设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1226|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 . ~* a/ A6 i# j# ]1 f: V- I
      [7 O8 S) u0 `$ `$ F
    解释的不错9 z) @0 u$ y. {: k
    ; L6 x) \. o( N, [8 n5 p. f" @0 q
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。0 y1 n+ i7 F. D! |: s! _

    ! E; u( O6 a1 [7 U* u  y7 R' L 关键要素4 R9 S; f: N  h" E
    1. **基线条件(Base Case)**
    3 S  F% T9 K/ t   - 递归终止的条件,防止无限循环
      S1 R# [- O  I! c. z* G   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ! B! u8 H4 s  A/ [5 c5 P! j$ u+ q2 ]# L6 R  j. f! [5 n/ T7 I/ P
    2. **递归条件(Recursive Case)**! n2 I6 ^# {$ m  q. u) U! x5 j
       - 将原问题分解为更小的子问题) H' S' z0 z3 U1 v( x
       - 例如:n! = n × (n-1)!3 H3 t: {4 h9 B/ D
    9 r( j) ^! |5 }3 j; ~* U
    经典示例:计算阶乘) l4 S# q& D; q
    python
    1 }/ ]8 y- @2 ]; M) R- @def factorial(n):
    ' `  Z* u% s' v. d) B    if n == 0:        # 基线条件
    : }8 c3 m0 T2 s+ f/ g/ q: Z: h6 N2 w        return 1$ G0 Z5 K4 m6 _! [% H5 D/ `' W: d
        else:             # 递归条件3 u, }; c' N( E5 F; h9 |
            return n * factorial(n-1)* @! }8 @; R4 b9 H1 J+ v
    执行过程(以计算 3! 为例):/ }! p' W) o! l( `9 r# v
    factorial(3)# ?% U$ A0 C+ B: |. e* }+ @
    3 * factorial(2)
    ( P0 q2 i6 U9 R, [. [- x( A- y3 * (2 * factorial(1))
    * Q# p0 _; Z6 H# `3 * (2 * (1 * factorial(0)))
    : h$ P  U6 B/ g3 * (2 * (1 * 1)) = 6! [: o6 B0 G$ i3 ?& W0 G
    7 R  u- n4 J4 J; v3 f' s
    递归思维要点
    7 d( \& ^8 |+ F4 U3 L1. **信任递归**:假设子问题已经解决,专注当前层逻辑- r# t- {* L3 \) `+ e
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    # [' z& u! s2 ?0 X9 ^8 K3. **递推过程**:不断向下分解问题(递)
    0 N) j- `/ @' n% w; H4. **回溯过程**:组合子问题结果返回(归)
    ' J2 ^3 D3 ?6 h! u  l
    2 R* c2 R/ r; S% V! @ 注意事项
    # }' i1 D9 d) l: \7 S必须要有终止条件
    4 ]4 R8 u# B* x' l/ z递归深度过大可能导致栈溢出(Python默认递归深度约1000层)5 l5 I" I) z& q: r6 x  g6 _
    某些问题用递归更直观(如树遍历),但效率可能不如迭代$ o$ _8 O2 S9 s- \  V' A
    尾递归优化可以提升效率(但Python不支持)
    9 l0 j' D4 }& E* [, u7 s% q. K, K* X6 U8 k0 f7 M7 S" v
    递归 vs 迭代9 p2 T% J6 D) T* G+ b7 T
    |          | 递归                          | 迭代               |
    $ {- O  F; D8 e5 c, N|----------|-----------------------------|------------------|2 `- j  C$ d. P* y. A/ o: T
    | 实现方式    | 函数自调用                        | 循环结构            |6 G9 _8 P4 b3 I' L
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 Z- f- y$ U+ i. z| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |7 e: }& G& t# U' C
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    $ }* @# P/ P( c1 I5 W0 L7 t' n7 g- E: {
    经典递归应用场景" }( i; p: {7 y0 O: }
    1. 文件系统遍历(目录树结构)
    % Y1 K& v  O% |  W2. 快速排序/归并排序算法
    & `1 t- R3 ?; `. _3. 汉诺塔问题- T; }! x3 y" l3 k3 G7 H. a/ U
    4. 二叉树遍历(前序/中序/后序)! ?; }( ]5 A8 W
    5. 生成所有可能的组合(回溯算法)5 [% Y8 ]3 |+ d3 i" B& e

    5 u( g0 K& U# r& P2 J/ K7 B* r试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    半小时前
  • 签到天数: 3104 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    5 I# F- t: ]6 k9 _; T2 P我推理机的核心算法应该是二叉树遍历的变种。, X5 b3 C1 a3 U5 A! Z
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:/ K  K8 o7 o8 U) j( e9 O
    Key Idea of Recursion$ ^6 f+ D  ]; t
    6 `' E4 p) D. t7 J& M$ ?
    A recursive function solves a problem by:7 W5 K: P1 F; b) A0 b- |1 a

    8 Z, t. {( v& d+ N! h1 U    Breaking the problem into smaller instances of the same problem.
    2 d( _2 v! Z0 k9 x# X& R' s8 ?5 w
    8 w( @  W7 i4 b& ^0 J$ f    Solving the smallest instance directly (base case).( a* J- l! R. f0 o% A! J" M
    $ j2 i1 d3 ]/ l* x1 u! s
        Combining the results of smaller instances to solve the larger problem.4 m+ R6 B( ?: Q
    5 d, i! U/ h' r* i0 n( K+ n/ L! X2 J
    Components of a Recursive Function
      w% {7 S# J& v. a/ L  c: ~! X9 j5 H: C9 n' R- z
        Base Case:
      e+ ~! G( E7 S
    % T# q1 c$ V# T8 `7 @( M        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    1 Y$ N9 y3 x2 j7 x0 T1 i( h9 v; b, K
            It acts as the stopping condition to prevent infinite recursion.% ]/ j, u- Y; C! P' y

    $ o* p+ P" }% R9 R        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.8 q3 b8 G- `$ a& P9 P
    4 U  O/ l( U$ F6 f1 U; G
        Recursive Case:; }" y3 Z# Z2 k( r3 s/ ]
    & M( i2 [7 N% L  o2 y
            This is where the function calls itself with a smaller or simpler version of the problem.
    : r( V2 e* T1 g) p/ ?
    - q6 t/ P3 |$ l$ g        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).0 a# C$ g! X9 V2 P+ s. _8 i# {+ z

    % U5 I1 Q# B" m' o, eExample: Factorial Calculation
    # f9 D# k7 `$ e2 |
    $ n) e* ]5 _# z1 u: f2 V" HThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:8 `3 `! i1 V- L9 g) e
    - o! j. E# O& L; _/ b* F# q
        Base case: 0! = 1/ ]0 S3 L6 R! K! C" W3 N( ^1 k
    ) J1 P9 L% x" {
        Recursive case: n! = n * (n-1)!. R! A9 z3 ?" ^1 f( J# b& o- {
    . }' Y! z4 I  N  |
    Here’s how it looks in code (Python):
    ; G* O: p/ D- ]: {2 w& i4 w9 ypython( ]. z" R) ]# i8 |. r, o1 F

    7 ~7 V5 G0 O9 d3 F: d3 ^6 b
    . l+ i, }# v* c+ fdef factorial(n):
    : m1 l" e8 E( h* V0 P8 b    # Base case! F/ f; F) W$ n$ t( E- L
        if n == 0:
    ( i. s9 M: d: j# H' p        return 1
    4 ?# B/ Y$ D' {# J" S    # Recursive case
    % c" V, c4 X2 m/ d- G, G- u, \    else:
    . P$ S1 d2 ^' H4 q( J; o6 Q        return n * factorial(n - 1)
    # J" U, o/ @0 H0 i6 r/ I, a& m% }4 {2 V! e
    # Example usage- A# O% {. b% A
    print(factorial(5))  # Output: 1202 ]8 ]. k) f/ v" a. D  P
      G1 @+ Z! v; `! |
    How Recursion Works5 W$ y1 ?5 K: I

    8 A1 \- W+ ~5 e    The function keeps calling itself with smaller inputs until it reaches the base case.- ]+ n( d- m5 [, S

    8 m1 L8 ]0 {( ^3 R' s3 _    Once the base case is reached, the function starts returning values back up the call stack.
    0 W0 e" E" O9 `4 t* R$ |. O( T& N
        These returned values are combined to produce the final result.5 o1 [( X7 w0 P6 v* P8 ~
    1 b% ^5 |: z9 D% E. y% G& s
    For factorial(5):9 D, r6 f7 _7 Q0 g+ L) o: a  y

    ! b8 m) r. g; `! h6 x( X% {$ }0 V
    factorial(5) = 5 * factorial(4)+ X1 I) \' G4 G: U* N
    factorial(4) = 4 * factorial(3)
    0 w+ \" ?9 Z1 L8 `, l: \/ @factorial(3) = 3 * factorial(2)
    0 ~$ H# ]( F/ T8 D# j* yfactorial(2) = 2 * factorial(1)  z. k5 l  t+ w  R0 x
    factorial(1) = 1 * factorial(0)" q: D# Q' K& b# {- N$ C* o5 m
    factorial(0) = 1  # Base case& X- L% B2 a% F3 ?
    " s7 G: g. l0 n+ }: P+ M/ k
    Then, the results are combined:
    * j+ O/ D; w7 t8 s7 x% X
    " L. ^* A, }' Q  b4 O- D. _# o$ T* U0 I+ g, t' e1 H
    factorial(1) = 1 * 1 = 1& J+ U1 a. r$ E) u: y" }. {
    factorial(2) = 2 * 1 = 2$ `) ?1 X: Q) g7 q" K6 |! t3 w
    factorial(3) = 3 * 2 = 6/ w% I. ^  E& }% h+ E
    factorial(4) = 4 * 6 = 24
    1 R  W- }5 @6 K9 m% ]9 a) x) Ifactorial(5) = 5 * 24 = 1201 x0 L+ n. O* N: f5 X& i  P
    " m3 W. x2 w: r9 R; A# V
    Advantages of Recursion
    . v% R9 M! M7 B( S8 E9 g( g! c  G& o7 @) `' E5 ?
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ! _/ [! ~" B2 q' \1 J1 ?0 ~6 g- Y) ~- L2 T7 O
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    - e( N6 E  x1 P3 b. @5 L* K
    6 g1 H# s& k5 uDisadvantages of Recursion
    % U& f, {  @, F( E: k7 f" ~4 [* l2 H  i% M
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    / S" v# J! Q2 z1 a1 i$ M# u# y/ U6 F
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    2 D* V, i- p( u: s  ~; b
    0 x, x+ d% b+ Z: i4 TWhen to Use Recursion
    9 J( b7 e7 v$ C: r1 ^. G' R/ `! o" P, @8 \, t
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    7 _9 o. P+ A5 Q) Z# @* R/ T) S: {
        Problems with a clear base case and recursive case.$ }! [5 m! s% C

    ; r+ K; @$ N: m1 uExample: Fibonacci Sequence0 \% V- C. j( L

    ) ?6 v# X. ]: e5 d( M7 WThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:6 k0 u! a) b2 f; [( S$ d

    # U* J$ t5 @2 `6 y" N    Base case: fib(0) = 0, fib(1) = 16 o" c% e: `2 w0 s! m

      t1 E) X% p5 V    Recursive case: fib(n) = fib(n-1) + fib(n-2)2 T# s. x$ h2 U7 l+ O6 G, D

    % c; d) S) {6 B( M7 t& O# Qpython1 G8 ]: b0 H$ @* M  R

    : O$ w. M, J; F0 }$ g  S6 D( H4 s9 ]% v
    def fibonacci(n):/ ?% ?: l. k) t" d  s7 t3 n
        # Base cases# l/ i+ E1 b" m4 D/ @& t5 O+ ~
        if n == 0:( V6 e6 \  @1 N- N1 U* \) h
            return 0
      M, }" m6 b' q8 @! `% v    elif n == 1:
    6 V2 @9 I* L' |- Y: H# S- t6 D        return 1
    1 l. H0 `! l* n$ j& V& |1 J. {+ A    # Recursive case! R6 ]( X6 O/ d
        else:
    $ e% q3 ~1 Z1 I- T2 Z2 `        return fibonacci(n - 1) + fibonacci(n - 2)6 ^( r) Y- N/ P* a

    3 c  o. k- x9 n' G& L# Example usage, U( w/ t+ `4 O: b' e
    print(fibonacci(6))  # Output: 8
    & {4 z0 R5 W3 d5 V& d( S. R& \0 G
    - t  v- C" ~$ s- O6 aTail Recursion
    % i* T$ I+ q* L+ L- F
    6 j2 n) G' T& M2 kTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    9 b! ]( A8 M" y3 Q/ {0 }! _
    & s- ]% Z$ g0 n. ]: gIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-29 07:43 , Processed in 0.031675 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表