:
    * f; m+ H3 I! S4 |2 V6 T! E6 G/ B7 s( V2 _; V

    ' E' T% Y$ r* V6 Q7 g* D" Q/ Ufactorial(1) = 1 * 1 = 19 i7 P& T  q6 s* C
    factorial(2) = 2 * 1 = 2! f+ `& s4 f* C" q& B9 h
    factorial(3) = 3 * 2 = 6
    & g+ M+ Y# w9 u+ H1 `- Ffactorial(4) = 4 * 6 = 24
    % \+ y7 m9 ?% }, sfactorial(5) = 5 * 24 = 120
    # Z) S8 R, y8 Y; Y0 b7 v% e* j- S. O5 g
    Advantages of Recursion' Q3 H. s% \5 e0 P& y2 I" U
    - ?7 W, O1 L; e0 Z0 f( M, Y4 D
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).' v& j4 p% E" H% c- ^1 E

    * V) c# ^" j8 ]: n5 g# ~    Readability: Recursive code can be more readable and concise compared to iterative solutions.0 q/ L$ E& ~! N6 A9 p; `

    ( p) C! j# q! }4 r$ l1 a8 O1 y# ~Disadvantages of Recursion) {8 A# |2 W, K1 i
    6 O  M- v# B" `, x
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.8 t, A3 L4 H% k/ w

    - @5 s: k- I% D: V" k1 O1 f7 i* |    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    0 Q! }5 |% ]% c# u; Z
    6 B9 @" x0 G  g% AWhen to Use Recursion( G- E1 _! {! R( J9 A
    $ N0 E# [0 `1 W, P& o8 f7 Q$ ?
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).5 _4 o9 Y( F# @% m" P% l
    2 }( t7 V) U. L% W# V# z! t
        Problems with a clear base case and recursive case.* }/ K) y) Z% S! B, P( }
    ) ~+ W2 [* B# B8 b1 i, h# ^5 c
    Example: Fibonacci Sequence' P/ a) ], p% O3 r/ X9 {
      P( \4 Q9 d$ H/ T" |
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:5 a% H- Z9 [6 W& U

      L- l7 ]) k3 R8 h    Base case: fib(0) = 0, fib(1) = 1
    0 F( e5 y" I; e' R2 y/ R6 `1 E1 r) {+ Z# X% k
        Recursive case: fib(n) = fib(n-1) + fib(n-2)0 |) g$ {- x  k' {
    ( w0 Y. O) W' B0 k9 S: }
    python, y) L. c) T  U- A
    + x- z/ S" K+ L# ?

    & p! I8 S' ]% f# {! {( O0 Hdef fibonacci(n):' ~! `# A/ G* t/ V4 j! P
        # Base cases
    $ @* s8 ?( V7 S9 N! ?: g7 G, M$ E( x    if n == 0:: a, r' M3 O  A/ A
            return 0. N$ O8 q# G+ @( D$ ?, ?' b+ }$ n) m
        elif n == 1:0 S* i3 R$ p' S4 ~& |! q$ E
            return 1
    8 S" a2 O8 p3 N0 \& n- H    # Recursive case
    / n9 S+ Y% O" ^7 X" `    else:
    3 u3 M, s5 x* {        return fibonacci(n - 1) + fibonacci(n - 2)
    + p$ j/ R  @& V; O2 U$ q2 y4 \/ R! \. [3 m7 i
    # Example usage& \; \3 m8 A3 j% O8 x3 K
    print(fibonacci(6))  # Output: 8
    # `9 A/ P& X4 R/ X) N3 d* m$ u" Y. \0 W* z) p  A; Y& @
    Tail Recursion
    ; q* |4 `  s" a9 `! [+ N' K$ Z  |
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).- d% U4 V# y. k  v1 u6 B# Q
    6 Y' I* A& t' l1 z+ X4 L
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-8 22:29 , Processed in 0.057283 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表