设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1984|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # I- F7 c% a, `- L8 a$ L( m$ i3 u& S1 y3 {( j& D  v$ h& t3 _
    解释的不错. r8 A2 w7 t4 w  P. M3 R+ J

    / ~/ ^: v- V( j" G6 E: c递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    * A; l7 W! U  y1 j4 \0 n4 _/ z9 F
    关键要素* p5 }& Z" J; u( ~
    1. **基线条件(Base Case)**
    , @# `% Q  Y  A4 d( K8 g; s   - 递归终止的条件,防止无限循环, Z% S* n" {2 l; F6 x0 Z
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " X8 ?, t' T6 e& M, I8 p0 }4 _5 c' @) m: U# Y& ]: Y/ O
    2. **递归条件(Recursive Case)**+ U, |7 p# |7 _
       - 将原问题分解为更小的子问题" w4 s, a9 i6 G# e. e  B. ~
       - 例如:n! = n × (n-1)!
    3 e$ {2 h* ~0 I4 p7 Y) ~
    1 @& b& q: w+ @5 ^0 a, p8 B8 f8 r" ~ 经典示例:计算阶乘
    & Q3 N; ]: ^" l* v( K$ s( Npython
    ; `2 H+ S# D. t! I3 y! C$ \8 rdef factorial(n):
    2 \/ V9 p. n* C/ o+ p    if n == 0:        # 基线条件  f# t$ }4 L; z
            return 1! M5 N9 t$ @  d+ J& I; g2 n
        else:             # 递归条件2 @+ T4 o  J/ z$ d  D
            return n * factorial(n-1)
    ; G3 n8 p- I3 z' \9 N/ U7 B执行过程(以计算 3! 为例):6 y/ p) N, X6 k$ A. U) s: a) W
    factorial(3)
    ! G7 ?8 _( x4 t7 o$ O; {5 x- ?% U3 * factorial(2)
    & z' k5 k1 n6 e. V. e3 * (2 * factorial(1))
    ( U1 J1 ]% }+ n, Y6 A8 m3 * (2 * (1 * factorial(0)))
    0 P, P# T; ]# h. w3 * (2 * (1 * 1)) = 6  w3 _! n$ x; F2 n" s5 Q

    , V( J6 f: F) a% r9 o* _ 递归思维要点
    % u) u$ h% }; S' U1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ! W9 q; B5 k) j9 d. p% d2. **栈结构**:每次调用都会创建新的栈帧(内存空间), y! M" @& X% n! X3 @5 B# Z' [( b
    3. **递推过程**:不断向下分解问题(递)2 e' ~: |3 x! W0 r6 G; A; ~* \
    4. **回溯过程**:组合子问题结果返回(归)
    - e+ I2 T, A; S5 G, I
    5 t! @+ I9 n" F9 w! J 注意事项
    ; Y& T* r5 w1 a; I# o" G4 }必须要有终止条件/ x! |1 v9 d6 H& q" Q" g
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    , b3 M' u5 `; }" Q8 b9 A- G某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 L2 J9 {& O" [' j; s尾递归优化可以提升效率(但Python不支持)
    / O0 U8 Y  z- y0 Z$ q; {! A: A' K- B' F7 {+ p6 F
    递归 vs 迭代/ b6 e& }5 o, `
    |          | 递归                          | 迭代               |
    8 M- I" V5 r$ p( n1 Y/ m|----------|-----------------------------|------------------|0 J+ G7 F; X3 y* x
    | 实现方式    | 函数自调用                        | 循环结构            |
    / \1 j  B! D4 J4 c% u8 u, r0 v| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ J/ J% ?- Q  X, C
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* o5 l: w1 z! y) \' r$ Q+ V/ Q4 G7 r
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    # R( J/ v. ~- e; ~6 t# `! B, E
    % s; d( i6 c2 I 经典递归应用场景
    + p0 Z2 z9 _# O' K% j, I8 m1. 文件系统遍历(目录树结构)" M6 x  r' o4 L% b. @
    2. 快速排序/归并排序算法# S& t' d& z5 A7 h& A9 \% E
    3. 汉诺塔问题; E  h4 x  |9 P1 H/ K) u7 S
    4. 二叉树遍历(前序/中序/后序)
    $ {# m# Q" e+ o2 F7 Y* w7 U0 c5. 生成所有可能的组合(回溯算法)7 P$ K8 h9 w! _

    3 S% T6 [5 M& }9 n5 x) o) V8 ~试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    5 小时前
  • 签到天数: 3159 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, g6 F2 ]/ d2 h6 d! S! h% X
    我推理机的核心算法应该是二叉树遍历的变种。
      z4 U* |9 s* a; i0 u另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    6 U8 V+ P  h$ Y3 L8 P$ h* cKey Idea of Recursion* y8 b) c+ w" N& f4 G  M9 r+ D
    9 P* Q/ [( d9 i
    A recursive function solves a problem by:. g4 g: Y- X( e' @+ p, ?

    ( V4 g% l4 M0 p$ ]. J/ F7 K    Breaking the problem into smaller instances of the same problem.. a; k4 t1 h  M' n& \

    3 I; J3 p0 @) D, V  X: J    Solving the smallest instance directly (base case).: A$ ?2 O( y* j: h, ]" w" E* N
    8 ~' q( W! D$ C" C  F/ _
        Combining the results of smaller instances to solve the larger problem.
    1 c# ^, q  W9 p, a1 x7 Y% Q' k9 ]7 D$ O" @0 X
    Components of a Recursive Function6 J1 Y" }" U/ J0 V( j) _
    $ V$ b( F' F+ I; b" F% u+ `
        Base Case:  K% q/ Q8 E5 c. Q! S' V
    2 R7 `# @8 M) B# E1 e
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    + r& L* b3 X$ O  f2 K. l3 u& k+ m
            It acts as the stopping condition to prevent infinite recursion.
    + k' C& ~5 R. N3 `; P" r: t: j+ l5 Q; @+ q5 k( X
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.# v+ J$ m% m$ P: y5 e* U& z

    7 S' Q) H+ J) S6 B# ^" Q. l    Recursive Case:
    , S/ H3 [( N# y4 D3 [. h
    3 ^5 f+ q8 J1 T; l: Z        This is where the function calls itself with a smaller or simpler version of the problem.
    : g! B* b- }/ B% g8 N' s. D3 W
    8 k- G7 w% o2 P0 Q% X$ f        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' P' X: q) S& N) C9 c

    , k) F/ v4 e# D' B. ~- j% ^7 e0 tExample: Factorial Calculation
    ! U8 J2 O1 d% m5 i3 B5 p9 w: ^4 h: w! l# o8 Q- O; W2 n: I
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    1 D7 O9 C2 R9 F9 a- U; \1 W
    $ ?2 ^. d2 m* |    Base case: 0! = 1
    - ?: |( ~6 C  T6 B) C& |
    9 a% W- b8 X1 W    Recursive case: n! = n * (n-1)!
    4 _  H# L% p' Z# D, M& a
    . _5 I  r" ~. F: d7 G; J2 s( e0 VHere’s how it looks in code (Python):
    9 Z: L$ B, [: G, _$ {4 A% ]/ \3 ^python1 d5 Z& y4 V, Z* q0 N+ W1 u
    + n+ p' H, L8 Y* j* ]( w' e" J% O8 t
    ! s: u6 O3 S1 ]3 ~" x4 F6 A
    def factorial(n):% [$ C+ l# B; d/ w  H1 d- B
        # Base case5 q& K1 B' j+ h9 g6 B" B
        if n == 0:
    7 z5 \& C0 J+ m* {; G1 P        return 1+ i1 R! l  a# d/ p. Q
        # Recursive case
    5 q4 Q: E  [  U* }% i- n    else:
    - h. ~5 _7 R, ]        return n * factorial(n - 1)
    ( {" U/ A& f& D
    . U# h7 l2 J5 {& X, x7 r# Example usage" D! N% M0 u/ B1 G$ }! n- B
    print(factorial(5))  # Output: 120
    8 \' [0 B) q9 O& `* o
    & N1 Y' [  H4 h; o& J+ l! qHow Recursion Works
    * x6 G) L. [$ e8 o5 O! W" j( t- e& z& c9 c$ I  ?9 ]
        The function keeps calling itself with smaller inputs until it reaches the base case.
    % ?7 K0 s* E1 D% \8 ?9 W9 y7 C5 d
        Once the base case is reached, the function starts returning values back up the call stack.+ }8 ]/ T* i4 F% T( R3 ]+ m4 T1 [

    1 _7 b8 |" i5 N( P; N5 a    These returned values are combined to produce the final result.8 J4 s3 c# i, g" H2 F7 x& V

    % B8 ]( y5 P  B0 l$ D# D: [  tFor factorial(5):
    % t5 E! I$ j9 D6 V- t; E8 ]: K
      h7 t) W. v8 F" l7 {7 x/ Z7 ~8 e6 v" P; g
    factorial(5) = 5 * factorial(4)
    ' r% X4 W8 x: g' p* p% Ifactorial(4) = 4 * factorial(3)
    ! b9 K$ o. g/ Y( kfactorial(3) = 3 * factorial(2)& ?2 p8 ~# W# _! G
    factorial(2) = 2 * factorial(1)
    8 I8 z" T4 a5 m, B- o0 pfactorial(1) = 1 * factorial(0)  A9 A( d3 d2 z. x+ w
    factorial(0) = 1  # Base case/ [" ?) F5 x- ~
    7 r. P- _. N2 |  ]3 r
    Then, the results are combined:
    ; z+ U& S4 y* j2 ~8 Y8 Q1 E  P. }5 @6 |
    1 T/ v3 F2 G% Z$ \
    factorial(1) = 1 * 1 = 1* F3 C! ~! g! a
    factorial(2) = 2 * 1 = 2
    ) Z( Q& W6 {% pfactorial(3) = 3 * 2 = 6
      _* R* I# R3 L6 N7 |+ b; t/ F8 ]% Kfactorial(4) = 4 * 6 = 240 ]  `: _$ `7 D3 |3 s7 r; d$ n& }
    factorial(5) = 5 * 24 = 120, B1 H6 Q$ Q6 d. ]0 T* K/ L

    + |& }- Y1 V; k1 K6 n: q+ t$ OAdvantages of Recursion+ Z) a& i3 X' {6 H, C

    & F: \, E' v2 J4 Y1 u    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    % ?8 c4 G/ P: o" h3 Z3 X; T1 t
    ; k% D  e- z6 K% f3 u    Readability: Recursive code can be more readable and concise compared to iterative solutions.' J) V. T, K% }% B; k1 \
      P) J  f3 i) _! ^1 n
    Disadvantages of Recursion
    1 Z: W/ A# w5 c
    ; u1 b4 P# d2 Q7 I4 `# U    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    - ^8 Q2 z" S7 o% ]# c0 `2 Z4 u3 E# Q" v% C( |$ a8 j
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ) j" K& P. r8 \+ }. r
    + o! x! s. P& z  o% X4 TWhen to Use Recursion+ U/ }3 c: d& v) g3 {
    ( O  g! z6 n! h" W" h6 u
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).; a! `# q. S* y5 s+ s/ Q$ }! O- H
    . C, L' c2 C6 `& ?4 A% k
        Problems with a clear base case and recursive case.7 u" k0 I1 {: c) V$ F5 ]

    : P, ~4 F' x. [* x0 F7 G. jExample: Fibonacci Sequence
    ; }  M9 s% l  H6 Z: c
    2 \; x! s% }6 H2 d( D! g3 @4 YThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) j6 y$ n0 D0 v  Y1 _  T; ?8 a9 P

    7 R! ?; ]" N8 d% S# J    Base case: fib(0) = 0, fib(1) = 1
    # `: h$ r* ?6 f1 M3 w, w, Y: c. r/ g* A
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    . L$ \/ P5 D# f3 Q, N, c0 f# c3 h
    1 w# t5 k- p2 L2 ]python
    : I5 n$ s! w4 w( ~8 o0 w, I# \3 I2 Z7 V

    * J2 X( ?( n0 N$ H& U- Jdef fibonacci(n):
    - E* |# _7 Z/ m/ {2 x, N    # Base cases( K/ U7 B' v" `( y; I
        if n == 0:
    9 X  n% T! A+ \7 a        return 0
    ( ^, G% R" B0 o" E& L# U8 m    elif n == 1:: S) y: `- P* f7 C2 O
            return 16 G! a+ C8 J  Z) I0 u; o
        # Recursive case
    9 F7 e: {; X7 h- s& e    else:
    & v) w2 }! W) @( s        return fibonacci(n - 1) + fibonacci(n - 2)
    4 ^  K2 J3 s" S0 ~/ b. V; I% e+ Z2 s4 t' s% `- O
    # Example usage+ O8 U7 [9 H! F6 m
    print(fibonacci(6))  # Output: 85 a  M8 Z2 g; S1 V

    # `1 u" e/ E$ O, Y3 ?9 @$ v0 ]* TTail Recursion
    # G& L' Q2 U9 l, q5 W
    ! @4 ^% b& L* a) b( s/ LTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    + f5 x& S' B0 H
    - n- s- m! o9 y9 W  Y  e) tIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-31 12:40 , Processed in 0.070556 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表