设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1600|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 . }( r$ y3 @' S6 M2 P! _' T
    3 c4 ]% ~' ^4 u" h8 Q) v3 B$ q
    解释的不错
    - W  U6 a9 d. a) A2 ^5 ~1 Y# k* g+ U) I; S8 `+ W" o. A
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - A7 G7 }: P1 v4 f: L$ P
    ; N, ~0 _; f7 S; T9 R- ^( q0 q 关键要素
    * ]: F) i) C4 ?$ c5 L% F* \, E1. **基线条件(Base Case)**$ Z) b7 K$ S) P
       - 递归终止的条件,防止无限循环/ s% g' {, Q# Z+ S! O# m* b% P
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1# m$ K  ]9 Z5 R4 T
    2 u6 v! q' B8 Z9 R! R2 Z
    2. **递归条件(Recursive Case)**
    0 ^- K' {- _& y) F3 j3 o" ?. t5 Y9 x   - 将原问题分解为更小的子问题
    0 o( T' u; \, P- _   - 例如:n! = n × (n-1)!
    , ~: ]0 c, f# w, ~# ?5 Y
    . I! {$ W  q: _  a 经典示例:计算阶乘, l7 K/ Q# u, Z4 I8 e
    python
    # g% ?6 o1 `4 [; L7 A  l  M0 @def factorial(n):
    6 e4 C1 w3 M* s( Z, L% n    if n == 0:        # 基线条件3 @0 B) @- u1 _: x
            return 1
    / J; n: |4 P' A) O, g) m8 _% @4 I    else:             # 递归条件
    - C& v, p8 s8 Y. t1 _        return n * factorial(n-1); y5 s) C! ?8 Y, O+ W  P2 f3 T
    执行过程(以计算 3! 为例):
    - }# S4 S  r$ M5 Cfactorial(3)7 @! v& h6 G' _9 x+ a8 f1 J: R1 ?
    3 * factorial(2)
    # Q- P* b+ L2 \5 H) }& Y' Q! ~9 p3 * (2 * factorial(1))
    ; A! T; e, Q9 O3 * (2 * (1 * factorial(0)))
    ' x! f2 N3 P9 }4 E# s2 G7 v3 * (2 * (1 * 1)) = 6
    2 P. u+ j" f6 y8 w1 d* A$ e1 m
    + ^+ q$ C3 k" n3 b5 g 递归思维要点! [% l* T! C$ U# U
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑: T2 V/ R) Z% Y" a/ I. `7 ^
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    " w) ?% G& J* A" z" \" A3. **递推过程**:不断向下分解问题(递)' X' j# x, P9 D/ b' S$ a1 v
    4. **回溯过程**:组合子问题结果返回(归)9 x7 s5 q: g% ^5 v4 d& R$ r+ G" ^

    ( p, ~, |4 h( b% ^) J  w 注意事项9 a, ], F  i# d* V# G" O: J
    必须要有终止条件/ O; ]: u0 d' U3 E
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) x1 k4 T$ y9 h' \6 h7 v7 E  ~' Q) T3 }7 @
    某些问题用递归更直观(如树遍历),但效率可能不如迭代4 z9 D% H+ Z" V7 r2 s- {% q
    尾递归优化可以提升效率(但Python不支持)5 n  p# r! N6 m/ ]9 p; o: E
    7 e& F9 d% U6 E# x
    递归 vs 迭代
    . @0 Y6 ^: c) L$ S. L: X|          | 递归                          | 迭代               |
    & e, ]$ u: X. f/ ]* @2 m|----------|-----------------------------|------------------|
    6 A* D0 ^9 o7 F# q| 实现方式    | 函数自调用                        | 循环结构            |2 C$ {" o: C. m7 C' k
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# ]7 E1 Z% h- a) |
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' |2 `7 f# z6 n2 y0 k5 {
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! `7 O7 ?! r& y! Q
    9 J! A/ V8 @3 K' d
    经典递归应用场景
    # C' l/ Z9 E. _1. 文件系统遍历(目录树结构)+ _. r% Y- E, O  V+ F+ B
    2. 快速排序/归并排序算法
    7 l6 w, e1 ~3 w3. 汉诺塔问题  \, ~$ G# r+ _( \% _* [
    4. 二叉树遍历(前序/中序/后序)& F+ v+ h9 Z& Q0 i# D( [8 [) @
    5. 生成所有可能的组合(回溯算法)6 P6 Y1 R) n: s' a3 q; t0 U0 |' P$ ^

    5 v/ s8 I7 I% h/ [试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    9 小时前
  • 签到天数: 3124 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,: _8 q9 `# }( C$ e; U
    我推理机的核心算法应该是二叉树遍历的变种。
    6 |/ m+ [, |- ?) j8 u- S! t另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ' h( Y5 r2 G( O# b. OKey Idea of Recursion$ |0 q) L' ?% `( c: `3 g2 n+ P- R

    ! [  |, K. r: q$ r! b4 M1 T5 s% aA recursive function solves a problem by:
    5 G; X( V4 j* t0 |5 _9 n7 _7 l. _4 Q
        Breaking the problem into smaller instances of the same problem.: c8 H3 H% \0 N+ B5 A3 b' U- g
    % E' g  H; u9 c( q! j8 Q% F5 c& V; @
        Solving the smallest instance directly (base case).
    8 R) H0 y& {1 p" }3 e) K
    $ U( k( P- X: _8 u    Combining the results of smaller instances to solve the larger problem.' v5 ^7 l  q! P) k

    1 r0 ?( _0 X, k+ w# T5 M+ xComponents of a Recursive Function# b( ^! O' M7 u0 \

    $ Q( w' k/ Q! b* E- t6 U5 h    Base Case:
    # V" s5 L. U% ?4 T  x2 c) Z2 [2 Y8 G. `  z# L, ^! C0 }) y" f1 a
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ Q0 o) B& K1 j$ g% I4 G8 S

    & X, u) H( Y6 Y$ @        It acts as the stopping condition to prevent infinite recursion.  R  E  _' @# C& ~; A. i7 b

    0 P! J3 g4 K' _        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.7 R# k* p0 @- t+ N& L
    ; L, D( ]2 R1 x
        Recursive Case:  O+ w- B; O$ r5 Z5 L
      U- B( [/ D# d9 A" j/ N
            This is where the function calls itself with a smaller or simpler version of the problem.
    / j$ M. j  P$ H+ @! F
    . L$ X; c' m% d6 q$ L9 E7 a. U        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ) w" S2 r0 D/ u5 Z. W+ e$ P9 p
      g, C( p. x9 YExample: Factorial Calculation2 @; g7 f$ f( v; j1 J. n& S! T
    2 ]& x2 R) C5 N" K# v& Y  b, K. @2 L
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    & C/ G  Q" J* p/ }+ H7 Y6 p9 s% I# q/ o- G6 O0 n
        Base case: 0! = 18 z/ C6 C7 W! r! ?+ L

    / T) t! m7 q, ~9 k    Recursive case: n! = n * (n-1)!. ?" ?; B$ O: S# C" N
    9 W* P9 ~7 K. f$ K% y/ i
    Here’s how it looks in code (Python):
    2 l. ?0 Q* \  ?python' s2 n& M6 D( \
    - n( A. X( V) l: ~& H
    : r8 K1 k6 O6 j3 E7 u: K- F
    def factorial(n):6 k: |9 }4 R2 M7 m
        # Base case
    4 L, [. A" r. x7 y( m" a    if n == 0:
    # a9 q7 Z9 T. w9 M        return 1
    % U# y) r# K( r+ Z- F' `    # Recursive case
    - ]* P7 B0 Z$ @5 G    else:- c  U* r( L* _/ M3 Q7 e& b
            return n * factorial(n - 1)' r4 E* Q# D/ k

    ! K  `& k9 E- d7 V5 P# Example usage
    8 q4 u! N6 i" H1 Y# Yprint(factorial(5))  # Output: 120$ f7 G  D- s: R0 p& n" k
    6 z0 X+ o# |  F2 b% v
    How Recursion Works
    % F+ u0 g4 @% {4 L: O+ s: p# |, Y
    1 X$ m% c/ x+ _    The function keeps calling itself with smaller inputs until it reaches the base case.
    $ c! n  e+ t7 j; b+ D
    ; k: F% {3 \" r7 g" s    Once the base case is reached, the function starts returning values back up the call stack.) s6 c3 T  D1 a9 d2 n6 Z0 t

    3 o8 E6 D, A7 i7 X    These returned values are combined to produce the final result.9 q# m: e3 W7 }+ J: R! P! G4 t- ~
    ( f! _; T: I7 i6 H
    For factorial(5):; ^; M- B) _1 b) S. x* ~
    9 P, n+ M2 {- l9 H

    $ Z) d  s/ @* A5 a1 z9 Ifactorial(5) = 5 * factorial(4)% V7 a$ f) k# x' H
    factorial(4) = 4 * factorial(3)8 W  n0 [4 C8 ~( V/ a9 p% s
    factorial(3) = 3 * factorial(2)
    0 `7 j- ^% w' f2 w( ~8 Q8 b3 D4 Ofactorial(2) = 2 * factorial(1)
      `, T; p5 N6 T5 kfactorial(1) = 1 * factorial(0)" N$ e0 r) x6 s2 r( {( C
    factorial(0) = 1  # Base case
    ; E8 C/ o" \5 K. W- q
    9 P5 a4 x, o2 v& ^7 K1 ~) bThen, the results are combined:
    9 l6 @0 o" {& X- d  }) i, K+ |6 _& ]6 m3 w4 w2 x) @- N
    ' y# D2 {. N9 ~& p) ?: o' C
    factorial(1) = 1 * 1 = 1( Z6 i% D# v4 m+ ~
    factorial(2) = 2 * 1 = 2
    - `6 y& f: y9 rfactorial(3) = 3 * 2 = 6
    + H1 P+ R/ `: ]1 C4 T4 Afactorial(4) = 4 * 6 = 24
    3 q; F% I7 Y. d8 U) [" h4 Mfactorial(5) = 5 * 24 = 120" t' G6 Y3 r0 D0 o  [, D

      @7 J3 N3 W7 p: M8 \0 lAdvantages of Recursion8 b, V( L+ A- g8 s! Y

    % }$ n& @, J1 ~- S; |# @    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ b' v% i& r: F0 _# j1 p  l

    # k  _$ D. I8 o    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % T) u& U/ ^0 @7 |' C* Z
    3 L7 A0 z* t" R5 IDisadvantages of Recursion
    # U* o2 M: a" X) B9 F- S) X, ?& I1 V; ~% a/ S. S
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 n) f5 P2 {$ N& }" E2 ~6 Z" Q9 |6 m. j2 D' {
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)., F* t, V! ]% R7 Y, ]

    ) m8 o- r% D8 c% H! f; V- b0 \When to Use Recursion* F* ~# G6 v5 d% [
    1 Z. z6 Q: c$ [' r4 t6 O" ?
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).; c8 x- |1 k8 f" q5 L
    . k4 g) G5 N6 |! v5 k$ e- T* }
        Problems with a clear base case and recursive case.* Y! |; L/ J8 x6 d8 l  I, Y" M
    % b: R' l) }7 [6 g/ w$ c
    Example: Fibonacci Sequence
    ) O, P! x8 ^5 \5 |3 W; D5 a  y
    4 q" f  ^1 h- i! `5 UThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 i' m% z/ b0 n! z
    + q6 N- u4 |# ]    Base case: fib(0) = 0, fib(1) = 1
    ) W; Q0 o! P- t# q. ?; @- T3 Q. P1 y, j  Y
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    : V1 y# @1 F; q4 @6 E2 l- L+ m9 f: Q* `- c; ?; ~
    python- {! r3 A, }1 ^" ]" p
    & W' H* X. o& h9 {

      r0 S; D$ ]/ k0 u! u0 J. Bdef fibonacci(n):
    * @& q$ w& M6 k4 |$ L( n    # Base cases  b, B/ Y4 X! k, p: H3 t2 X2 c9 g5 @- j
        if n == 0:
    & }6 P  i* _4 L3 X! }2 G8 O        return 02 F$ |  V6 O" @3 m
        elif n == 1:
    + Z, x4 m9 ]% A* G        return 12 O2 P: t2 v+ K. X3 e* v
        # Recursive case
    8 D" ^% ~9 h" E- K. a2 I    else:
    ' G! t+ h$ q" I        return fibonacci(n - 1) + fibonacci(n - 2)
    " B* Q9 s. E9 \" l% A% C+ G  u! Q& V$ ^! I8 t& |
    # Example usage4 R2 y3 M6 M5 ?1 s7 p0 T1 c
    print(fibonacci(6))  # Output: 8
      |* {# r/ N8 ]6 w: u, \( a) E$ C7 c9 _( H4 d2 m2 s2 b) s7 t
    Tail Recursion" f' s9 Y) D0 A2 o# r0 A
    7 J* ^0 k6 G# X9 V; d
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    6 H3 G; Y) O! C( L" k/ A
    2 a. Q3 o) ?  S9 l. C% d+ ~In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-22 17:54 , Processed in 0.030966 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表