设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1678|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    4 V8 j" S+ q( a0 p0 t$ s! i8 S2 L& G' G# x) e/ F8 g
    解释的不错$ c* C3 j5 n0 w* Q
    ( K$ ^# m% n  }  n/ s
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% e- y( @- t" K* {" B& {9 Q" E! L" Z' ^

    8 Q. }6 Z8 C2 v9 V) f# Z 关键要素  b7 ]2 w$ ?! \7 [$ r4 `
    1. **基线条件(Base Case)**7 [' k+ Q9 V3 W' o8 i7 M( n
       - 递归终止的条件,防止无限循环
    8 W9 J" ]9 S6 C1 [! ~   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    3 I8 }- P/ G$ S6 L2 m7 A- U' Y  ]8 N, x" E6 u/ @% C; h! J
    2. **递归条件(Recursive Case)**! H& X/ `2 E+ o* ^
       - 将原问题分解为更小的子问题) t" L* u3 v  W$ P
       - 例如:n! = n × (n-1)!
    * w+ u! r+ i. |
    ( y% y( U  r4 Q$ n4 T3 f+ L 经典示例:计算阶乘
    % h! K  M. p$ B! ?python
    2 |! B& M( {1 U. g; L+ }7 _def factorial(n):
    ' f$ {, m# b. S; A    if n == 0:        # 基线条件
    0 E4 Y9 l% {) X* N# h  U        return 1
    . B5 B  ~" c1 O2 ~    else:             # 递归条件% |$ C, K3 _8 Z) I/ p
            return n * factorial(n-1)* c/ k- X6 J7 {/ v- u1 s$ f* R" |
    执行过程(以计算 3! 为例):
    9 {1 L# Q1 L7 k3 f( d' E' [/ Vfactorial(3)- H( |: n5 g/ I" Q$ @3 R$ X
    3 * factorial(2)
    ) l& B  w" F1 j, \( I- V' a9 T7 [6 ~3 * (2 * factorial(1))
    : U: b3 w7 G! l' t, z3 * (2 * (1 * factorial(0)))
    & a% s) b# y# n3 B8 S" [3 * (2 * (1 * 1)) = 6
    8 F' D# y/ S; y4 U6 c
    / b, ~/ ?% H% T8 C3 k 递归思维要点4 y9 d7 S5 B# B3 `3 w3 F
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    4 G" P( q! e# g/ _2 E2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 x4 k8 ]9 q  S6 g) g
    3. **递推过程**:不断向下分解问题(递)9 [2 m1 ^: L4 P. x
    4. **回溯过程**:组合子问题结果返回(归)
    ; \+ k3 F; [) V6 |+ L2 }
    3 \4 z( k3 j. B 注意事项
    " ^( P$ v8 u* W8 m+ q必须要有终止条件' }2 v  L3 o3 ?  T/ i( \& k
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)/ S' I% V* k: a' i
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    & B2 X# _6 Z1 r( [' O; Y: |% q尾递归优化可以提升效率(但Python不支持). Y" a2 G# q; l) P& r

    3 c* G/ Q+ d" W- ]3 d4 D 递归 vs 迭代0 f' q. U: w; _
    |          | 递归                          | 迭代               |+ p; N! i6 P/ o! l4 @
    |----------|-----------------------------|------------------|
    5 X: V% g1 P$ D# M- q% K. c| 实现方式    | 函数自调用                        | 循环结构            |
    ! P9 q5 q1 a) X: s  L1 \| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    9 H8 @; m3 h) ^7 w| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ v* A; \& E9 p+ \( V; W, X9 |
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! S2 @" x2 M" X2 w/ V: Q
    - J! @' U0 O5 i  j
    经典递归应用场景
    " U6 b" x6 j( x; s% C! a1. 文件系统遍历(目录树结构)
    # }' `4 Z7 q8 h6 Q  @3 f. a! V2. 快速排序/归并排序算法
    ! `. L1 j1 r! U7 O3. 汉诺塔问题
    - _* _, p) B2 m/ q! y1 b% u4. 二叉树遍历(前序/中序/后序)
    " \; U& b! x$ I5 l2 T( o2 k5. 生成所有可能的组合(回溯算法)
    * t* Z( a- A( j: i5 v6 q& G9 M. }% y7 V' S! D. d, a# E
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    5 小时前
  • 签到天数: 3131 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    9 G  R5 _, t" O# V$ x: \9 M我推理机的核心算法应该是二叉树遍历的变种。
    5 K4 `& g0 ]$ q1 y% |0 u另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    : a+ V1 [9 U. F" ~& C, E1 B- E$ C2 \Key Idea of Recursion
    6 {5 B7 C7 x: n. c! K1 ~
    4 p* ~5 ?* {& U/ FA recursive function solves a problem by:. C4 D3 n: ^9 ?4 J3 @

    ( \1 C6 R& i) [# @    Breaking the problem into smaller instances of the same problem.
    6 r6 k/ ^* i# H; q: i+ N: j; ^7 o- C& w4 _7 E" ?
        Solving the smallest instance directly (base case).
    * p% M6 ]8 i. K3 R; V, _4 B; P+ M, t, k& R
        Combining the results of smaller instances to solve the larger problem.- W) |* {# \, V8 i6 e) [/ C* s

    / i1 W( ], j4 P9 K$ e4 V' i' A- Z( HComponents of a Recursive Function2 [9 D* M) Q0 e

    2 j( p- i4 J# b" I  v    Base Case:
    - x/ Q$ d' Z- |# L, @) _; P# |$ o+ U# D
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.) S0 Q% A: k  z$ U7 F
    # z# N' `2 Y; g6 B6 V: y" R7 y
            It acts as the stopping condition to prevent infinite recursion.
    " |# `" X- ]( |$ v9 \. T! z- ]% k+ r2 ~  |& P) a
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1., t7 {. I2 Z; q4 u$ V/ [8 {+ ?

    6 a6 ]3 N. r- x% Q8 R# D    Recursive Case:
    6 ~4 t2 K% l7 R+ y( O
    % R5 S. l0 N( E$ {        This is where the function calls itself with a smaller or simpler version of the problem.6 D$ b1 T) {) @. p2 ?
    9 y0 k; _6 d8 t1 d0 K$ i1 I5 e* q) K
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    + _$ z5 q! [" I9 g# X0 F' e6 h/ V) C& ?* Y8 P+ a# R5 i
    Example: Factorial Calculation
    2 f; R1 `) d/ h. [( a" X
    2 B. l! M9 D2 o9 z. wThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    : J2 |+ ^/ Z6 f- k* f
    ( h7 }, |9 w0 E- o7 F    Base case: 0! = 13 P( b0 S. B7 l/ x6 o

    ; E  |# Z# {8 P. J2 o    Recursive case: n! = n * (n-1)!
    + p3 o! n, H6 \8 R2 P. w/ n$ G" q. Q) A9 h
    Here’s how it looks in code (Python):
    4 p7 a* R7 \6 M& N3 ^9 Q) w+ Ypython. r4 t) K& `! b

    ; n2 ~6 @, x3 k( f! n  F
    + z2 v$ F8 L' l) z  B! ddef factorial(n):$ o$ e- p! G1 u7 G! t
        # Base case
    / {% q6 t5 u$ D# P    if n == 0:/ ~! q0 E8 N6 S; Z, u& k; @0 [
            return 1
    ) B& |& s2 q1 V# f, D    # Recursive case% [! M/ l3 r7 o% k0 H" P
        else:
    ) l. L* F: z4 S5 i$ {        return n * factorial(n - 1)) e* Q! D% G- U- i
      T5 c2 ?0 ]7 P3 |% J
    # Example usage
    ) n! s* S; ~3 X% \; I2 q8 z; |print(factorial(5))  # Output: 120& G" G& F6 L9 q5 ^4 X

    ! P) E" h9 }4 l- N$ iHow Recursion Works
    ! Y" W+ L, f! ?/ s' x8 A9 u) S1 x
    ) c- n4 ?/ j  u6 d% q+ u    The function keeps calling itself with smaller inputs until it reaches the base case./ `# [( b( \: y
    1 G, ~3 s0 I+ ]
        Once the base case is reached, the function starts returning values back up the call stack.9 X; W3 ?: w. {" S$ B9 F
    0 e% k" J& l4 D1 w! d
        These returned values are combined to produce the final result.# q: I0 W( N( h" ~

    $ E) b" X5 j9 l, y  ^9 k! pFor factorial(5):) B# [$ ^0 ~2 G1 }- o

    ) D8 C! @# G4 q4 I
    " t* a( H. V1 y) j# Wfactorial(5) = 5 * factorial(4)
    , U$ P# `% q: w; @  efactorial(4) = 4 * factorial(3)
    . `! G9 z) {8 J# g1 b1 |factorial(3) = 3 * factorial(2)
    ! T- ~) j/ P2 v' ~8 o4 |factorial(2) = 2 * factorial(1)
    4 H" R+ G5 b4 G. N6 nfactorial(1) = 1 * factorial(0)
    / I& ?2 \" J" wfactorial(0) = 1  # Base case" N  @" H4 g) _& `

    4 G* l- ~8 Y$ w$ i" NThen, the results are combined:
    # h# T' t9 E7 M! l, o4 U
    : ?1 ?, ?+ p  k" F. v' H2 F9 m) h# t, w0 I+ @  x
    factorial(1) = 1 * 1 = 1. I+ u$ a4 C8 G0 t
    factorial(2) = 2 * 1 = 2& x* z/ v) f& j! |( v
    factorial(3) = 3 * 2 = 6
    5 l& j) c) ?1 L; Q3 z6 Hfactorial(4) = 4 * 6 = 24' }7 Y$ o2 f) ^2 H. Z
    factorial(5) = 5 * 24 = 120
    5 t. d1 ?. F6 @% h' u- T  m  Z1 M/ I% y, t  @" `! E5 S$ g/ S
    Advantages of Recursion  m3 m/ |- ^% j. W$ s
    : ]) d" O, k+ e0 C! L4 \7 n$ Z
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! B8 T6 G: }9 w3 }0 a5 \$ S

    % l( U2 K7 v# M& r4 T1 S: o    Readability: Recursive code can be more readable and concise compared to iterative solutions.6 k$ X, i0 @% Y: \3 q# R( U* k+ w: Y
    " D) h/ ]9 S! h" {0 H  v
    Disadvantages of Recursion3 S! x5 d% w2 x9 S2 m6 ?

    ( p+ w' ?4 K) `    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    & Z* ?0 M: U: M  F3 o3 @0 s/ t2 M9 X) _" E; Q8 u3 m
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).0 |! J" g$ b9 K4 v% n. d0 c6 m" H
      w' R2 ?/ Z: K0 M& Z6 w
    When to Use Recursion5 s( f1 C3 F8 [7 d# A
    $ a' o* z/ t( t; l, ~4 B- v
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).$ f9 L5 ^) Z4 o% }/ c: S, Z+ v
    5 y2 h# z5 ?9 a$ M/ C6 A$ X+ J
        Problems with a clear base case and recursive case.; S/ p5 y: N" k; e
    , i7 i3 d4 f* J5 _$ F  ~
    Example: Fibonacci Sequence3 @; \) |6 k4 A, ~# |5 w1 U. S4 H

    6 P! l# k' W4 [- M/ vThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    . _( E& p& l2 k* N) w3 d8 m2 M" U9 _& ?! A- v
        Base case: fib(0) = 0, fib(1) = 1
    , L+ ]( ^- g2 V6 l+ O& M6 o4 D
    5 ^$ O; F& @& g+ c  z4 c    Recursive case: fib(n) = fib(n-1) + fib(n-2)
      E8 f$ H3 d5 I/ A
    " y0 B4 _) {7 ?# ]8 `) w* }python
    + {- I6 }" u6 H0 e5 C$ L
    2 ~% l, T( S% }: ^
    . `# M2 B6 p# X, {2 b+ sdef fibonacci(n):( ]' Y& X) l$ _% R
        # Base cases
    # Q) y+ n; ]: m    if n == 0:1 R8 w$ G0 L2 ^' c3 H, r
            return 0/ o7 }/ X  W9 m& B
        elif n == 1:+ }. Y* {% u5 Q9 P% ~* V
            return 1
    * B' k, _, Q1 {% n8 O5 p- a    # Recursive case( I5 P* {  q  b, b1 {
        else:
    " z- u# p/ R5 U3 w& a. [5 g' d+ Q        return fibonacci(n - 1) + fibonacci(n - 2)8 d. }. y- ?* ~8 k% e* Z, G
    2 w+ E8 U" O! j. p8 w) c2 p2 p# `
    # Example usage
    ( k# J+ K* b0 M; dprint(fibonacci(6))  # Output: 8; I/ Y' _+ j% C# L. L
    3 f& V: r/ u# L+ N; m( _& [
    Tail Recursion, L; Z6 Y$ @% E8 S' I. h

    $ }3 y8 I! c) rTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 \% D0 n- z9 ^2 x6 y. J
    . E' B6 Q& f7 P5 e& r
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-30 13:35 , Processed in 0.032352 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表