设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1610|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 9 y$ |: S3 d" L7 C
    & s- Y* D( P7 q- }2 ^! w$ [
    解释的不错% _. Y8 F2 [5 z8 l4 }6 S/ R4 F4 l' F
    4 p9 _/ p8 X+ z. t0 {
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    5 F4 a* ]: `; j( v
    1 D3 e# ^- g4 r- `, ^ 关键要素
    , G4 n; A( d1 Z5 T1. **基线条件(Base Case)**
    3 _6 ^; a) g% Y7 C; I" j0 q  r  d8 s! v   - 递归终止的条件,防止无限循环
    % w" u; H3 Z. }$ Z- {  I; A   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    / F' E  c! p( E: V% Q7 D
    0 a. T! h0 S: v  R: B; A2. **递归条件(Recursive Case)**! I2 o0 H! ^! q4 r
       - 将原问题分解为更小的子问题
    : Z( g3 v3 V  y8 T. L4 y2 E   - 例如:n! = n × (n-1)!/ g; u1 c+ S" \! ^$ L) {$ L" `
    3 _( W9 J# g, V# _$ H/ W0 @% o7 |
    经典示例:计算阶乘
    ' ^- q; S! n1 Opython5 Y; r% h# J, \7 h  \
    def factorial(n):  G. ^  \3 r7 |& I+ l
        if n == 0:        # 基线条件
    # z! l8 w( |4 B; e9 e+ v1 t) i        return 1
    7 B3 l1 @, O& A    else:             # 递归条件
    ! S, ]1 @( l. ^& d        return n * factorial(n-1)
    9 d7 R3 r) D3 _) ~% w执行过程(以计算 3! 为例):
    ' c! {" e& e* Vfactorial(3)
    2 A7 T* c+ _& E1 V/ c9 ^( }6 m& O3 * factorial(2)* l. P# K5 |- g
    3 * (2 * factorial(1))2 n* E9 M5 C4 z! s- A1 f
    3 * (2 * (1 * factorial(0)))
    8 o& L% ~0 K  K7 k3 * (2 * (1 * 1)) = 6
    6 v& ~1 u8 \& S7 f2 v$ e7 O2 A* L. k* [( D* F0 ?& s; k
    递归思维要点2 a$ {9 l9 Y7 y1 s# y
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    , k( \* A9 k" _4 R* k2. **栈结构**:每次调用都会创建新的栈帧(内存空间)2 U! g2 x; S6 _; @# m3 j: o5 T
    3. **递推过程**:不断向下分解问题(递)
    : v1 i5 A3 J% n6 ]9 Z; J( H4. **回溯过程**:组合子问题结果返回(归)3 D! N1 g6 @+ O8 p, T9 b5 J

    ; e/ C4 h6 M9 n1 P: d1 I/ I 注意事项/ U" e3 O% W/ B& n( t8 m2 V
    必须要有终止条件/ W5 T( h/ h! |" d; @5 e
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    1 u( z0 I9 e4 O: z6 A' F; W4 T某些问题用递归更直观(如树遍历),但效率可能不如迭代
    1 l3 N, u* b4 P: `3 `( B尾递归优化可以提升效率(但Python不支持)# N1 o' E7 i8 l0 _- [/ F# p

    " e* i1 L( E: f  |4 i9 U# a% Q1 T 递归 vs 迭代
    9 o; ^% O7 f7 ?' Z+ `& u|          | 递归                          | 迭代               |$ A4 e+ ^3 t+ k% t% x
    |----------|-----------------------------|------------------|% z( H  A) u$ G1 Z' Z) R
    | 实现方式    | 函数自调用                        | 循环结构            |
    9 s) x! H& L+ M2 x9 r! _| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |% I1 v; k( m) n2 \) s  S1 K- `2 A
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ' D, S( o6 l' ]9 C# p| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |4 a' k4 I  I0 J, S8 k! J8 f0 y" {% h

    ( N$ I/ a5 ~/ ?+ y- q9 Z 经典递归应用场景
    % L0 a: |% q7 z5 [/ }1. 文件系统遍历(目录树结构)/ C# u6 J) j- n) s  F, G; U
    2. 快速排序/归并排序算法7 R+ a. U6 D3 L: X
    3. 汉诺塔问题7 d9 Y7 K4 r# e) k' K+ B
    4. 二叉树遍历(前序/中序/后序)) I. _2 t2 p9 t: U
    5. 生成所有可能的组合(回溯算法)" [1 a/ z! M9 r! _+ Q* F

    / x8 K6 F; u% f0 f/ k# q1 K+ t3 \试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 08:45
  • 签到天数: 3124 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    5 s  F4 j& J" \5 q8 y' r1 s  a, G我推理机的核心算法应该是二叉树遍历的变种。2 D# j9 N# k- R' V) c7 J: U" |
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:# [0 y( H7 v/ v% k8 J3 r
    Key Idea of Recursion6 ~/ g. I# N9 w- r. m: R+ c
      ^0 a1 T' h" k, D' y' g! }, ?6 P
    A recursive function solves a problem by:: u. |, Y( V! T) P# c$ I

    3 _5 V$ z+ b$ D9 y, v4 O    Breaking the problem into smaller instances of the same problem.2 O5 O" u( E5 o2 f3 u  X! x* }9 ^% X

    * ]2 Y+ \. d1 @* Y4 f; l2 Z    Solving the smallest instance directly (base case).. B  c! W" Z# a3 h# z8 S

    % C( U, }3 Y/ N5 g1 h8 c    Combining the results of smaller instances to solve the larger problem.
    ) n: v! B% E3 F+ ]+ d9 _+ p7 o4 j, D. h* e; n9 w
    Components of a Recursive Function. m3 Y2 ?& z# J3 }0 q6 s% f
    & h; v% W8 @( p+ r# r# ?
        Base Case:
      \. [. `! t9 E3 x) z
    ( n8 [; a0 C6 O6 j1 d6 E& b        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    2 z9 k- S! a+ P( F- Q( K2 o5 Q' v6 {1 y% f
            It acts as the stopping condition to prevent infinite recursion.
    $ m) C; s! G8 S
    ( }9 f! U, i% y$ q9 T) i        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    . [  B' \/ v  ~' [; `1 M
    / H, E' Z6 E. i  @4 D( G" q* e    Recursive Case:
    * R/ W% y; W* g) k0 \  G2 c- z  V# g1 e* U0 B0 s' @- ~
            This is where the function calls itself with a smaller or simpler version of the problem./ l8 N/ L; h! R$ v) Y% x" R. M* m) u
    0 R7 q5 u* v, [5 V4 a9 e' S- a& D
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    - J  b" z; y, d0 u' `9 n
    4 V: O& [/ t  p: |) D/ |2 PExample: Factorial Calculation
    ; a3 S) f* t2 Y/ t5 b4 T9 u* [, d# c1 \. x- A
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& |- r  U0 ?* d4 S. x. P3 n8 n

    ' a$ a7 r5 i& s: K" j$ ^9 J) J8 x    Base case: 0! = 1
    4 @- w+ i# G8 f( @: y0 `, c
    ( _" z! x4 X  N) L    Recursive case: n! = n * (n-1)!2 T7 r3 X% S) B3 G
    ' |1 u; h% L# h: {
    Here’s how it looks in code (Python):
    ! a" a2 q8 C' b2 t/ @3 i; wpython9 b7 [3 X: Z; ~! C$ ~9 ]& o# W* |0 \

    % s2 o" m; z, W. a7 E" `
    ) b3 \; w  P8 j$ v. z7 Cdef factorial(n):0 @! J$ i, z, c- l$ o0 Q+ a( q: T& g
        # Base case+ p* F6 [' G( J$ i! l
        if n == 0:
    " S, m0 H! n6 S; a4 \4 O" c" l9 W        return 1
    2 S" p$ }: W! y9 l9 K6 x) D    # Recursive case
    1 r* I: Q/ w% c) D' R    else:8 D3 x5 X8 C( }& g; P' e
            return n * factorial(n - 1)* ^( T: L2 l# c! D2 ^

    ; X9 B' N& G6 }9 R: h# Example usage
    # U3 y/ \/ o+ @2 _  E8 sprint(factorial(5))  # Output: 120
    0 ~- ~9 y: g+ ?! ?( `& g' c+ u3 f  U/ s5 F) J
    How Recursion Works
    1 p* u. w7 x' b: `" d3 z$ z2 r) ^
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ( p' [/ Z0 r, J4 r, j' [
    , x' |& E) P1 H) K7 J( [/ s    Once the base case is reached, the function starts returning values back up the call stack.' _) H# T* u* c* G6 F- z
    % `$ y8 g* \1 `) D7 ~: ]1 ~* N  p1 q
        These returned values are combined to produce the final result.
    4 \+ b: f+ w( z' [" J- ?
    * K, F2 s3 X! TFor factorial(5):
    # a2 [9 n( {  C# {8 t4 o; }* u5 y
    4 a6 c0 E. w7 ~5 U9 P7 A' a" q
    % c9 d! N7 Q6 N" m; Ufactorial(5) = 5 * factorial(4)) o- B, p: R" L( }! g# I4 w
    factorial(4) = 4 * factorial(3)6 o- r9 |, K6 r, P2 J
    factorial(3) = 3 * factorial(2)
    & K& E  w( |8 mfactorial(2) = 2 * factorial(1)& i5 J+ W2 I+ h' F
    factorial(1) = 1 * factorial(0)
    + p2 Q- x( I7 \% q6 O/ F- v8 nfactorial(0) = 1  # Base case% u# j9 ?7 [* i0 k9 N6 H, g! D( [

    . [1 ?& K5 J# EThen, the results are combined:) {6 E4 y! n: b# ?5 s3 s# ~
    3 Q, K$ b2 P8 c8 h! l

    - z7 U" P* k2 W! r' u' cfactorial(1) = 1 * 1 = 1
    0 y8 |& `+ ^. y8 s8 _+ gfactorial(2) = 2 * 1 = 2( D+ U$ C+ T6 ^. ~+ d1 v; A; I! S
    factorial(3) = 3 * 2 = 6. X8 j' j. z% j3 j! x9 x
    factorial(4) = 4 * 6 = 24* }. {1 b4 u+ v8 i) g
    factorial(5) = 5 * 24 = 120
    2 \, G$ h3 a# _6 }
    7 h& t8 q, ?# e0 eAdvantages of Recursion
    ) x; x* Z4 [% m" w
    ) J1 A0 d' o) f+ I, G) p7 i; k    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ `* ~. V) M* i# A  j0 D) y
    4 w% {, \) I  s. L* L3 E
        Readability: Recursive code can be more readable and concise compared to iterative solutions.4 c. P( \/ _" H$ ?8 V$ q! K5 h4 u
    8 }; D6 l' L( C2 x" Y  o- F! Y
    Disadvantages of Recursion
    " Q1 s9 @! ~7 |
    / ]; B4 j. \- B0 J    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    + z* [: \+ p; U8 O# m0 G$ ~5 I7 r0 a8 t9 C  s% u' o7 ?
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).3 {2 C+ R7 `" J5 m  y) I+ k

    * o8 [) n/ b8 O2 {. a' _When to Use Recursion
    4 p5 b& n; P: s
    ( p, H  t5 @- p. U    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    & f! I6 u2 I) E" O3 g6 D2 B: H+ j$ F
    8 {! t. |9 i/ _+ }" q+ H    Problems with a clear base case and recursive case.
    9 s5 _4 k' S( A' C9 @& \/ j* j2 L+ c5 ^
    Example: Fibonacci Sequence7 _# b$ k* d3 c9 S' ~/ g

    % Q, z) Q, u% Y8 o: f0 zThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, @! ^4 u* k% F6 r# w

    2 @$ T5 h0 [: B5 f% i8 {% f    Base case: fib(0) = 0, fib(1) = 1
    . T9 @" N# {- b1 d! H
    & d6 D% _! o1 T8 j    Recursive case: fib(n) = fib(n-1) + fib(n-2)1 A1 d' |$ a5 O' v- L" E. _3 t3 i

      O6 r: Z( p5 apython9 Q7 C, h& T$ U2 m4 @

    / u* |) n' ^0 F
    : z: E. W1 B' Q& M' wdef fibonacci(n):- r1 l1 |+ G# K5 ?9 W
        # Base cases
    ) }) q& s8 _. M" g& D    if n == 0:: I+ x- x, P1 I% F5 ]8 j6 [1 I% |
            return 0! [8 |: x' ]' B
        elif n == 1:1 H8 G# c9 v' u% M
            return 1
    2 o6 D9 M- |4 n* E8 e    # Recursive case
    % y- u& U- N4 a3 o  P, ]    else:
    9 ^4 t  n& I5 r# ?3 t, f$ i        return fibonacci(n - 1) + fibonacci(n - 2)
    5 _5 T, n; ]  m" O$ b' C5 @0 ~$ m; k! f: `( V
    # Example usage) K# Y  r8 h! X$ y4 a5 E4 C
    print(fibonacci(6))  # Output: 8
    5 ^4 ~+ J- M2 @7 d5 r' r* @$ r0 C0 Z2 n# @) v) i
    Tail Recursion+ U% e8 Y$ }  T

    : N/ |( w2 V+ \; O- i% ]3 }Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).- a2 D* q; C! J  h

    3 z' w' N0 \/ {  Z  GIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-23 05:30 , Processed in 0.031838 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表