设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 940|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    7 天前
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 - a" [6 `/ K6 O8 d

    5 @0 Z; S# G, d7 K! T3 p- z6 _6 U解释的不错8 m/ F$ X# r3 E& g1 Y
    - t% q! N$ w$ ]. Y/ }
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。0 n; e! @" J; C) _. a) F
    ! P! W- \+ H! f6 B4 h: V; X
    关键要素- l- T$ a  B1 H6 w
    1. **基线条件(Base Case)**
    . n, S8 _+ q4 F3 `  l   - 递归终止的条件,防止无限循环; z. W- i9 J7 b
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- p1 M0 C) j- ~0 b6 S

    1 O* s& S* S& B2. **递归条件(Recursive Case)**$ Q5 Q1 a4 R4 m5 I4 X
       - 将原问题分解为更小的子问题9 O% C) T; [3 ~! @; B& O
       - 例如:n! = n × (n-1)!# Q" [. I/ S' z0 \& {1 Z2 h+ g
    / j3 f8 a4 Z) _" F. X% v
    经典示例:计算阶乘
    6 T* m& V' w& G. `, G0 xpython
    ' d9 T1 F3 C+ h- I6 mdef factorial(n):5 a% k1 U0 l) X# n; R- J5 @
        if n == 0:        # 基线条件3 f) R$ {0 T' R& o- u
            return 1
    % [! s3 {' R5 ]    else:             # 递归条件6 [9 T+ n' T0 ]* }/ R8 x% R) }6 t
            return n * factorial(n-1)
    % @: \+ h1 ^# N3 L: l" c执行过程(以计算 3! 为例):
    2 ^" D& K+ v5 c0 y$ P2 Ifactorial(3)  F4 w) V* Z; G% x* @
    3 * factorial(2). U+ w" r: d. @- y+ f; E" W' }
    3 * (2 * factorial(1))  Y# u7 ?5 G; ^- @
    3 * (2 * (1 * factorial(0)))
    1 L; y! @- Z7 r/ f3 * (2 * (1 * 1)) = 6) N) B/ Q9 F' o( f
    + @& J) z( c/ e
    递归思维要点# b6 X! O2 A! N; K+ `/ U0 t
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑6 ~: K7 t# m( q- [
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    - O8 J0 t5 F" B" `' \! x3. **递推过程**:不断向下分解问题(递)4 D0 t: c* e( A2 K6 m% Y1 W& `( X& ^
    4. **回溯过程**:组合子问题结果返回(归)" z- ?8 H3 l1 l0 ]5 w. V! q  x) K$ ]

    & T, {* S6 J. g6 q. G2 H- p 注意事项
    % ^# i8 n8 a$ M: U* |+ p必须要有终止条件8 z8 }$ t& r5 k2 Y1 f* ^7 G  t
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)3 {5 J; g, y" {3 c; G
    某些问题用递归更直观(如树遍历),但效率可能不如迭代6 b2 `" A4 A) o
    尾递归优化可以提升效率(但Python不支持)
    7 B7 [4 e1 ~1 L% ^: o0 D- v8 A2 {! q# a7 z: n* r/ y8 p
    递归 vs 迭代) ]2 r. d3 p6 _4 X- R
    |          | 递归                          | 迭代               |' Q( O( C, V, l' a" ?
    |----------|-----------------------------|------------------|3 M) l. z) I' s
    | 实现方式    | 函数自调用                        | 循环结构            |
    & U2 }+ Q/ o/ y. ?9 ]3 d  o| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |  j. E. s1 F( G5 w
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |  H7 o7 m( A1 F# m+ [, v
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |7 h: p8 n$ Z- v' s8 B
    8 d2 X' i- B0 a3 y) O
    经典递归应用场景! B, N: u( \5 W9 c: \3 A, F' Y
    1. 文件系统遍历(目录树结构)$ ?/ |, v" l5 K  ^9 z' q
    2. 快速排序/归并排序算法
    1 B0 k7 j/ l$ S( |% d6 l3. 汉诺塔问题' O" Y& F7 y& d% e3 q5 L5 e
    4. 二叉树遍历(前序/中序/后序)
    3 P5 w3 E+ T( x5 J! h$ j9 H5. 生成所有可能的组合(回溯算法)
    ' D! V1 G6 @2 F9 X0 R1 P- v
    " T9 r- X; N- Y# W, @试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    17 小时前
  • 签到天数: 3041 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( B: v3 w6 p# k4 W
    我推理机的核心算法应该是二叉树遍历的变种。
    1 k+ J4 ?9 ]# y, I/ z1 Z另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 W) Q( S, s; J6 z- P) b! K
    Key Idea of Recursion
    9 K& e4 _1 p# J3 U, F: D2 h
    $ ^2 j; J' _! O! {: P/ g% P1 e; G! `  |A recursive function solves a problem by:& h6 l0 h* _8 W  Z) ~& ]( c
    5 D2 ~4 u* x: ~, [9 D
        Breaking the problem into smaller instances of the same problem.
    4 u* q/ ]) p' E6 f" V$ k
    ' b/ @& i7 G( w" {+ D# P    Solving the smallest instance directly (base case).
    5 P+ r; w' x- ~5 I) p
    8 j. ^4 X% g8 x, V3 ]    Combining the results of smaller instances to solve the larger problem.% k; }" L+ P. Q% T( J
    ! m( s1 `- v8 ]
    Components of a Recursive Function
    % C- |$ I" `- V5 _3 {. q) \  X7 E6 a6 e' M% `
        Base Case:
    , T2 c# W- E5 l$ i% h$ P$ K7 g' h: R6 n0 y& ~9 W
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.9 a: c* L* q7 ?3 U5 N; k+ a7 A" A

    5 q) k2 S  ~% R/ n% L# I        It acts as the stopping condition to prevent infinite recursion.
    * o: ?. e+ {& T3 w7 N' i( w8 t/ Z- `
    ) ^( W1 [" X5 s1 r8 I5 [        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    - R" v& S, P4 I1 @% C+ N9 I
    ' n+ u! i0 }# F6 j9 Y, W    Recursive Case:
    + l( g, A3 t' ~4 k6 B" W; j$ @1 Z6 `& C, Y) B2 o$ {
            This is where the function calls itself with a smaller or simpler version of the problem.
    ' o$ e1 z/ |8 t, {& ?0 s5 c0 R# \; a# L4 L
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% Y) P( _4 T+ h1 b# Y# K
    1 o. g- v1 O! P. _) w
    Example: Factorial Calculation
    5 \  ?( F( A; |, ^# Z
    # h) x3 k: x" L$ oThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:$ K7 Y3 U( k7 O$ W
    ( c. W( f* o: B/ G
        Base case: 0! = 1
    7 L  K0 k( ~8 v% E' c" a# p- l. D) [, ?. m4 w. \" _
        Recursive case: n! = n * (n-1)!
    8 J7 x2 ]/ ^! L1 h) H  S# g* d5 U! `+ R" A1 [
    Here’s how it looks in code (Python):
    1 ~% b4 m1 I: C  Epython
    ! F0 T' Y4 b" _# v1 k1 k8 q8 U4 R

    0 N4 e, I; J0 ]def factorial(n):2 |5 c! F6 c0 J! V6 G* j/ y0 c# E. C
        # Base case
    # ^/ y# F; [8 W3 E& ?) r( l/ H' q    if n == 0:. T5 p* @; z) e+ Q9 G
            return 1
    8 k" {2 G( ]- m' G. v    # Recursive case% n; s5 x6 l4 y
        else:: C( G5 {& e/ d! U0 ?7 `& X
            return n * factorial(n - 1)
    9 \* m) s7 }9 a: d9 ?" j) E2 d" [; r, l( t3 n8 K
    # Example usage9 L+ T5 e% W2 e/ x, B$ F
    print(factorial(5))  # Output: 1206 r" Z! r4 X* `

    0 b" u: V. C; O7 z9 F2 UHow Recursion Works
    : ^% h. S5 [& M. B7 {/ w, x4 a  N7 ?+ M( t1 x3 s0 Z  e! N1 p
        The function keeps calling itself with smaller inputs until it reaches the base case.2 C7 \( N' K3 Q; h0 d
    ! d5 ^# P, ~* N/ N0 n
        Once the base case is reached, the function starts returning values back up the call stack.
    2 f& R5 s. v+ Y. K, U6 r* U6 V7 G( K, E8 R1 ?
        These returned values are combined to produce the final result.9 c3 g8 ~3 F/ |6 f. r
    # S" w: n" `6 X$ r/ {
    For factorial(5):
    $ F: w9 {+ ?! k  h; [
    2 Q& C( l0 _& n, S; m% p& [# v: z0 K+ W3 H& r6 N! _, w' ]  m
    factorial(5) = 5 * factorial(4): C2 A1 e- s3 k6 J
    factorial(4) = 4 * factorial(3)
    " ?' D, R+ J+ U& B1 |factorial(3) = 3 * factorial(2)6 C5 Z5 w" b5 V7 {& C4 [/ \3 r
    factorial(2) = 2 * factorial(1)
    / ?1 t0 w4 N% J2 e. y: ~& `factorial(1) = 1 * factorial(0)
    3 m. r  K! J" G! T& X0 Efactorial(0) = 1  # Base case
    ) c# ]; F) ^  y% w) I4 _$ F! h# z# j; i8 o
    Then, the results are combined:
    $ J" _1 K" b. e. ?/ S, j
    ) J, D8 k* S2 M+ A
    2 k9 r0 j9 P8 y4 Zfactorial(1) = 1 * 1 = 1
    5 o: ?* v1 E0 a8 E! x8 gfactorial(2) = 2 * 1 = 2
    % b/ E  [% a8 J& D  kfactorial(3) = 3 * 2 = 6( y7 F% F6 V3 t5 ?/ b& I
    factorial(4) = 4 * 6 = 240 l/ Y" M6 S' l4 }8 J3 G& l7 @! q
    factorial(5) = 5 * 24 = 120
      J  T2 i9 e2 J/ {
    , l; W- N- J1 G: u* X5 y" {Advantages of Recursion) j& a5 \3 q% H

    - W( {3 u9 V( L! U    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# v) d. R0 p# q3 u4 x, o6 U

    & B5 l# z5 N0 Z    Readability: Recursive code can be more readable and concise compared to iterative solutions.
      w: Q+ Y( x% _% _$ K# a1 v- F6 M$ A/ [9 s
    Disadvantages of Recursion
    # t% p& |. W8 \  V; V& S1 E8 B; F8 F9 Z; o! J0 N  E/ o
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 L9 p9 {3 O5 \$ L& I7 I
    5 M  M5 l% C( g! p3 m% s5 l9 I& o& |
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ) t2 A& j7 e) S' V$ w6 m4 E& p( C( [8 c7 y  O5 X
    When to Use Recursion4 k  o( L" p" a+ `

    4 J; A3 J0 X3 h1 B0 M    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).- s" O1 Q: P) P+ c: e! `- x

    ' m; y* F- V+ c0 J4 x; w    Problems with a clear base case and recursive case.1 P. z4 h0 i9 D5 _5 b
    - k' E: l! |2 }2 y8 @
    Example: Fibonacci Sequence0 R; g( U  l% @  L* }2 \, |

    8 c. r% V9 m: o! aThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:1 Y2 w1 H9 e9 J* P
    3 {* y0 \4 I5 E* Z3 y
        Base case: fib(0) = 0, fib(1) = 1
    * A" P/ \1 S5 v  B  Y0 K. F' `/ X% b4 G& R$ J
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    & A3 B1 k4 ~3 l2 Z$ w; c/ a' z: s; C1 P% A7 w7 |1 ?: X5 i
    python
    5 {  d9 t+ K( l3 \2 v/ G/ a$ {* ~1 q7 ~0 |9 A$ y% ~1 z5 W' L8 X5 E
    8 l6 I6 H+ f) d( ]
    def fibonacci(n):
    + E$ n7 Q; a1 m9 ?* `, j    # Base cases
    , s$ F* K. B/ \9 Z' S! I/ ~' Z" ~7 {3 Y    if n == 0:
    , F+ Q, e. T7 ]8 f& T        return 0: n* C- j, p" z4 X# V
        elif n == 1:1 ~, w7 q; d5 w1 O, R/ y
            return 1
    5 T3 o, R4 V8 f+ Y; {    # Recursive case
    9 U5 Y4 u3 _5 P" e    else:% ]' S8 J8 R* Q7 s8 p/ Q( W' Y
            return fibonacci(n - 1) + fibonacci(n - 2)" q) i7 |; c: T7 O4 N

    3 C  L. E7 J* @( j* i! b( j, R# Example usage
    4 z% s2 g) R/ z8 h3 a  Tprint(fibonacci(6))  # Output: 8
    " E' L7 |7 r7 ?8 W$ R) j3 `. L
    Tail Recursion/ `( p" t7 t7 @. a% d4 b
    . P3 B1 F  Q0 V* p9 j% G0 Y
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 i4 Y- z7 J6 u1 w! [, A% q  |7 _% a! T0 L9 w: F8 C
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-9-15 17:09 , Processed in 0.043013 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表