设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1211|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ) t. w- s5 i  ^9 Q3 M) o% o9 p; {
    解释的不错# }1 D4 I8 J. b; b& ?% m' U
    - u) f: E% [1 c9 v( {( }" x
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; |, t: u6 b$ Y: j* |8 n

    8 s) n) D' C. I- }* ]2 ^& M/ | 关键要素* k# K! z% \; O7 b  m, d0 R& q$ @
    1. **基线条件(Base Case)*** k; v9 K. \. R  c
       - 递归终止的条件,防止无限循环
    & k0 ?3 a2 L# G% `% S6 D8 }   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; V9 E6 h/ D' W  L5 s3 g; z* Z/ s3 j# r1 ?
    2. **递归条件(Recursive Case)**: K3 J* F6 `1 y
       - 将原问题分解为更小的子问题
    1 {- z: Y6 s: @3 W$ z   - 例如:n! = n × (n-1)!0 F4 l! W5 E6 Z! ^1 p
    6 Q" U% h9 ]( Z, P; @' u7 U" J
    经典示例:计算阶乘
    3 t& U( I! _- B6 _1 }python9 L; q" j5 T6 v) T
    def factorial(n):
    9 v- Q* E- y0 E' l7 Z    if n == 0:        # 基线条件2 e" \, S6 D6 f! U( l* T
            return 1/ c& T3 c- i; B" i/ |
        else:             # 递归条件- @! s; G; Y$ C9 O9 k4 h7 J. K* {. F( E
            return n * factorial(n-1)+ L& u' J6 V+ j+ o2 g: f
    执行过程(以计算 3! 为例):
    , T; e' J: z  p4 E0 Gfactorial(3); n2 S8 Q' r; {5 x2 ^9 s2 @& C
    3 * factorial(2)
    * [) |  _/ C% t' O3 j3 * (2 * factorial(1))
    - {1 z  `/ G! |0 X+ V3 * (2 * (1 * factorial(0)))
    8 E* @4 b' C: \& v$ r6 Q& |: y3 * (2 * (1 * 1)) = 6
    2 u; z; o! K& E8 N8 N) q, \( w  j
    ) A8 I; q; B* \ 递归思维要点* q/ z6 u+ q  k; @7 A) |
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ! b. T- d1 o( {& [. S( M: f3 d2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % u' W; ^  N8 s+ D% \7 P0 @3. **递推过程**:不断向下分解问题(递)
    4 O; T; N) p! q3 t+ S& A1 \* P- v4. **回溯过程**:组合子问题结果返回(归)
    - S8 ?( Q( i! z8 \" f' J; P! ~7 }
    5 ^" Q. V' k# I5 } 注意事项
    7 R4 O# r) e7 ]8 i必须要有终止条件) Y8 `/ \, A6 Q* o9 g& X& @) A+ e
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 R5 R8 b/ R. w. Y0 {1 K1 [某些问题用递归更直观(如树遍历),但效率可能不如迭代$ o0 q. t. h# S" C
    尾递归优化可以提升效率(但Python不支持)5 ~2 b3 A6 {' P4 s5 y- P# c3 a+ @
    - O7 g1 t, [8 Z6 \, P1 ^
    递归 vs 迭代
    3 J  u+ S- O7 w. \0 Z" ^|          | 递归                          | 迭代               |
    6 A; d. h7 F8 Q% t0 q& X. L/ U/ S|----------|-----------------------------|------------------|1 r  ?" O( ~7 ]. [
    | 实现方式    | 函数自调用                        | 循环结构            |
    ( @+ y" A$ \; U* Z$ g+ L| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 ~& R# {: R3 z| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    4 B4 X0 ]8 M  T8 }, [+ ]| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |) M8 @0 W# @: H# b* n# j

    / g. K2 M: ]6 \4 i( m 经典递归应用场景) C, v- u. [! F1 q' V9 a; R
    1. 文件系统遍历(目录树结构)
    ' r0 e( w% r+ z: g& c! B( @2. 快速排序/归并排序算法
    3 z7 _* B, V3 A, S  d3. 汉诺塔问题
    9 f- D& p: V+ t: B/ @! \- C3 M3 e7 l4. 二叉树遍历(前序/中序/后序)' i! {, X* I- f; q$ g$ p
    5. 生成所有可能的组合(回溯算法)
    1 u$ S- Q' X9 y1 g  O( E5 Z1 T% T! m% s' U7 c
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    1 小时前
  • 签到天数: 3103 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( f: [4 Q' a8 }% T
    我推理机的核心算法应该是二叉树遍历的变种。
    1 ]2 q+ @0 E$ k$ `1 N1 m另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:* S. I$ |+ a2 z2 A
    Key Idea of Recursion, h4 y( [0 ~$ |3 B2 f" I8 |7 i
    ' Q8 B5 {/ r0 J" H6 H  Z0 D
    A recursive function solves a problem by:
    1 G3 g  w1 ?! N  I/ `7 Q
    1 F+ d- [4 m! X    Breaking the problem into smaller instances of the same problem.
    5 A' [+ e# N$ [2 W7 J0 I. \& P4 R, u; m" O# G2 x4 k
        Solving the smallest instance directly (base case).
    4 U5 b9 k- o( g5 B. w( y9 o$ A
    : V% v- v4 M5 A) C/ ~    Combining the results of smaller instances to solve the larger problem.4 k8 |: `, P- y3 p/ Z  p

    2 |! U3 L- I& q' l( O: y0 _3 tComponents of a Recursive Function; \" f: @8 v# Q: m8 g
    3 l) \! e  D7 j/ m. H" }: c
        Base Case:$ I/ G% P4 H  q( P4 L
    * B; ]4 x+ m3 Y( }5 C
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.0 Z) t( c+ V, M' X0 R: @. q

    : I8 ]* K4 W% H  _1 p3 A) w; d        It acts as the stopping condition to prevent infinite recursion.
    - w: G5 q, V! n& H6 g& c; S) z. {; H7 a& G4 u9 [6 y( p. u. ]
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* n. `  x# m; Z- l

    5 ], Q# [) K7 N/ D    Recursive Case:1 ^6 y! N2 }7 W, U3 E  b' W

    * a5 S' M8 X5 U+ r        This is where the function calls itself with a smaller or simpler version of the problem.
    ( S+ N% d* _; m  A; {7 j8 r
    7 i3 O! z0 A, I: C; K  v. z# h8 [* P        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    % @$ A1 P: S" T1 q; d' }# b
    2 U. s6 O' r# h" xExample: Factorial Calculation
    $ L7 c$ N3 [2 L3 q& y6 i9 Z) ~5 a" G8 j, r6 E# h+ D
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:+ R; b" \7 @' Y, y; O# z. l
    0 I9 C5 h+ z4 Q0 r5 ?/ L! \
        Base case: 0! = 1
    + W0 }# p; k6 B) b" {* w+ |3 o" i& Q9 D' ]5 I2 h2 Q& X
        Recursive case: n! = n * (n-1)!/ n: L/ |: I/ A

    / z) i" d* h" J7 x, oHere’s how it looks in code (Python):' p% J7 j3 b+ V
    python
    % Q% l5 f3 ?' `1 J4 o% _
    4 e) K" Y# S/ n9 R5 E  k, H9 }9 t% H$ R0 V6 U, u1 A' q
    def factorial(n):" |9 Q! [. d7 I) @3 H# P; t
        # Base case2 q& _) g( b0 ]- d7 M
        if n == 0:: B, X% J) r! n; c$ A
            return 1; _1 g# a+ {+ J, j- |
        # Recursive case
    , d( @7 E6 k; R7 A# H" g# p% H    else:
    ; a0 {3 a0 ^% f2 |  r: E( D        return n * factorial(n - 1)+ M# B' C, w6 ?2 b9 k8 d2 c
    ) H$ G. ]2 I, F$ |. u- k! I, o' d% R
    # Example usage, j$ a' C" n( o2 D* }% s
    print(factorial(5))  # Output: 120+ s, R$ U0 ?% ]7 u- X/ V( O

    : ?9 l0 N! m7 DHow Recursion Works* ^& m7 ?. n1 ^1 m  Q1 u

    ! _8 s/ A; Z* C, G" c6 T    The function keeps calling itself with smaller inputs until it reaches the base case.
    4 I( r/ |- x, V$ t9 }1 a# {+ O! s: J0 y  Z) Z" k4 Y
        Once the base case is reached, the function starts returning values back up the call stack.
    $ e4 w" g! z* i* E( T9 z
    , m. j0 s3 M7 S0 [! L    These returned values are combined to produce the final result.
    % a4 x5 D* v$ C3 @0 Y4 M& X7 E4 V
    For factorial(5):
    " [$ d3 B4 k7 O0 r) A( U% ]0 }- N) Q, R9 H

    ! Q. H# E9 k" e1 C4 P2 @! K1 S' ?/ P5 Pfactorial(5) = 5 * factorial(4)/ `1 X( W7 ~% _# Z6 ~1 q: N+ `
    factorial(4) = 4 * factorial(3)
    , [. S' ^# y! k; x' |5 qfactorial(3) = 3 * factorial(2). X, O' H0 ^  ?
    factorial(2) = 2 * factorial(1)* D) Q' r- |% U/ {3 V
    factorial(1) = 1 * factorial(0)
      E- p) u! M( p! B6 ~* p: s- Yfactorial(0) = 1  # Base case
    1 b9 Q# ~6 {! G" v! o, F: N# d( m) u, V( P" b( z' U
    Then, the results are combined:
    6 U" l+ _# S2 u! x2 L8 l, R8 @- j* J  m6 D
    ' T; ]6 N& i6 u( e# a3 b. u" m5 U! L
    factorial(1) = 1 * 1 = 1! r  `) x, L6 }6 L( a. |
    factorial(2) = 2 * 1 = 20 U8 _9 G; H0 Q( A0 Y
    factorial(3) = 3 * 2 = 6
    ; W8 a7 J# P/ B; v! U; _6 ~  Efactorial(4) = 4 * 6 = 24
    $ W, H! v0 x0 G8 ?* pfactorial(5) = 5 * 24 = 120, D. v0 e! O, W( u& E. d

    5 F$ x6 v/ o. {, j& l5 LAdvantages of Recursion
    - [5 O+ A! ]( u4 H& _* @3 T0 l, a" V- l7 P% X) E0 d4 N$ d
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! {6 r. M8 t6 l* H8 I* \( C2 l

    ) F0 a* j8 Y4 a1 h; V5 a5 n2 ~# c    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    9 Z1 J8 P/ X% J6 }' F: y. z, W, t9 t% D& ]+ Y4 q7 H/ Y7 o6 ?
    Disadvantages of Recursion
    + [0 I$ U9 l, G2 T: Y5 k3 C3 q' Q8 ?6 J. C$ e: Y
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ u3 h* }* X% j" w
    $ x. F. u& |9 N
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# |: D7 {; F3 u) [8 T

    # n/ Z/ i+ M& D. L, l: n) p2 ?When to Use Recursion
    0 g  B- {, h6 x+ p2 }- k$ P
    # b% C, C" z: [2 ]4 x6 E  u8 b+ {    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).4 J& K+ t; t2 C, f) W* }9 G9 H* L3 l- V

    + a" k0 k1 f9 {: f1 {/ Y, E    Problems with a clear base case and recursive case.
    3 ?/ r: b6 z& [# ^; H6 N0 q
    4 \$ {: |! N/ S/ I; Y9 A7 ZExample: Fibonacci Sequence
    6 m, S: r, L  N: k1 s. H* C( t8 n
    : X! F- A( s) TThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:: X  X; e: R0 k; j0 q5 y

    % |4 u# D+ k' h& _0 C9 X    Base case: fib(0) = 0, fib(1) = 1
    % w! w7 \1 z( ?4 e, Y( t3 ^6 _5 e& ^5 `
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ! ~2 Q3 @2 o& Q- C! Q# s5 P2 e5 V! x8 v4 V3 c6 g
    python- Q. g' c# P" \! `. S) E

    % ~& H9 Q1 I2 t- K" n  i: ?, _4 V+ |# D, A1 A) F
    def fibonacci(n):
    6 ^$ N. J* A6 c, n$ {; T    # Base cases3 l* V4 o3 [* x- ?  u% {
        if n == 0:
    4 z. @8 r; J% r! u        return 01 ~6 J0 v4 d+ Z4 D% ]" [7 F
        elif n == 1:
    % J2 y. ^' ^2 L. a  O9 u        return 1) _- u: O7 ?5 m7 V3 I5 `3 ]
        # Recursive case( {- o' G( b2 ?
        else:+ M% f, U4 G+ }8 I
            return fibonacci(n - 1) + fibonacci(n - 2). H% O- o; n  Z: P

      q  u9 Z9 d6 [9 L2 x# Example usage
    $ j+ h2 Y4 j) e" t5 qprint(fibonacci(6))  # Output: 8
    , ]3 q; j0 E/ z( Y; i" \2 n: _2 w- V) G, L3 i; U+ h8 [
    Tail Recursion
    & s2 I2 X$ U8 q! b+ r* p! @, _# Q' l. ^5 d8 O
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)." f+ [* l# E8 d$ u' F
    * `2 K8 o* g5 J
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-28 09:44 , Processed in 0.035242 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表