设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1488|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ; g$ M- B( t! U" E* o
    " \3 i7 h1 e7 T/ P# Z, t8 ^. ^解释的不错+ Q; k* {- n% ~  k  r+ \8 k

    ! E  n& A) w& v9 p7 c5 a2 j递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    / m' Y# E" \7 d8 g. J
    : j) Q, D: X+ J8 H! e7 g8 f 关键要素, X) y: y% D9 A8 ]# h1 F; }  X$ s4 ~
    1. **基线条件(Base Case)**
    0 ?* o+ V, e6 o& s+ n: Z   - 递归终止的条件,防止无限循环
    $ \& W3 Q$ S2 T8 i   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    1 g" k) f# J3 Q. a9 C
    5 W; o; x* n7 ^# I7 E: F3 V2. **递归条件(Recursive Case)**: W' v$ s( B- m, ?3 g! O. ^  r
       - 将原问题分解为更小的子问题
    2 I* _% R7 ^7 C) B8 X3 Y   - 例如:n! = n × (n-1)!* g+ H& a, }& V7 }/ ~0 C1 I
    # R, x5 D8 K- X- R4 ^/ C
    经典示例:计算阶乘8 f1 {1 b' G  H) j
    python( l+ x! r. ~. x) V+ P$ c; D
    def factorial(n):) Q, B, G: {# {% Q; F
        if n == 0:        # 基线条件
    ! D3 K0 G# g9 H        return 1
    5 r% C0 J# c( S9 T' Q. x1 c    else:             # 递归条件0 S* |1 g  K1 U" x. z
            return n * factorial(n-1), E  O) I  q) O6 Z
    执行过程(以计算 3! 为例):
    ) }: N* R) X! C; sfactorial(3)
    + E8 [& u( M5 N, `% g3 * factorial(2)
    5 S# ]3 T5 A( ^' @2 g3 * (2 * factorial(1))
    ; v& l+ W2 ~: X& X3 e  t% a2 W. `3 * (2 * (1 * factorial(0)))
    5 h, P9 A& a( ~, \3 * (2 * (1 * 1)) = 6
    0 [( I( l& v* V$ Y7 m6 ~( T3 p
    3 F7 D5 _' N9 Q' F- D, N: [9 \ 递归思维要点
    ) \! t( N9 P  K2 V( S5 c) D1. **信任递归**:假设子问题已经解决,专注当前层逻辑( B6 U6 Z5 k5 L4 Q% ~! N
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    6 Z0 ]  S2 O; {+ m1 G  ?& X3 f7 p% r3. **递推过程**:不断向下分解问题(递)
    9 l8 T8 X$ E  Z3 W: Z5 H0 z9 O4. **回溯过程**:组合子问题结果返回(归)
    . p" T; f6 f6 }- q3 o$ @( A  _" s
    注意事项0 G" _2 _0 \2 P1 I( {: \
    必须要有终止条件
    4 }! i" ~; i8 u: f$ n! ?递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    . x4 _' v9 ?& _/ [某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ( W* v" ?0 \' z2 h尾递归优化可以提升效率(但Python不支持)" g% j3 Z. Y! v# t# s: c

    * W" x/ G& ]+ Z  }& W, K' I 递归 vs 迭代
    / j' G% H/ a, r8 q0 u% X|          | 递归                          | 迭代               |
    $ ^+ X" f1 l2 ?1 M  S  N|----------|-----------------------------|------------------|
    & ^6 E5 m4 b8 i% `! V( H/ c* o| 实现方式    | 函数自调用                        | 循环结构            |
    0 Y% `' P- t0 S) D$ w| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |( k( _* ?, O6 g# k" i0 J; F
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    . u: ^7 P- v* f- h| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; J& R7 }4 X1 o5 C" O' t& C! @: E, {6 X3 u+ v
    经典递归应用场景
    , o8 e) A+ w+ G1. 文件系统遍历(目录树结构)
    & \' E) w  }) H* d3 `3 ?2. 快速排序/归并排序算法
    , z1 H. i* W4 I- y3. 汉诺塔问题) ~, W9 T  H# |' P
    4. 二叉树遍历(前序/中序/后序)& z  \* Z# I" `2 H
    5. 生成所有可能的组合(回溯算法)
    % M" R& Y; y# p9 j9 R3 @
    ; @6 l" f/ G# {" ?* H* P5 u7 q试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    前天 01:20
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    $ p3 o, [- I3 A1 G7 T% X. b# j我推理机的核心算法应该是二叉树遍历的变种。
    4 [! k: \* H2 |, \  h! J9 D! X另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:! y6 g* t' X# a! x, Y
    Key Idea of Recursion( E5 J$ e% }' _2 n+ u: r
    ) f. |5 \0 D  A6 [
    A recursive function solves a problem by:& m# ]$ b' p* j+ E/ y/ g) _6 T
    + g1 E5 |4 z6 m- V  r0 |. }/ _* b
        Breaking the problem into smaller instances of the same problem./ m( k; e3 D, n1 ^) Z" l

    ' b4 l4 x! P: _# X& V9 {& ~. O    Solving the smallest instance directly (base case).
    ; R2 s# K9 M* e! H1 H3 C  ~+ ?$ s1 r. O. w8 k3 V) f
        Combining the results of smaller instances to solve the larger problem.% N8 R! K2 p# p' [9 G& S3 k
    0 ?7 T1 ?7 e" `9 U! Y1 _- ~. @
    Components of a Recursive Function
    0 }& l! c+ q$ Q$ P5 P' k3 L
    1 a! v- H; ~; n; l  h! [2 |    Base Case:! P4 ^4 C+ f1 G5 K+ N
    5 t# G5 |% Z1 a1 ]* J
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    4 G+ r3 n* B* O9 _
    7 X5 q' v0 q! F* W        It acts as the stopping condition to prevent infinite recursion.% w1 c  _2 u4 s* \9 i

    & N" C2 `0 e; r8 Q9 |. \! h0 B0 Q0 F        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    8 t0 d. |* c7 I9 _
    4 h: |' j. e% h7 e& w4 F2 B    Recursive Case:
    - m( V) S; A1 H" x2 H
    ) x) b# \- _' a1 S3 D5 V        This is where the function calls itself with a smaller or simpler version of the problem.
    ! l0 ~- C- G8 }5 ~/ D0 D# z1 X* D+ O; ]8 {. g: N8 ?  x2 Y3 i6 R
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    % s! @6 o7 {; Y" r- Z+ ]9 Y
    3 `8 l, U" J/ A8 k5 }Example: Factorial Calculation! Q% Y6 d6 [2 Q! N# Y

    , V' U+ m6 B. O: X. A6 eThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:0 N! |9 J2 N' l% e1 O- R: y
    6 w4 }5 b* X* k$ P6 S
        Base case: 0! = 1
    $ M& m( b7 }6 T8 x. C; M) B5 ^
    ! l/ l* p  A; \, @# a    Recursive case: n! = n * (n-1)!
    ! u1 I) M1 f3 v3 t0 z, `" n6 T0 V
    , Q+ K, O" I4 Z  K" o1 ^% g. MHere’s how it looks in code (Python):1 y) h2 S; S1 w" E- Z6 I
    python
    ( ~0 z; g# k3 ^
    * @. A5 g% D0 l; ~! m! Z  M! [& |% C# e1 k! z9 U
    def factorial(n):
    ; |* n7 J+ b2 F9 s8 b2 R    # Base case/ V( }1 ^/ L$ z
        if n == 0:5 T- J& t$ Z1 G  R$ Y
            return 1
    5 o9 x" P9 b7 R; e6 s* c    # Recursive case& u0 {& m' k% O. Q$ w7 R
        else:
    3 b0 d, w! @% ?4 S: Q  n. \0 T        return n * factorial(n - 1)' {% D8 r& A0 U+ {# Y# h1 ?) V

    4 C+ V  W( w  K/ c# P, R5 h- ?0 S6 u# Example usage7 R# a( k7 v( D0 c
    print(factorial(5))  # Output: 120
    ; D' G$ T/ s5 e/ I9 X" z/ n3 c! ]& |& q* A0 n/ w
    How Recursion Works
    ; L* ^9 q+ ?/ }$ |; L9 ]" T1 c
    1 x* V0 I: L( k2 a9 [1 Y" ^$ Q    The function keeps calling itself with smaller inputs until it reaches the base case.
    , S  M. `$ o2 T; I7 w& f/ r" O# I$ d
        Once the base case is reached, the function starts returning values back up the call stack.
    % {) H$ B& y9 v% ]5 a# e7 F& Q9 Y8 p: T
        These returned values are combined to produce the final result.' Q2 v$ w2 _0 q

    . q/ K3 R7 i( b0 B+ p5 NFor factorial(5):5 h5 D0 y1 v" ^2 C

    + i6 g! i' {& C% T' `: X: V# _2 B4 b# n" @: X8 O" \
    factorial(5) = 5 * factorial(4)
    7 F2 q6 c& @- {& q& O, L+ kfactorial(4) = 4 * factorial(3)
    * `* R0 b2 ]1 }4 D) V1 kfactorial(3) = 3 * factorial(2)* d& M3 }1 N$ i& Y' S3 s
    factorial(2) = 2 * factorial(1)! I/ h  W" J; ~3 i% l3 A6 L2 K. a
    factorial(1) = 1 * factorial(0)
    1 J9 a0 r! R/ w, m% e5 ]factorial(0) = 1  # Base case
    0 l+ }$ A: F2 ?7 I& T
    6 m  ]) G/ Z( D" E; c8 ZThen, the results are combined:
    . ?& R% ^# F* u9 X& ~9 y) K$ `3 @

    , O' _5 h: B9 |factorial(1) = 1 * 1 = 1! g3 V4 t/ w1 P, M
    factorial(2) = 2 * 1 = 2, o+ R: U+ p# g8 Z4 M) M0 h/ a
    factorial(3) = 3 * 2 = 6* E( O9 W6 P! V% _, o7 F
    factorial(4) = 4 * 6 = 24; A% v9 I8 a$ q. w9 l: D. `( L; W
    factorial(5) = 5 * 24 = 120
    ' b1 ~. ?+ Q8 x' g" z% f
    : i" I9 r8 P& G1 P, g5 SAdvantages of Recursion2 k5 N: P' E2 [; |
    & G( ^% p' W) l3 u& M$ F, ?
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).0 {& _4 p! Q) P6 r0 B! D

    , |, w& R5 Y# K- {, k% b% g    Readability: Recursive code can be more readable and concise compared to iterative solutions.2 b; R( j3 a7 Q' P
    / F0 g5 R$ d/ h* |9 m
    Disadvantages of Recursion/ @9 G7 a2 [; [' k: _8 k) M3 s( Q

    8 Q0 U* {- v$ ]    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 _; S. Y# h9 ?  `8 k

    ) g% `  ^- Z( R0 v( j    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* O7 I" t% z; V% O! T: w
    ) F' L, e( d  E7 O1 C7 h
    When to Use Recursion
    6 x. R' s# S7 H5 N  y' b7 ]* @2 S1 r) ^. ?/ t, f* o
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).2 {( w8 b: Y, v# R% M* r
    $ y  I: b4 [& f: n4 ~& g6 |5 H5 |
        Problems with a clear base case and recursive case.
    % ^  e: H4 W9 `0 D# p' ]  `# r( p( y% J4 H! W
    Example: Fibonacci Sequence
    % O$ m% \7 L- f% H' u% @# p1 n' O* W: O. E" q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    * n0 I# ]3 P' H3 s! Q& u% a, b" N. V5 m, M
        Base case: fib(0) = 0, fib(1) = 1, [; F1 p( t; |/ @; Y3 B
    - s' a& h& d4 T" }$ E& N: ?
        Recursive case: fib(n) = fib(n-1) + fib(n-2)1 ^0 {$ a) r! p' h4 ]) K2 B
    7 I5 [2 N0 b: Q" {2 P- `- e
    python
    3 ]% L, U# H3 Y0 t# y
    % V) y8 T/ x. h& I) L2 A/ ^0 _
    8 r9 p+ [, N" X% q( j3 ~" ldef fibonacci(n):
      O' G2 }8 ?4 Y/ L# m8 \8 u' \    # Base cases
    9 r7 `$ G1 g% X/ N: {6 X    if n == 0:; m( ^& \; R/ |  h2 [
            return 0
    ( X# K, u* D) M2 r8 O6 R    elif n == 1:9 [9 l/ ~$ m3 o5 w9 a
            return 17 f7 d2 f$ a; `5 h1 i1 S
        # Recursive case
    ( ?1 q; {6 X$ w- Y. O    else:; E% f; S1 F9 u  D' i
            return fibonacci(n - 1) + fibonacci(n - 2)  @* w6 @5 }# U! {0 ~5 j
    * ]5 O) T+ r$ y# x$ g9 q
    # Example usage
    9 X# c0 A  Z. D: Z) q1 g. Bprint(fibonacci(6))  # Output: 8# p# Z4 D2 J% ?* _) o- O

    1 P; X7 G: i- q6 E) u. ETail Recursion
    ; \5 @# w1 j4 f4 R4 F, z: y# B$ [9 I( Q7 h
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # P" i4 L, ?4 c5 g! R& ?4 `! A  U" b8 B
    1 L) E, I9 ~; A# i8 G, N$ JIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-13 06:47 , Processed in 0.038403 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表