设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1959|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 A" ?( G2 F. B: e! R& v* ?1 H' M
    解释的不错
    # X* h; h7 k0 ~4 ]' t* }7 ]
    6 G# v( u* |" ]7 g0 \递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    , z% @4 n# w' z# \
    1 q+ f5 U0 w9 z# X5 L# O+ s 关键要素( N5 s* v, v  J" t
    1. **基线条件(Base Case)**
    ) d/ T/ E6 a) [( ^, b1 |" Y- p   - 递归终止的条件,防止无限循环3 X  q" b: ^7 l6 [0 n
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    5 x1 K2 O/ p- z1 Y. H2 I
    7 L* w! A8 ^/ A. I, c2. **递归条件(Recursive Case)**1 P/ K/ V; v6 P9 H0 j) X: y' i
       - 将原问题分解为更小的子问题9 W7 J! ]! s, B2 F4 l( j7 \
       - 例如:n! = n × (n-1)!  R  a( z  I9 g; a- D, Y" U
    + H/ W  s2 Z" P9 K. {" t
    经典示例:计算阶乘7 W6 @+ h! Q+ Z7 }! N
    python
    , I# W7 _, Z0 o7 Mdef factorial(n):
    3 @# e' n' o- o6 M    if n == 0:        # 基线条件
    4 r0 i& G$ `" w) b        return 1
    3 V0 b& S: L1 d2 z; q6 f    else:             # 递归条件4 @! r1 p6 K; ?5 l2 B: j3 H1 _, f, K
            return n * factorial(n-1)
    $ l  Y( |+ R) e5 ?5 g& Z执行过程(以计算 3! 为例):
    1 J8 f# b+ c8 }! F, Afactorial(3)! `' ]. k0 l/ \
    3 * factorial(2). [- v6 K1 _3 w
    3 * (2 * factorial(1))- u; Z+ o" m/ \+ C0 J" b
    3 * (2 * (1 * factorial(0)))7 c6 n+ p) L1 ?' S( y: \- L
    3 * (2 * (1 * 1)) = 6
    / |% p" G) @. A6 a- \3 D) U' Z1 @. z4 Z" f6 Z! l: u* o. `
    递归思维要点5 A$ J# e& V6 d+ j% |
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + c: }2 s' F3 K  S2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 Y3 j, X# c, o& N
    3. **递推过程**:不断向下分解问题(递)7 z3 m( r( K6 O' F* W( ]
    4. **回溯过程**:组合子问题结果返回(归); U4 ~1 u" u3 ^# t

    ! v- d& f- D& t; ]$ K5 K: ^! f 注意事项9 ]" m0 e8 K, r" p5 P4 k7 Q8 a
    必须要有终止条件2 o* s( z  g! A: j1 K
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* w5 S2 y$ V: H+ l
    某些问题用递归更直观(如树遍历),但效率可能不如迭代- g  n1 K2 L8 t5 [) J  W
    尾递归优化可以提升效率(但Python不支持)' m7 R5 _1 P/ ~0 F: H. l

    ! w6 H, s4 `4 O: J+ V( n8 e" f8 i# O6 R 递归 vs 迭代
    2 _# V+ V/ K; ?9 E2 B+ ]# A|          | 递归                          | 迭代               |
    1 u! a  V" q0 h% S- z/ Y|----------|-----------------------------|------------------|
    , x$ Y' _2 y* j  B1 I| 实现方式    | 函数自调用                        | 循环结构            |
    ; J9 I9 ], S. J& m- G6 l: j| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    $ Y; \. \; Y3 Z6 p7 |8 h| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    , D+ U' Z, ]# `1 ^( f| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    % I  l5 [' k- i0 r; z7 ]* K# ?; [9 y
    经典递归应用场景; I8 \+ h: _3 D! P6 Z3 w1 X
    1. 文件系统遍历(目录树结构)
    3 U# A% _: G2 a$ z4 ^& |2. 快速排序/归并排序算法
    9 ~2 h3 U. w. C$ B# O9 `+ }% x7 {3. 汉诺塔问题- l9 G0 P3 n( D
    4. 二叉树遍历(前序/中序/后序)
    2 D- t. Z/ G6 T' f0 k) P  N5. 生成所有可能的组合(回溯算法)
    " l" d1 H  n5 \" q$ Y9 H! i  A; T5 i7 L( O' g9 h
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 04:31
  • 签到天数: 3155 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    $ A6 W( I: c. I% h5 c+ _. u我推理机的核心算法应该是二叉树遍历的变种。
    & z# C* K: ~# B7 M9 J5 T另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    : Y! W5 Q3 p: O' I1 F3 R6 q. |Key Idea of Recursion
    / k$ q. a* S4 a3 m6 U! x" @( Y
    5 ~$ f+ B, K) A+ m( C3 K3 F9 NA recursive function solves a problem by:( s# ]5 z8 ?. z! C' X$ A) T
    + n+ Z5 q4 ~9 K$ h: n
        Breaking the problem into smaller instances of the same problem.4 R* ^8 d4 L: K, p

    7 n) ~5 R& U+ R* i    Solving the smallest instance directly (base case).9 K$ c7 @5 d, H8 B! I# ^: q& J1 ~
    , q- W5 Q, h8 ?: u
        Combining the results of smaller instances to solve the larger problem.
    ; m9 @$ W+ e- }1 ]. q% X& V& U- w% V7 i
    Components of a Recursive Function6 N' X+ V, P- i$ H

    * z% {! g$ B/ B" b  h6 e2 y1 G: z    Base Case:
    % R+ |, C/ q( i; i& G. s2 P3 |9 k+ B) {4 A0 v' C+ O
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.; S, P7 [4 C( Q1 T

    ; |/ v' H/ _) v4 P. s0 c0 m        It acts as the stopping condition to prevent infinite recursion.
    ' T! B. h% x) f& E7 c/ c0 T8 w9 [5 W) p
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ( Y3 o- y  j" p4 O2 q0 F0 q. Z+ C1 Y7 F! G: g$ `3 |& Y
        Recursive Case:
    ) H; J0 h$ \0 I1 O/ S" F2 h
    9 p1 A/ F8 ?0 M9 L        This is where the function calls itself with a smaller or simpler version of the problem.5 t- m3 f. E8 d6 D( S" C, l7 m6 @
    - V1 w1 i# g4 |( z  ~
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." B/ }; W/ W9 p. u6 Z  t+ s8 {

    8 }" t7 h+ d1 k7 A; V; j% RExample: Factorial Calculation3 z  y# |7 ~3 [6 t. d! w# ?. ?
    ( x1 z! x8 Q6 I
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:+ D7 }$ I, k4 n1 i) l$ {9 p

    , S4 g" N" T- e' ^    Base case: 0! = 11 e6 o& Y2 _, o! p8 K% y& e, ?
    ! w  d: \; `& {4 Z
        Recursive case: n! = n * (n-1)!
    ( P& t4 Z% ?5 K* ~* h
    6 W" V2 Q  D& @! z$ {  E" [Here’s how it looks in code (Python):; d& Z5 t% M- r3 W
    python' y6 ^6 w9 ]# X/ g+ C5 N

    9 _- X( a' J# q) g# G* ~1 o. e: i
    & x9 ]5 k2 k" m  w6 gdef factorial(n):
    + O( F; o) A1 t5 b$ H    # Base case
    6 k" w, X1 g7 L' J! d    if n == 0:
    7 \$ q& A; b6 C# Y4 W        return 13 P$ C1 u& S+ M; I! T
        # Recursive case
    $ N+ Y2 k$ g4 w3 p    else:! R: |$ K* h7 o4 B7 }
            return n * factorial(n - 1)
    ; c2 ?* B) _4 z- v" v9 w, }2 N; V! F
    # Example usage# w- ]5 a& Y% e
    print(factorial(5))  # Output: 120
    4 r- B, J. t) M% ]. l# \6 E3 W2 D1 `+ z: m! [( ?  T+ [
    How Recursion Works
    ) \8 a3 b8 l8 G, y3 r
    # i- I7 i+ i* M4 R6 S    The function keeps calling itself with smaller inputs until it reaches the base case.( O1 O( h3 I3 U) \1 a) v

    5 V2 x. y- m  B7 L+ P/ d( k1 r* C    Once the base case is reached, the function starts returning values back up the call stack.
    4 c" k1 ~( N9 }+ A' U+ [. G: N0 I: D7 r; s6 |% N; U/ I
        These returned values are combined to produce the final result.0 v* K5 E0 d2 [% ^$ n
    1 I- S1 i  R" {0 Q
    For factorial(5):
    , `; R. _6 Q4 O0 b. O- [6 }$ _8 W
    * X. J2 q) ]' {- B- q2 L' ]& f1 j$ i0 Q( X
    factorial(5) = 5 * factorial(4)
    - a( i* @( b' w. f6 Y7 ~! Q8 ?( Pfactorial(4) = 4 * factorial(3)5 f) J6 k9 T0 \: J% e
    factorial(3) = 3 * factorial(2)
    . M7 [$ p  `3 f( c  G  Ufactorial(2) = 2 * factorial(1)) h3 S9 B2 S5 v
    factorial(1) = 1 * factorial(0)5 `9 p' l0 F" X. p* V4 W- R9 T1 o
    factorial(0) = 1  # Base case9 F) U( L0 H, r- m3 s0 Q6 V* G

    ) ]( @& L1 v! L2 P* A/ E. BThen, the results are combined:* |% k+ Q7 B3 J7 w/ [* ?% ?
    5 G, F) h! L" M# {6 z4 Y
    6 |  Q) W3 d/ F# v7 v# z
    factorial(1) = 1 * 1 = 18 u1 j. b3 D, b  g2 ~; @6 r9 b5 u
    factorial(2) = 2 * 1 = 2
    2 J4 \" `! a+ G( J7 z+ W5 efactorial(3) = 3 * 2 = 6
    6 K7 q# w" M" [& y: `) @0 S# Nfactorial(4) = 4 * 6 = 24
    2 M+ s6 F* {) L6 k5 e* Ufactorial(5) = 5 * 24 = 120# _1 g  K+ E& w  r
    1 R/ z& J7 u* H
    Advantages of Recursion
    3 I  o: {5 w- g. S7 M. n
    % m& Y  [) Y. R. A8 G+ B$ z    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ t! j  U* I8 B$ B3 K* h$ E

    9 H1 @: F* d/ R4 Q$ k% O$ w    Readability: Recursive code can be more readable and concise compared to iterative solutions.' u, u* i# O3 G- w' L; m
    ! U+ M, U- X/ i/ U: D
    Disadvantages of Recursion
    & n' q5 I# b) T0 ?$ [# O5 X! a' }" L0 x% g
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    # Y9 n" j8 |5 b6 U, ?6 N+ D5 n1 |* x$ Q, O
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    & @9 N7 q! }9 U% ]) l5 ]/ g& Y: P% I
    % o# H( L5 B5 E3 q/ @9 c1 iWhen to Use Recursion
    7 e+ b$ Q  j$ w8 ^
    % ~2 N/ \6 [2 m  ?3 {    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).' @7 Z( K. X" \6 Y6 f- N0 _; Q- t' k3 t! @
    $ J! j' S" `+ u- k# E
        Problems with a clear base case and recursive case.
    # N  C# w* l! o% z* u, |6 j% @4 z+ B5 Y
    ' z- U0 x2 ?5 \& |Example: Fibonacci Sequence% Z1 e3 m4 x/ J$ P( R
    1 z* m% A/ C7 F1 s
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    % K6 M# r4 B+ D% W
    & P  e" \) k) J' c. g* s    Base case: fib(0) = 0, fib(1) = 1" o1 K* n- B5 S% ^

    , M" J$ Z! x# p1 g    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    % L1 t" [0 J" H5 }
    3 |2 B5 H. [! |  x4 ^$ r# Gpython) D( s& h: I; O1 @" `9 R4 J
    + n, H* R) ^/ ?' ~
    ' z6 k2 |  \: R
    def fibonacci(n):
    ' }3 e- L! X2 i% k' X    # Base cases! U7 N3 P( O2 B: J
        if n == 0:8 b0 o5 I) j' }& E# z9 \2 [6 h9 b- W
            return 0
    8 i- @3 T: X; F  `    elif n == 1:0 e: P# g7 E- @$ n# X
            return 18 W* _- W/ Y9 I* ?2 n3 L4 y& j
        # Recursive case
    : O$ c2 z9 V  B9 L    else:
    5 T& u& y( h% w; k; U8 l6 c2 l        return fibonacci(n - 1) + fibonacci(n - 2)
    * q3 c) W# x' o+ Y+ g
    & f. G2 @+ @, m' h7 M: a# Example usage* y. P9 H6 b# s: c2 ?( ]
    print(fibonacci(6))  # Output: 80 \3 j  k! [1 m0 T
    " [( e" D* O6 u
    Tail Recursion/ [% M3 Y4 X' s8 ]( m- K# t: u+ X4 t

    * ^7 O6 U; v$ D: T+ ZTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 e; B! I' e* ^! p8 y
    # Z6 k9 k& F9 F+ J( c1 i- B
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-28 01:20 , Processed in 0.058767 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表