设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1004|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 7 X3 G1 c4 ?# X$ h
    ! b" ]- f# |: |$ I3 S
    解释的不错
    $ k* I: d: u2 g+ G; s# k# v. ~) R' j; e' j) l
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    $ a' [' a( r! `" S
    0 U( g) f* n5 t. R; W 关键要素
    2 a, q- q7 g; v3 u: {1. **基线条件(Base Case)**
    # n1 i+ o& \# e6 ~2 j: \5 T   - 递归终止的条件,防止无限循环( c' R4 `$ |" n( x) i
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1: b  Z0 y7 `9 v

    2 }% X4 O3 `5 r3 z5 @$ O) U. T4 A3 i2. **递归条件(Recursive Case)**5 w" L7 l. h9 X, ?0 y( q9 y+ r
       - 将原问题分解为更小的子问题
    : |% b( C; u3 n5 @  `2 j' n* |+ V   - 例如:n! = n × (n-1)!
    $ S( X( Y+ ]4 N  J2 x+ C, t# |7 y. v/ _/ x+ C3 `; O9 x
    经典示例:计算阶乘6 y, Q& p" U. N
    python) _* P" R; h7 Q" }& |% ?4 f
    def factorial(n):" J8 U! x" b: t  s; f; Z0 M# @) n
        if n == 0:        # 基线条件
    # E3 N0 ]2 o, w+ d% [0 U& X. N4 C        return 1
    % P; ^" a5 Q' c* }! f' S    else:             # 递归条件+ u7 D! a! s& I5 J# p7 C! K7 Q% Q, [
            return n * factorial(n-1)
    $ @" n5 |; \* W4 }, M0 Y& b/ h' a执行过程(以计算 3! 为例):$ z' c# F. }- C
    factorial(3)! n1 K  S  n' C# Z- i- ], m
    3 * factorial(2)
    4 @4 v. s6 B: F3 * (2 * factorial(1))$ K: l& [& P0 }: r3 K. @
    3 * (2 * (1 * factorial(0)))$ R' w$ K- J% p9 s- E
    3 * (2 * (1 * 1)) = 6. v( M7 x" z# P+ v- g2 x) D, X% i6 z

    ; _# V% c: G1 G8 z" b% U' V 递归思维要点( s( X/ h) p1 J# I: x9 Y# l( [
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . h; A; D% a  J+ r5 h5 o2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ' u) c/ g; w! d- t; R! J9 R+ l3. **递推过程**:不断向下分解问题(递)% \0 ~$ k9 U* r. l0 f6 v' `
    4. **回溯过程**:组合子问题结果返回(归)$ e, R) c+ g( j& S. f. t3 G) e
    8 a: l- v: x8 t( ?
    注意事项
    9 s6 n  I: g- F! N8 s6 p$ @: Z必须要有终止条件
    * U; m. s+ Z" \# z递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ; P7 T2 S7 \/ r某些问题用递归更直观(如树遍历),但效率可能不如迭代2 F& A$ I5 H9 E) m: z, v* k
    尾递归优化可以提升效率(但Python不支持)
    7 _/ Y+ Y2 z) s$ [) Z
    / _; s5 w* ?# ^ 递归 vs 迭代/ x  O* P' P- @( x) o& ^. E
    |          | 递归                          | 迭代               |
    9 E9 J+ v. u& r' q% F|----------|-----------------------------|------------------|
    + H+ X* Y: x8 |# ?; U! B, }| 实现方式    | 函数自调用                        | 循环结构            |4 A8 A" I* e1 J
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 a" Z( j' p) Q# i$ p3 j$ V( C
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ! i9 m; B1 Z* O* k' k: D9 u( G) o| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    6 G: W0 k* V" t) s
    2 m, t, N* v0 A* X# A 经典递归应用场景( L9 X3 Q2 F( o
    1. 文件系统遍历(目录树结构)
    . S; v% S  a' V5 p3 }) E2. 快速排序/归并排序算法
    $ [$ ~9 t- w8 D, x' ?3. 汉诺塔问题6 \3 P" u8 H3 z) Q; g) _, W  }/ \1 H
    4. 二叉树遍历(前序/中序/后序)
    . a# f% B# u/ d3 Q9 O5 p5. 生成所有可能的组合(回溯算法)1 x0 E1 N9 r9 d8 v1 z
    % S1 ~( D& N- z9 \: W& x' R2 P
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    7 小时前
  • 签到天数: 3067 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,; l+ l0 T- N3 x7 e1 K
    我推理机的核心算法应该是二叉树遍历的变种。
    , e- N4 [; \  A! z( F0 Y另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 _' U, s2 @5 x* Z5 RKey Idea of Recursion% f4 d( s8 P7 }) M* F- W

    6 p, w/ P4 \5 V, v- K5 ?8 _6 |5 BA recursive function solves a problem by:
    # Y" `4 z+ h. w  M
    % C$ p1 e2 D6 X/ E    Breaking the problem into smaller instances of the same problem.4 O4 D; p4 q! m/ D' v" ^

    5 _$ D% g5 p7 C    Solving the smallest instance directly (base case).' y8 Y0 x: q) P3 t

    $ a) C5 i) B& }- d% V6 C' O    Combining the results of smaller instances to solve the larger problem.6 t/ f0 H$ m1 y4 C+ u( O+ [. s" c

    + J9 S( l; ]* ?+ \6 c( p: \5 CComponents of a Recursive Function% q: t8 M3 a1 x6 [

    1 N+ h( }* |( v$ C    Base Case:: w. f# }5 S. N( F. j% ^

    ) T9 j' [' J" U: |5 H  f        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.- O0 t9 v! {* ]3 t) v

    5 M) w* f, _; e$ ^        It acts as the stopping condition to prevent infinite recursion.( K4 D+ Y9 c# d! X9 ^

    6 s" l& G0 T0 w4 Y        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.) \2 C8 p. F7 C' s. t# J/ N5 D" Z, h. Q

    4 F7 s( r3 J# r& E9 k9 H& w    Recursive Case:
    6 ]# v# v# g  Y# L) g# L% @3 G, k6 U* C, A% B2 |! m- V6 d
            This is where the function calls itself with a smaller or simpler version of the problem.2 _2 H% f3 b1 r! ^* _+ G
      O1 M- m" B" [. @9 ]3 P8 W/ Y
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).1 M. s) m+ ^, D. C" ^" a
    + i0 B$ W1 X; q7 J
    Example: Factorial Calculation" U& d+ R7 k* D$ G8 K( h

    . K3 y8 U/ i. E! `8 F& JThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    + s2 ]2 S( h' y( l7 h* E  D  R7 y9 l3 L% {7 m8 B1 Q$ ^/ h: f4 f
        Base case: 0! = 1- Q* Z+ Q- m9 h4 a5 n8 T/ r
    * v$ Q+ T8 }) Z) ~% P* }& ]
        Recursive case: n! = n * (n-1)!. J; I2 b3 g5 N7 R1 Z

    . n6 P9 F/ f5 K' D3 E8 tHere’s how it looks in code (Python):0 U. g( j: C+ G8 {8 w+ Q
    python
    & j- u3 @( i* |. y) E, |. C$ i' w2 @! F7 M( n7 N
    # H. e9 E9 E' h9 K5 j2 y9 r* ]
    def factorial(n):) P+ E/ V& R' v8 ~5 Z& \% n
        # Base case
    6 S. c4 d$ |0 K9 H7 K! a    if n == 0:. ]. \# C; f) ]8 `+ `5 x/ S
            return 1  g' l9 ^% n* z# p/ P1 [
        # Recursive case
    % W& L) r. R* o% K6 R/ f    else:7 c- {" m% m, [( M
            return n * factorial(n - 1)
    . p! s. a* z/ B# n
    9 g* s% X: e: M1 q; Q4 k# Example usage: Q  s9 r' \- P* i& g
    print(factorial(5))  # Output: 120) ?" i+ ]4 |' @3 @. {: t

    ! |% G& p! q+ k; Y, \( gHow Recursion Works5 Y5 b1 g3 `7 d

    3 w- C6 t9 C. h. f9 t5 ]    The function keeps calling itself with smaller inputs until it reaches the base case.: U, Y! l5 K1 O! `0 s- ]; l. r* h
    ' E& M' k! G* M+ o2 s
        Once the base case is reached, the function starts returning values back up the call stack.
    8 g# V, l  l% `! L1 {% ^* v9 I) n9 l/ C4 m" g' g
        These returned values are combined to produce the final result.
    5 z& D' y- ]9 f+ U1 ^5 v) C
    : y4 ~; s4 ?% D5 T" g2 ?# X4 T; dFor factorial(5):
    $ m4 l3 e/ B( {& l) j
    3 u. l- I, m/ Z9 S6 b: i  Q9 s) ]3 q# E& y  l; y* P! y
    factorial(5) = 5 * factorial(4)! W6 u) Y% m* [( k8 ^; _
    factorial(4) = 4 * factorial(3)6 C+ @" s% X! V7 r
    factorial(3) = 3 * factorial(2)  W) T* P* @8 i8 x- n, K# x# X% c
    factorial(2) = 2 * factorial(1)) |. [+ Y& r- c1 N* @  S/ V" |( @
    factorial(1) = 1 * factorial(0)
    ! k" o4 t* K- z7 Jfactorial(0) = 1  # Base case7 C9 V' J7 ^1 J' Y- [

    2 p7 I5 V2 a' H; ~& K2 ~Then, the results are combined:
    5 l' b9 T) a' |
    ( O9 B: @$ d8 t' I5 I  N5 M9 p4 O) m! x% _& a4 k2 g, }
    factorial(1) = 1 * 1 = 10 r( A, P6 B, ~2 a) C$ n
    factorial(2) = 2 * 1 = 2
    - ^3 C, `; X0 b/ Wfactorial(3) = 3 * 2 = 61 C) \' w0 U# p1 P7 ^) H4 L
    factorial(4) = 4 * 6 = 24
    $ s8 Q/ n# B3 c. l% afactorial(5) = 5 * 24 = 120
    # w7 a: e& V* B( M0 x! T$ [/ t" |: z8 L/ @7 g0 n/ ?
    Advantages of Recursion
    - `; f4 Y1 {2 v4 P
    # Q0 Q1 c+ C; z# }8 t    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).8 V/ Q! f' R$ q- y4 h

    , H0 c/ S! z+ G, x" k" O" |$ V    Readability: Recursive code can be more readable and concise compared to iterative solutions.  l6 Y' Z* [  M7 s" `
    $ N7 t4 l/ x9 A  o) m! i
    Disadvantages of Recursion
    & g5 A& d  O5 T$ n( k, P8 r! p" [8 U
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    * I$ a4 ]+ O. `6 j4 ]* l' [. Z: x
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: I+ D* A1 A1 w5 k

    0 Y; D8 h6 j/ W& l, lWhen to Use Recursion
    ) E$ f+ \$ V& @
    # v( M" u, \( O$ h8 q    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    4 c4 J3 [5 |: g8 w* @, d% ?- k4 A! b
        Problems with a clear base case and recursive case.
      n  Z; h" r4 w( j3 Q6 A; I7 ]
    + A5 `2 H2 j! z. Z" `' gExample: Fibonacci Sequence
    / R$ u! i8 q$ r& O( d4 _. n# X, a4 i! }, q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:# c  a. z; {& b+ x/ S2 ^
    & c% e+ S1 I7 f3 ^$ n" X, m
        Base case: fib(0) = 0, fib(1) = 1
    2 F0 j; h: `4 M: [: \/ G# N2 |; X, Z4 {6 X" X. M. ?" Y  K
        Recursive case: fib(n) = fib(n-1) + fib(n-2)1 s( X( q- m* |0 C* K- V; E

    8 @4 Z. ~7 X7 g# X0 lpython6 r+ u) p6 B* z. P- Y

    2 e/ L6 k, P# M9 `8 h* I$ G& @8 R- c0 p6 X
    def fibonacci(n):
    2 ?3 I, y) X6 [9 H    # Base cases4 @- y1 s# v) F) C; a5 O; M
        if n == 0:
    & j+ q. j) E) A2 Q' Y4 M        return 0
    2 B' g9 l8 N2 q2 d# R    elif n == 1:
    ; G. N. @9 k' j( e3 t        return 15 Q& g2 B, |" t  @$ u, |
        # Recursive case' |+ j' y# x( n% Z+ t
        else:, z5 S* I/ C+ X
            return fibonacci(n - 1) + fibonacci(n - 2)
    $ P! ]0 P6 {* w0 K8 k
    ' ~: a2 u* \! d" r& H  r# Example usage5 R& z2 O5 {; o9 o/ r: @. S
    print(fibonacci(6))  # Output: 8
    ' C, X1 B: _6 e7 x& t8 g
      {$ M' N. H- ~# ?& d" {/ u% RTail Recursion
    ; E5 A1 F; s, n* h6 d, H9 x
    $ p8 E0 ]6 r. P, O( I+ A& iTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    * L+ L2 w: C+ g4 |# {! `! v0 r9 ]0 O( v: Z1 |' q" y1 m! h
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-10-15 14:18 , Processed in 0.029011 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表