设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1456|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 3 V( }4 {% k: t$ j; S; K

    6 n. z. }) h% i* [6 R& G9 \解释的不错
    * a1 b0 |* _/ E9 U5 e' V) t4 Z- ~; V0 h6 U& s$ v
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 i" c4 V" c! D  |
    5 h" y8 U1 v7 U5 L" ~  `  o# h 关键要素7 p( h: \; J1 d: G- ?  L& t
    1. **基线条件(Base Case)**
      \4 Y0 c0 _, a4 }$ h   - 递归终止的条件,防止无限循环' b; B  {# G% V0 m
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, L6 t9 r& y- E) E* N& R
    % S: [4 A( Z6 V) f) j$ J) g
    2. **递归条件(Recursive Case)**
    ) q0 Z8 p9 O9 w* x4 W   - 将原问题分解为更小的子问题! I; \5 h: y5 {
       - 例如:n! = n × (n-1)!) C, k7 d6 I& d/ C# B3 P- ~

    : ]2 e* \+ l0 h4 n' ] 经典示例:计算阶乘
    9 [/ y* F8 o7 Tpython
      w, h; D2 Q, G& k, A& ~def factorial(n):/ Z- K( S% @* e: L# Y7 W
        if n == 0:        # 基线条件
    ) I2 _9 ?# G: J7 D        return 1; [& n8 }# C" z" `
        else:             # 递归条件6 J3 \7 f9 e4 F% v3 f2 _0 T
            return n * factorial(n-1)
    * w/ E* U0 x) H2 ~1 ]执行过程(以计算 3! 为例):
    + W$ r, p9 U* Rfactorial(3)
    7 C2 @. \1 \9 V% K+ ]; f8 u3 * factorial(2)
    ; E! z1 o3 X% s3 * (2 * factorial(1))
    $ o* w& Z& S; k/ V3 * (2 * (1 * factorial(0)))
    $ m" a( d3 x! u# D4 k3 * (2 * (1 * 1)) = 6
    2 \, l0 t# h: e; a' `# T& o6 K* D; A7 I  V# Y( Y4 s9 k
    递归思维要点
    " ^5 Z, A8 a: i' Z! R2 O' X) r1. **信任递归**:假设子问题已经解决,专注当前层逻辑  t9 n6 ^0 ?- \; g$ K# g/ q7 b
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : x/ z5 p3 `5 ?- i& b5 {5 \3. **递推过程**:不断向下分解问题(递)
    1 m8 d3 C) J( n6 ^# Z: n/ Z9 n4. **回溯过程**:组合子问题结果返回(归)4 `% b5 G( k; B+ ]1 I: }" s0 o' ?

    - w' k4 q4 U* p) }) a4 q# ] 注意事项: t0 n$ d6 f/ B; F' t; j- z6 q
    必须要有终止条件! Q( w' s5 [7 R& T0 ]3 M; V
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* n) Z' x+ }9 U' H/ y3 `$ b/ |
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    % ^! A2 Z2 |* O尾递归优化可以提升效率(但Python不支持)
    ) A7 L" a/ K9 E  R( z* L/ p* F' t+ {: i0 w; A
    递归 vs 迭代
    % R: R- J$ E+ C0 ^+ @|          | 递归                          | 迭代               |
    # i8 X3 E; [  ~+ U|----------|-----------------------------|------------------|, Q8 K% ~& _: O( D2 N- x5 `
    | 实现方式    | 函数自调用                        | 循环结构            |
    + Y' u+ x$ Q! h: E. E| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |0 n0 u; \9 u5 [4 b. w4 K
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    & j/ e  T. c0 k; C; W: o1 \| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    . o% X" R6 [4 A( K- N" e0 R
    1 A1 g: e7 y- j) S0 x, W 经典递归应用场景3 f/ i3 j; q9 C9 r0 @9 @
    1. 文件系统遍历(目录树结构)
    + H2 X. }# p  ^; O1 x; k2. 快速排序/归并排序算法
    " _# z+ k, K: n' B3. 汉诺塔问题& w  J( F8 V5 ~- o- i7 ]/ |
    4. 二叉树遍历(前序/中序/后序)
    4 |* m! o3 Z0 Z6 i5. 生成所有可能的组合(回溯算法)
    8 _. w: I4 ?( Z, E8 ^0 ]' g6 R% d8 C. J3 t
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 07:10
  • 签到天数: 3114 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    - `+ W9 j5 T1 @- ]) F. D我推理机的核心算法应该是二叉树遍历的变种。4 W6 I; Q( z8 B( M' R/ B+ c
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:, ^2 e  ]( |" I  c$ @
    Key Idea of Recursion
    * D0 Z$ b! U" t$ c1 i+ i! Y( [$ U7 E7 `
    A recursive function solves a problem by:
    # Y- J1 u5 P& R; ~. C3 t7 D3 b7 j2 A8 c# k% `
        Breaking the problem into smaller instances of the same problem.' h, ~+ ]7 j0 P& G/ F

    % K3 G$ J0 T" g$ B% U& [+ q+ E- z; Z    Solving the smallest instance directly (base case).* o: e& L0 K. i# U& |# j

    2 ?% V! i$ S7 @: y: q* f1 Q    Combining the results of smaller instances to solve the larger problem.
    ! b( R* [3 Z5 y5 E6 ~, N' t! b1 D# z! |
    7 X% m* y) X" l/ [: bComponents of a Recursive Function
    4 ^/ w9 l$ S) R% D% G8 f
    , g( `, S! T. ?. n    Base Case:- W6 v: b. p& y
    ; z% ^- ^. m' G/ |. |
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    " P2 a- ?$ w4 r3 d% d7 l" c. ]/ q, i& R
            It acts as the stopping condition to prevent infinite recursion.0 u2 G8 h8 U# n3 g# ]: S
    . @" Z7 Y1 ?4 v& H7 G* H) r6 ^
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.! Z6 |3 c3 r3 f0 P% R

    % Z7 U% T" @8 q; T" m- f0 E    Recursive Case:
    : s& x; c' T; \* o3 U
    ! a$ P+ G8 d9 U8 d        This is where the function calls itself with a smaller or simpler version of the problem.  E* A- N. V- H2 f8 M
    # `# r4 o# n& v9 J6 ]% C
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." w; U8 ~- _9 T  y; Q3 s
    $ x7 \& `1 ~/ a; Q& L
    Example: Factorial Calculation
    , K: R# {7 Y; b$ G
    ' A0 y$ A" X0 i9 U8 J# h: l: TThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 T5 f( |* N0 u( J  [# z2 W
    + y6 w" Q' |3 N7 U& n
        Base case: 0! = 1
    , k2 O& ]1 }# R3 n: w5 F
    6 V# d6 d9 J1 {8 B/ h3 N1 Z6 p    Recursive case: n! = n * (n-1)!
    ! W$ }# B! q% e1 h3 m& [+ _
    " g+ F! J1 N" j( K" cHere’s how it looks in code (Python):5 H3 n8 f- k5 S& f
    python8 k+ O" o) V2 ]& R) p) ~$ A

    - i& f! N( y3 Y9 s3 K# u) R, u
    * o/ p6 Y7 }: L6 M  m& e$ ndef factorial(n):
    $ G! D8 J5 Z: i# O% s    # Base case
    6 |: D+ H, K$ F0 z    if n == 0:
    ' q9 h$ t1 ]" `) w# n        return 1- ]) w! _6 t/ l7 n
        # Recursive case
    6 ~& M* o, |/ E: B    else:! F! H5 p: e2 e% l
            return n * factorial(n - 1)
    : H& L7 V0 u: }# _  k- ^* Y* v# A: D9 H5 y0 V! L* {4 k
    # Example usage
    / z* ]% N5 [! c& h  D4 O. B, {. iprint(factorial(5))  # Output: 1202 l; h% f# t2 k+ a9 X

    + Q" k7 N& h; e6 q+ s$ v) q! v2 p/ QHow Recursion Works6 i+ f( M7 T; h" Q3 e1 }

    ! J! |9 V. w6 e% W    The function keeps calling itself with smaller inputs until it reaches the base case.  q+ C8 a: w3 y

    / h; x  b5 {$ A! \; O  l/ u    Once the base case is reached, the function starts returning values back up the call stack.
    3 X. b# e( r* Z4 h  I; D! z4 M$ f
    ( [" ^3 }: X. \' {9 r    These returned values are combined to produce the final result.
    / ?9 d/ V$ q0 H/ |5 A2 H
    " P, h# F6 W" p6 X: PFor factorial(5):" R) V1 N, G4 A4 `1 F- i1 H& L9 j8 f4 E8 k
    4 A: M- S4 t( b: i$ \0 ?
    8 Y/ |+ e& `5 e7 M$ C  [- e
    factorial(5) = 5 * factorial(4)1 i2 {8 p/ j' [4 {4 K7 O2 U( U
    factorial(4) = 4 * factorial(3), q; o; [+ u4 B4 d! `' ?  t
    factorial(3) = 3 * factorial(2)1 x; t, f$ A4 z0 ~4 x8 e9 d, \% C
    factorial(2) = 2 * factorial(1)
    . h; p. Z# g8 L) Q0 h7 H+ T3 U1 Lfactorial(1) = 1 * factorial(0)2 n) g* X9 @9 z1 }+ Y' a, |
    factorial(0) = 1  # Base case' X( W7 z5 C5 ?4 G' v2 p$ c$ _- J
    4 S& f, Q! {6 x* w/ y1 a& M
    Then, the results are combined:
    4 y$ @. J$ F% @8 e& d- Y# H& P9 r, Q8 k2 y  i( ^! L' G

    6 ]+ ]# t" v' X% {8 \" t+ Mfactorial(1) = 1 * 1 = 1
    6 Y# N" Z# T' gfactorial(2) = 2 * 1 = 2% f% ]# ?3 `. _( W+ v
    factorial(3) = 3 * 2 = 6
    $ Y2 Q- ~. ?  D( @5 H; t) Hfactorial(4) = 4 * 6 = 24
      W7 a; Q% F* a+ \factorial(5) = 5 * 24 = 120
    . x9 c! U3 x' ?& b/ k' T
    ) x9 [, g$ n$ ^% d; }% T+ X7 v+ nAdvantages of Recursion; `: e% K$ ?% D: j; g2 Y# ]# b
    6 K$ i% R/ i* K6 g; V& y
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 S1 R7 l3 b0 r8 S. V4 s

    # G& y6 @0 ^9 J! L    Readability: Recursive code can be more readable and concise compared to iterative solutions.6 t0 q6 a9 _* h2 N9 l8 J
    , B4 [) d- J8 p/ q4 u1 T& Q% ^
    Disadvantages of Recursion+ s1 o% h& K0 \6 @

    7 H) U1 V) g$ `0 q1 p* b    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# p; d1 @3 j, R
    ( m0 `" t! ~' H, C$ r6 c
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).; C& m8 m7 K/ ^2 z8 f$ O8 W2 G

    9 n& D# v: U' U3 [5 ]3 GWhen to Use Recursion
    ! C0 L2 j- c1 C# `! G9 f1 i, m! b) C/ W  \- W* \! q
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).  @/ B; x, D- R, a) N9 e
    7 |9 Y4 Q% K4 J
        Problems with a clear base case and recursive case.2 X0 f: R: ]! F
    / Z, s: g3 _+ Q+ y
    Example: Fibonacci Sequence2 O8 z& i( }8 Q7 n5 u* `% J
    % Q3 _5 y& c# {- p  ~) K
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    3 ~! ?% R; F: Z4 o/ Q
    % t, `# E) @$ J- h( c    Base case: fib(0) = 0, fib(1) = 1+ G/ \2 ?/ C! E8 B9 }9 E

    5 z: w8 H$ w7 i) b    Recursive case: fib(n) = fib(n-1) + fib(n-2)1 e$ p1 T5 Q2 ?' N" r. c7 t( v

    ) a) ]  M) @8 n" m1 k$ _python8 {9 p* r0 P2 v" y7 `
    * U# P0 H# I9 Z- ]% z! f, z

    6 g1 U5 g5 E$ o2 ]. Xdef fibonacci(n):$ `; D( g( R4 N# q$ t2 o( u
        # Base cases
    9 W  o' V, [6 H2 \) ?( ^    if n == 0:
    & r4 Y7 V* i) z4 Z* C        return 0( v: w( @3 y8 n% ?5 Y" M. Q. w
        elif n == 1:
    5 p/ Q, `( c7 ^( L        return 1
    ' ]' D% f( o& K8 y0 {$ o    # Recursive case  U9 r, b0 f' w( X
        else:
    4 D' e  a* X2 W! ?& P8 j" D9 o" }        return fibonacci(n - 1) + fibonacci(n - 2)+ B( a* a$ I( `# x: `

    ' w" k$ F4 e1 ?% K2 X4 d$ ~# Example usage: w+ s' {+ F9 i; Z3 o
    print(fibonacci(6))  # Output: 8
    5 b  f4 l' {$ y3 d8 V- J
    # e& X4 W& K6 O/ h. g! n" TTail Recursion- w, z5 e  D( V0 q
    7 G$ D0 `; C* d; v& J
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    * ?, g9 m4 ~1 V% J- i/ A8 d- ]2 g0 p, e6 \* H0 X% ]
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-11 00:34 , Processed in 0.030346 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表