设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1084|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    + y" E2 I$ w. |" c  H  G. k2 k8 }" U/ @% ~7 {- q" }; T, F
    解释的不错
    0 y7 y6 p8 ?7 A$ T8 j, g# t2 [3 o' g2 i2 z6 y% I  b6 ~+ ]
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。4 r1 v' @& l1 V9 l% ]! O

    8 |! ^" G1 R3 s9 W0 C 关键要素  e% Z. H4 @2 q4 ?5 _- A
    1. **基线条件(Base Case)**
    4 _0 B8 Q9 F( r* f5 \   - 递归终止的条件,防止无限循环6 X5 i+ R# P, \+ G/ z3 }( y4 P+ E
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; r& B+ ~) |3 W% g2 D6 v0 R, X
    . [1 @7 n( d7 l" b: T3 x% M: {- P5 F$ B2. **递归条件(Recursive Case)**
    - J7 d% B3 C2 \  N" e$ l% u! G: X   - 将原问题分解为更小的子问题; }9 @  Y& ~" y% R3 ]8 p
       - 例如:n! = n × (n-1)!
    9 t3 r" ~# e  q) [! s3 P: V: [) T4 I2 F. `" y" s
    经典示例:计算阶乘% D3 k: ^. }1 h8 Y1 p. x" ]3 I# J
    python% A6 {. F/ {% E' [% Y' F$ @6 A
    def factorial(n):. ~- r' \0 S; ^2 D' Q; c
        if n == 0:        # 基线条件0 X8 C  [# z8 J9 ~2 J
            return 1
    $ a" ?$ _; @/ S    else:             # 递归条件
    : e% P/ P; ?( q) C4 O        return n * factorial(n-1)
    " k7 v7 F/ i! a% |* i! x执行过程(以计算 3! 为例):  {& E: z  Z8 I2 I2 u, e6 ?
    factorial(3)3 P0 W# m* d" _" q9 u! ]% e1 S
    3 * factorial(2)) U  m6 i9 B: C2 y+ x6 {% e- P
    3 * (2 * factorial(1))
    " N9 z  x5 B/ @. W; Y1 i" Y0 S: O3 * (2 * (1 * factorial(0)))
    * W' V" X# V% F, f- x0 S* o# d6 V3 * (2 * (1 * 1)) = 6
    ( z/ P8 {; v0 g+ k+ P. v* j: P
    # r  ~+ G4 t% F 递归思维要点
    9 c8 K/ m/ X. y# u9 _# u1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ j% @. O/ Z8 g9 U6 m7 d1 P$ w2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    / e( s) B7 N; d6 X( z) L* E3. **递推过程**:不断向下分解问题(递)
    6 Z, i/ Q8 h! I" _8 u5 H- n) b4. **回溯过程**:组合子问题结果返回(归)
    ; A; z4 }- ^- b) s* K# }) e2 l5 c) L' {! r/ K
    注意事项
    7 A- {& c% f& w: U% S必须要有终止条件
    3 b) u7 C+ [  A/ F# V0 L4 R+ I9 Z递归深度过大可能导致栈溢出(Python默认递归深度约1000层)2 |* g3 Q6 [1 l4 Q# |; z- K: N* ]
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 z5 k7 i" _7 a. c尾递归优化可以提升效率(但Python不支持)
    5 [; C- |  c3 d
    * h# l' w2 z3 K- P! Z  d% Q7 B 递归 vs 迭代
    5 {+ P  x. N. y4 |* }5 @|          | 递归                          | 迭代               |
    1 i) ^5 ^+ W+ m6 _|----------|-----------------------------|------------------|" d* _" T( l+ a4 n2 G# G
    | 实现方式    | 函数自调用                        | 循环结构            |9 T+ l- X8 N$ C3 s1 c2 R
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 [) l5 s. x- k8 i# c
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |$ t% h1 f! C6 Z
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ( g+ Y; Z2 A$ q
    " j8 C* u) Z7 @ 经典递归应用场景
    ! t1 K( w8 q6 x5 a8 Q( z) \1. 文件系统遍历(目录树结构)
    ) r- b3 S$ S) J! A( u2. 快速排序/归并排序算法
    9 {/ m) B, c, `, w7 l* ~. v% G3. 汉诺塔问题
    - Y4 ]# ]: m' h4 Y2 y  G$ X7 I4. 二叉树遍历(前序/中序/后序)6 h- O4 I2 j# d7 S3 Y
    5. 生成所有可能的组合(回溯算法)
    ! S" d  [0 M0 K! w& X& Q7 W' _8 Y1 Z7 j4 Y8 f# A4 K. M, a
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 07:09
  • 签到天数: 3094 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,' i# C3 u* B2 L% o
    我推理机的核心算法应该是二叉树遍历的变种。$ H( ]: T/ I" H( W- Q3 ~, h
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' Z- Y& H* q& m
    Key Idea of Recursion9 k& D3 X5 g& E- {. W
    / g/ p2 U- m3 m: P2 p5 M1 h3 j+ f
    A recursive function solves a problem by:
    8 c' a, q, ?. p$ K7 `7 Y# ^  b2 F9 G8 Q6 f7 P3 h3 R
        Breaking the problem into smaller instances of the same problem.. ^) d  r9 l4 a9 h6 w) N
    % s) p8 Q) X$ K. Y9 Y9 c7 `. r
        Solving the smallest instance directly (base case).
    & Q$ E6 D6 n1 ?" P( U2 |
    1 M: S2 p* K7 I    Combining the results of smaller instances to solve the larger problem.
    ! g8 I3 I0 \* `8 w9 T& y4 a
    7 U4 T! G( x: U& ?: ~2 n" lComponents of a Recursive Function
    . R# H6 A' R8 D9 w  t; G% ^1 m4 I$ e7 a) s& c
        Base Case:* g9 s. h; g, F% f) e; `9 }

      S7 b# X' u; {" R5 T, q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; \* O+ G$ [. Z# _: D$ I* i6 S$ y
    ! e. n7 Y$ Y4 C5 V3 W9 ]        It acts as the stopping condition to prevent infinite recursion.
    9 N! i% h: b0 h- j. g7 r- r" o7 {
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.. @- y9 i; Q/ ?4 z7 s

    1 y0 S: `$ `5 @8 }8 U* @    Recursive Case:' ^$ r! B1 Q# e  y9 n8 b( O* j. o4 C

    , s0 T$ s- z) ^! u  W% v# ^7 @        This is where the function calls itself with a smaller or simpler version of the problem.
    : Y, V3 L7 k8 A4 v: c
    ; q, W5 x# g- r6 k& j2 j        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' C3 k1 i5 E! _- {
    ; g& R0 D4 |7 o
    Example: Factorial Calculation
    6 X1 M' [! Y* P* v. h& x
    : w$ o  J0 ]% E- x. CThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    5 @& G5 o# }% l2 E! P
    7 ^( f( Z5 @1 h    Base case: 0! = 10 t  a$ _( y# s  ]% L3 R+ t0 \& T2 b
    ) U& x# ^' }1 X( |; p* M8 i
        Recursive case: n! = n * (n-1)!2 B0 W5 [* F5 |/ L

    2 k7 I9 t$ Y, A3 J; r4 g  b# @Here’s how it looks in code (Python):9 S" Y3 y' Y$ b/ q+ x3 M
    python
      s+ l$ h3 y3 u/ A+ ]$ B  X. f0 k( B; R( {
    / V& b, X( \# f2 T3 u1 D# c$ S
    def factorial(n):; x7 j0 j( E8 x/ f- W4 B
        # Base case
    4 ]& [* g) @) `5 h    if n == 0:  E8 W1 M" B! m& I  T
            return 1! \2 N! p5 C* r
        # Recursive case
      g* S8 [/ ?' m* b2 q    else:
    7 {/ g6 g- J& W- j        return n * factorial(n - 1). Z. e5 r, g2 W1 U) H/ q& F
    7 T5 q% G# }* T1 X7 r( s: i" t! `
    # Example usage; e, }$ Q6 V1 a$ T' K
    print(factorial(5))  # Output: 120
    + F0 s1 s/ T, w. h0 T4 p* `& |: W! i- w
    How Recursion Works
    / ]6 u( n; {4 h9 v* E2 K2 I" o- L
        The function keeps calling itself with smaller inputs until it reaches the base case.3 p/ u* p5 ~3 p4 x: q3 P: \1 w" n
    0 i& r3 b. Q  x' u7 w$ W4 f3 `
        Once the base case is reached, the function starts returning values back up the call stack.9 k: ?4 E# B) d7 Y4 u& d

      W0 S" I$ n7 q3 m3 h    These returned values are combined to produce the final result.
    ! J; I, R8 X) u8 a5 C5 V
      }# k' e3 L4 u1 _7 K) ^: G) CFor factorial(5):
    4 b, n" s) H9 _: M
    3 e/ I  z# s0 M9 U/ I4 H9 v2 {* Z/ h; P1 L: a7 t
    factorial(5) = 5 * factorial(4)
    ! B- z& q( x$ F: X  \1 Bfactorial(4) = 4 * factorial(3). n! E- k/ d- ]
    factorial(3) = 3 * factorial(2)/ C+ S) r+ L: C9 s) e. `
    factorial(2) = 2 * factorial(1)
    7 T+ E9 a8 H. }: U. }factorial(1) = 1 * factorial(0)
    % q- b" n; J9 |; d1 zfactorial(0) = 1  # Base case
    ! s7 T8 E9 {. }4 Q: j6 I
    % g3 f8 O; E: ?, ^1 lThen, the results are combined:
    & O+ v3 H% ]/ }- O' F
    ' p- j7 u0 @* y$ y, p$ _2 E$ {+ t
    factorial(1) = 1 * 1 = 1& Y6 ?6 Y1 e( \: W/ @
    factorial(2) = 2 * 1 = 2
      Y" P- w* z3 {factorial(3) = 3 * 2 = 6
    , T- `$ w2 U+ g: u$ X5 P% V5 }factorial(4) = 4 * 6 = 24
    * ~9 S- z; P' ]- n1 k$ ufactorial(5) = 5 * 24 = 1200 s0 f* ~4 `2 e

    : U5 V: t# K8 ?! xAdvantages of Recursion
    ; X) i5 f9 m8 I  v5 b
    4 J: c/ V+ }) |    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).8 K+ A2 R6 b6 }% B# @/ n& @

    5 T) |6 C- C& b- u" `: J/ o    Readability: Recursive code can be more readable and concise compared to iterative solutions./ O2 m# r) S4 \

    8 c- x( V+ G3 x: u( |8 rDisadvantages of Recursion0 i* `) }3 o, ?/ p& _9 B

    ' h: w0 j# P* X; o    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    & [/ q' r5 y$ Y0 Z2 C8 k
    # }3 J; I* B% a5 Z) T    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    6 m* t  i0 r# Y$ {8 o
    0 r5 m1 N( A, i; n" B, [; J8 ^" YWhen to Use Recursion
    6 K4 A3 w/ |3 v5 n, q( N$ n) U" S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    6 E/ ?/ r5 e) G0 Q, E. x% [6 S7 I# s! w
        Problems with a clear base case and recursive case.4 O3 f4 m# N. G' D& @3 b4 g9 ~8 n

    " `  H9 f6 c  S3 @1 {3 NExample: Fibonacci Sequence$ v8 s) \0 R7 A/ z! s7 T% G
    % x( D8 `. L3 f( `/ [" R
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 z* ^# j; F9 p$ X+ e
    % ^7 ?! q9 y& ^    Base case: fib(0) = 0, fib(1) = 1
    : W8 L) t7 z1 w# z) d
    & y% Q6 z8 a! a6 n3 F+ o/ Z3 G0 D    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 g! }& j9 r) _: _7 v
    ' N& o9 Y$ P+ j2 u( l* Opython4 s  Q" `& p# M# f9 k
    . C1 y  o, s5 o# j
    / w. _: b  x7 T# B6 t) J% J1 n
    def fibonacci(n):! l; j! a7 L) S* h
        # Base cases
    3 y( ~% N8 @9 B5 H6 M! @    if n == 0:
    0 m; p. D  p: s        return 0
    . c1 w2 j/ |1 |% q. u; c    elif n == 1:
    ' a0 p+ D9 W- H/ Y. F        return 1
    : m. [" H! H9 Z2 W" J    # Recursive case
    # k$ D* R* u: u/ S" {  m# A    else:
    3 K* s* K8 Z6 w        return fibonacci(n - 1) + fibonacci(n - 2)
    7 n1 ~% n4 b- b9 P* s
    5 U6 p6 F- z: \6 w6 l* j, v# Example usage
    ! d. E5 o  Q9 g3 W# e6 \" g) ?print(fibonacci(6))  # Output: 8
    2 H, q2 y; ?' \4 b3 U, s  V/ e6 C4 Z- n
    Tail Recursion2 _( F0 f) \) j! g1 [

    + |$ ^/ j, P: {, q9 xTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 t: H5 v- O! v, b+ n: M- T; b; H/ N

    ; v' Y/ }- i. V, ~5 WIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-17 03:12 , Processed in 0.031130 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表