设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1414|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ( f. h0 g* C) v' _4 Q

    1 o9 z* _/ _% ]- P解释的不错
    0 @0 k) r, J8 A$ V! U% v2 u( k/ N$ J5 y
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    1 x! C, H) K# l* o# Z& x" L: _+ H, M; j7 H. y; a: ^
    关键要素
    1 v, E8 {4 }0 c5 H1. **基线条件(Base Case)**
    $ g# T- }) `' R  }   - 递归终止的条件,防止无限循环6 O4 R4 ~7 \( `8 f& Z
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1: l2 x' b8 X% t6 N

    3 G; b! {0 s2 Y( |, s% l. E! U2. **递归条件(Recursive Case)**! s" w" [& P7 V, @' t
       - 将原问题分解为更小的子问题, m  n* q. x+ R9 H4 S1 R
       - 例如:n! = n × (n-1)!
    1 H' o# i$ Q. h! J1 |0 S4 u- j" G! h- `% m" m6 M
    经典示例:计算阶乘1 j! R2 E1 G! p7 l
    python  {. V0 A) P- o8 H# ~( w) w
    def factorial(n):
    " h+ t) s/ I, t, D5 o/ d    if n == 0:        # 基线条件
      G5 b, V1 |; G3 S        return 1- K, q  `% u4 ^% N+ r- G
        else:             # 递归条件
    ' a$ [, k0 o+ y        return n * factorial(n-1): v; t1 x1 ~, p; y0 H, ]( X& r
    执行过程(以计算 3! 为例):
    : y! S; U5 @8 P* Q: j( K% ffactorial(3)4 D3 q* v& b2 u4 y: U; A$ g
    3 * factorial(2)
    * x: p) R/ k/ @- C$ R) E5 @8 @3 * (2 * factorial(1))
    % p* n  k, N- z& l3 * (2 * (1 * factorial(0)))0 b5 |* p0 D, B8 |5 L* W+ V( q4 F
    3 * (2 * (1 * 1)) = 6
      r$ ~8 V- k2 ]! D" V& o& m/ ]2 j- x! L5 I0 B
    递归思维要点/ {7 \9 k) `& i
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    - m" [+ @0 Z9 ~& Y' c/ n2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % a+ Y5 [  R5 |3. **递推过程**:不断向下分解问题(递)
    ! _; w7 i3 O- B5 J$ k; B$ A. e4. **回溯过程**:组合子问题结果返回(归)! S9 [3 R! W2 g9 M, |9 U9 G+ E; i
    ' @2 ^3 I7 f5 T4 Q
    注意事项* ~+ K& X7 [& Z. v2 M
    必须要有终止条件! y  u/ p0 g3 Y2 D+ A( v
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    . S6 Y( ]9 y  V2 M1 Q某些问题用递归更直观(如树遍历),但效率可能不如迭代5 B/ p5 `  e& N0 w/ v4 Q# b& ?
    尾递归优化可以提升效率(但Python不支持)
    5 T  q" [, T" ^  v
    8 E% ~0 l  v9 `. d 递归 vs 迭代5 o+ X: W4 j, s! `6 o" r
    |          | 递归                          | 迭代               |8 r6 D, f, q* l) e% n
    |----------|-----------------------------|------------------|: Y% \) A8 q4 k, b% Q4 H2 h; d# T1 _
    | 实现方式    | 函数自调用                        | 循环结构            |
    * r- k. w: e2 D; [; C# B8 H* o2 || 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |4 d2 O+ Q7 U7 x8 m' H7 M
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 E2 @9 F" [( M9 f6 J3 p
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |- t8 [8 A& l! H# O0 R5 h; r/ [
    : G$ F: o; a- V$ s
    经典递归应用场景6 w( i8 `6 [% j  J/ P* L) p) r
    1. 文件系统遍历(目录树结构)
    + z9 p" X; A* z2. 快速排序/归并排序算法! z/ n  m  |7 S# x- {
    3. 汉诺塔问题: Z; {+ D4 E2 Y0 X! R; i
    4. 二叉树遍历(前序/中序/后序). d* B' Z, b4 F
    5. 生成所有可能的组合(回溯算法)2 L7 l6 ~# I& [# s2 N+ f# r

    2 E. ~& X$ t( O6 F试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    13 小时前
  • 签到天数: 3112 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,- K$ i4 h/ x$ O. d6 K8 `0 t( M
    我推理机的核心算法应该是二叉树遍历的变种。& L5 x/ L8 k0 M' {. \( `/ }& |2 g; O
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:0 Q6 w4 z# u2 R7 I5 ]4 S$ m
    Key Idea of Recursion
    * ~- W: ^. R% U) k4 n" ]. p; Z) N, n6 `8 H' `/ J! ~" x1 D0 @
    A recursive function solves a problem by:
    5 x( Z2 Z6 D- s: }' d+ J
    4 G( y$ P0 {" a$ D3 y( B8 I    Breaking the problem into smaller instances of the same problem.3 l' o  b3 P$ P# p
    / a) n/ A$ n9 M; H0 B
        Solving the smallest instance directly (base case).
    4 u/ F! B  y7 Q- S) u+ @7 z* ?/ t! c! ~. }; w1 g
        Combining the results of smaller instances to solve the larger problem.. Y! q  _8 m1 L2 T1 c6 j( l, S. j
    4 A- h8 Q) Y" i4 ~5 A
    Components of a Recursive Function! m4 X# V# `. N# j: [4 z- l

    " i7 k% r# p% f5 g' x- I    Base Case:# H$ P# ^: T9 k4 Z" p/ S& S

    1 ^( g0 r+ w# p* ]! G) x+ c        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.- h! }3 Q9 l% e9 o: K
    , @% G& b2 D8 V0 @/ m
            It acts as the stopping condition to prevent infinite recursion.
    ! a% K- N+ n. e; `$ X) T- ^& h; a4 B( n. D2 G2 }) k  L! C3 p% E
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.' f/ A8 L$ ^! }3 d
    0 ~" A  A  I( v
        Recursive Case:/ W6 H' |; O  \( Q5 r
    ' z5 Y1 w. J* K4 d* f4 |' k
            This is where the function calls itself with a smaller or simpler version of the problem.
    1 l. C$ k- I) {+ t9 X5 m
    + \. s$ m' O* W1 s        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ M3 {  A2 F6 |0 \" ~0 h8 q

    % L, ~( [( J2 I7 P% HExample: Factorial Calculation) J# C4 h# i. v1 X5 H& {) B

    $ U* D+ d( B$ n& X! e+ fThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:+ S9 o* S1 J. N# J, u% e) K: d
    ( L& M. a' n" L2 ^5 a) d- _4 W
        Base case: 0! = 1
    & [( G+ v3 o0 e, t: r# T2 j1 {
    . [& g5 Z4 M) Z8 o( p- [    Recursive case: n! = n * (n-1)!
    3 W2 o" a7 U( ~  h7 i
    " A% F* b! |# q2 \$ W3 SHere’s how it looks in code (Python):
    4 c+ X( G5 q! Epython
    1 a# {( x2 x  n, R
    ! H2 L. Q: o5 h  B( ]( C0 y3 C! ?# m
    / ]2 l# p0 D5 y  O! v: G5 E* L' Fdef factorial(n):7 s; Z" A. j! c$ s6 P8 W  j
        # Base case
    , ?+ g; d) j9 t$ u/ W    if n == 0:. S7 u8 c+ i6 d( z
            return 1
    , w- K- P# B* _  {: Y( z; T" _    # Recursive case+ K8 L( }" ?, x0 x5 N) E
        else:+ x% y: u3 F$ I
            return n * factorial(n - 1)/ C2 T, z7 R7 S# q3 j  z" x5 o

    5 `% w# p: e  b' W3 M0 b4 P# Example usage1 n/ W2 |8 j& O9 k/ M( D* s! U# z
    print(factorial(5))  # Output: 120+ o4 s5 p- p  J, \, i

    - M/ P5 |! ]2 q+ o% _* A& a: RHow Recursion Works0 `: ~8 L. q. @
    5 ]! s3 d$ L& L% X2 D- V
        The function keeps calling itself with smaller inputs until it reaches the base case.0 P+ y5 _0 ^- v' N

    . E# d$ j! `0 O* E    Once the base case is reached, the function starts returning values back up the call stack.
    ( _4 M' \+ i) f% A. Y( C% p3 |" {3 n6 [4 w6 }$ B
        These returned values are combined to produce the final result.
    ! F- \1 \! r2 C6 ?4 J* L
    4 d$ Z- ~- D5 Q, T4 x; PFor factorial(5):
    7 U9 a, i3 X  @4 D9 x* B7 f7 Q1 i' Z/ ]$ P  \/ j0 J
    " R. S# w3 @( a: X6 M/ {
    factorial(5) = 5 * factorial(4)8 e1 ?4 t5 _+ u4 v
    factorial(4) = 4 * factorial(3)
    6 V0 [: Y3 _5 f  K- @; wfactorial(3) = 3 * factorial(2)
      o* w# X. I" x5 dfactorial(2) = 2 * factorial(1)& d3 F: v! _$ D# K  E% Z7 A
    factorial(1) = 1 * factorial(0). J( N1 @4 g8 j# ?; ^/ ~& w3 i
    factorial(0) = 1  # Base case/ f/ a3 Z7 z3 K4 O- U' t6 ?8 C

    6 X4 J* ^' ~. j( ^' kThen, the results are combined:
    . x6 D) e7 j( x. M+ H; }+ P& `9 {+ n+ g2 x

    3 C2 r7 a$ m5 s0 o5 {# c/ Nfactorial(1) = 1 * 1 = 14 c9 d, f; u/ K1 U' ~, C+ C
    factorial(2) = 2 * 1 = 2& `  B, S. j3 X8 l: z
    factorial(3) = 3 * 2 = 6
      }& H% j9 \2 u0 w  T$ r) U+ O5 efactorial(4) = 4 * 6 = 247 E6 g, U; k1 R3 ^  M
    factorial(5) = 5 * 24 = 1206 I/ Q( ?+ Q& T6 j

    , M/ `# k& C5 N3 B  X, h$ JAdvantages of Recursion9 ^+ A$ G1 T1 ]. z- d& ~$ V. k. Q* x

      e  U  g% ?6 h& O; b! q    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 n4 o' z) P# a% g1 Q: u
    0 C7 J+ ^2 V% f7 z, ^    Readability: Recursive code can be more readable and concise compared to iterative solutions.7 ^; j" g4 \( [

    5 A) Z7 r+ L" s  Z( v! mDisadvantages of Recursion& w* W& G: b, r  `

    / C' K# j( x- R; n! ~% r2 q# Q    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion." H4 a! {5 f* @) P2 M$ ]0 n0 s

    ) e+ Z0 V; \$ {; ~    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 C+ x; @% `1 F* T9 U8 \

    4 u& `0 g4 M. N$ q9 M1 lWhen to Use Recursion; i; }$ i7 [0 B& I. f7 J3 U

    : w- O3 @, G) H    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).- u5 B" ~2 C# _  @

    9 c0 e% m: d2 [3 Q, @: @% d' ?8 `    Problems with a clear base case and recursive case.
    - m! u) ^2 c1 ?( n' B
    $ ~: z) ?0 O1 T* ?Example: Fibonacci Sequence
    " h; J: K: Z2 p5 c# i' F: h7 D+ {
    # L0 q$ k8 w$ X& @3 @6 MThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:3 G( D% J3 c4 W6 I4 a1 z1 R+ N

    2 y' Q" }2 a5 T0 T+ O) u    Base case: fib(0) = 0, fib(1) = 1
    5 J9 u. P9 r- W4 c
    + [8 l+ }* `# ?7 y* r    Recursive case: fib(n) = fib(n-1) + fib(n-2)+ o3 j4 l7 X6 D, L8 v

    3 \. ?2 w! g5 `3 e6 Z9 b0 n& hpython0 B" U- s/ T6 ~2 e& ]
    ) s! J2 T' {9 n) r" F, L- W; X, u
    5 W+ v2 i9 c7 H- n6 R
    def fibonacci(n):. r3 G1 Y) M" |' X8 W& Z
        # Base cases
    1 E9 e' e# O, W9 M5 X1 d    if n == 0:( ]* R& k/ d, W1 ^' d. L2 y
            return 0
    8 R/ C& j( n5 b4 p# z( W    elif n == 1:
    ) `& D" V& T, d# _: \% L        return 1
    " M7 Z/ E" H) G  h, W  b3 y    # Recursive case
    $ [1 ]$ w" S7 p. f( }0 E8 x    else:
    * q# K9 c& [  @, d  e! F4 F        return fibonacci(n - 1) + fibonacci(n - 2)) O  o" \) w  X! }8 n$ z) b1 N
    , N5 T$ p  [% p7 E; |( v; M
    # Example usage$ M+ Z1 K1 a  s) [; x
    print(fibonacci(6))  # Output: 8
    ; p6 Y! j8 k4 W2 e+ D# m- W, T# S  Q4 m/ m. R) J3 g
    Tail Recursion
    / j# e: {; C! A# P$ |7 [* y; q. `$ b" {+ D8 u
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    9 }# f+ W5 ~" U" k3 S2 Z5 n5 E6 M( ^7 V
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-8 20:40 , Processed in 0.031804 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表