设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1914|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ! m+ S- }9 s+ \9 E
    - \6 m% I, B1 s: g! n5 x4 y解释的不错
    ; i4 n. E4 I# h9 r3 z) O; t  d4 c
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& ~0 d! ^! Y: J2 {& O. F/ {7 L
    1 s1 k) q1 y/ n" {+ a9 L
    关键要素/ n% e! @9 ~4 A% P' ?
    1. **基线条件(Base Case)**3 n" R% ?# W  R0 e1 l
       - 递归终止的条件,防止无限循环
    . Q  r" i8 m( e( _   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1# Z# C6 v( Z" B0 l2 }/ ^, m

    / q+ M" j' }! A2 h4 U2. **递归条件(Recursive Case)**' j& {9 Z2 C9 D; |' ]
       - 将原问题分解为更小的子问题3 g4 a: |, D. W5 A
       - 例如:n! = n × (n-1)!7 L. v& W  W6 d4 F1 e+ Q, Y! ?
    : |' v5 m# p! ]8 Q* G
    经典示例:计算阶乘
    - `0 j: p. q4 K5 F4 N1 Z9 _! Xpython/ I( Y' D$ b# a0 w& F( A
    def factorial(n):
    ) Q& g+ r$ o1 n    if n == 0:        # 基线条件
    " C( s( K: J" [5 X8 O  G* z        return 1/ s9 o# j8 G4 T" ]
        else:             # 递归条件
    ( l8 w3 j. f: L! p3 r0 F7 L' s        return n * factorial(n-1)
    # y$ f  k, v" B  d9 J, d3 t! y执行过程(以计算 3! 为例):7 E5 J" Q: U! m7 s; V+ M5 G0 n
    factorial(3)
    . G9 B0 E/ d$ W. r8 q( ~2 M3 * factorial(2)
    2 N4 j  W- p$ i& J7 H3 * (2 * factorial(1))
    4 e7 @. b8 W0 N* ^# Y' F5 O  P% N( V$ \3 * (2 * (1 * factorial(0)))
    9 U$ m: h7 k2 b/ W! M3 * (2 * (1 * 1)) = 6  Q  V2 R4 P7 |1 V# t, }* z

    ( o# R7 {- x0 c$ q( }; a 递归思维要点: m  [  x& h' [( P* ^& R
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    1 _' H0 D8 G! K! F2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    + s3 A/ l9 z  I% }, }3. **递推过程**:不断向下分解问题(递)
    9 G6 K( _0 f+ s: N. s1 u4. **回溯过程**:组合子问题结果返回(归)
    6 W& h3 k* q# p$ m( l2 m* P6 h5 A2 q2 H5 K! ?* _  B, c
    注意事项
    ) ^7 q% i8 d! U+ D0 t7 {4 t3 n必须要有终止条件+ Y! u8 C) ~' T
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* B; u( d. `7 x
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    - X% v6 m$ q. l& V尾递归优化可以提升效率(但Python不支持)- Q+ x$ x" J! ]$ F
    5 |4 J6 O$ X$ Y% o4 e$ ?8 m! t0 w) R5 }8 v# I
    递归 vs 迭代
    : j% |- F- [2 h1 n6 F+ S  k0 ?|          | 递归                          | 迭代               |  ~" c  h6 ?8 o' h/ G# _
    |----------|-----------------------------|------------------|
    3 A& A- u- H' P$ v1 j: B| 实现方式    | 函数自调用                        | 循环结构            |; f( G, g: U! f: r! l# P: M9 Y" I7 J
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ; i! {) p( `* g$ e( F. x- s| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 s) F% y3 _5 `1 n! q
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |) ~9 r- u* \7 c/ r: f  l
    - K! ~' ~; n& o
    经典递归应用场景: |4 H% P+ i6 c
    1. 文件系统遍历(目录树结构)
    3 \! |9 l/ V1 S; Z2. 快速排序/归并排序算法$ z, h1 N9 h  X7 k, W
    3. 汉诺塔问题
    , R  A; p+ S. H, P+ j4. 二叉树遍历(前序/中序/后序)
    8 w" ]6 I. ?5 @+ a& E3 F( y( f8 y& O5. 生成所有可能的组合(回溯算法)
    % H3 h" C6 d$ t5 I
    0 I1 d5 G7 `9 g+ u3 N3 E试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    前天 07:11
  • 签到天数: 3150 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    2 V, M1 V$ m$ v9 M我推理机的核心算法应该是二叉树遍历的变种。
    1 F3 l( `8 K; y. y; [* u+ X另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    % W4 m6 u. o' SKey Idea of Recursion
    7 |4 p9 g; U0 n& l) ~" x/ n+ V/ C$ k) o9 p
    A recursive function solves a problem by:
    ( `* b' c( ?* n) i* z9 m6 Y  _, g, g8 L: D3 N4 Z
        Breaking the problem into smaller instances of the same problem.; W( b7 h# K* D  g. |4 E

    % P. b% ?* P' R( j3 ?  [% p" [! ]9 X    Solving the smallest instance directly (base case).
    # u  A# N) I: }) o6 P/ J: I9 w8 W$ M" j
        Combining the results of smaller instances to solve the larger problem.0 a/ V- H, D' R. v. l: m" H1 q
    / y/ G0 @9 X5 W; C  p: S
    Components of a Recursive Function
    ) b& i8 g8 k8 ^( D9 s) G- |7 A5 Q4 R0 D# o
        Base Case:5 z9 N" j3 R. S+ H5 I( |9 @

    * |' J, K3 k; @$ o        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    / l$ W. z8 g8 F, j0 H! }
    : B' D- @7 ?) E9 ~        It acts as the stopping condition to prevent infinite recursion.
      f+ ~: V9 n% ^, m) u( h
    & u0 ]5 ]9 b" r        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.) o& Z9 N5 o5 C& N

    ( `  c3 K( L5 G8 L; ?+ ^9 r" Q    Recursive Case:
    8 x" O4 Z5 E  c, n' @4 J
    9 q& f, {1 l  X' X3 t        This is where the function calls itself with a smaller or simpler version of the problem./ X0 v) Q4 L3 {$ J( g- D
    7 P, Z* P4 S$ P  G4 e- ?2 x1 m
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    : I' d) `$ h7 x* q/ j( a) B2 y/ u6 }! @' V" {6 z1 h" y+ L* {
    Example: Factorial Calculation
    - ~$ l1 Q6 |/ S  L" {7 @0 ~  `5 C" [0 `# _' A* O
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    9 g4 P: F9 f; O
    ) ]# e) n1 P$ R7 E0 @$ x( N    Base case: 0! = 12 M5 u  b- D# U- N

    : l! w/ v4 s2 m  z! [" u9 p: ~    Recursive case: n! = n * (n-1)!% _: V0 c& S8 m7 T% m& ?

    & D+ @' s8 E% [. T9 J% `Here’s how it looks in code (Python):
    + S. z6 G5 p  {8 ]/ c( \* {python6 o' Q7 J8 z# y. K4 h) Y
    0 h) @1 M/ [9 q5 ~
    1 M- ^  g% ?& h" B+ H; z
    def factorial(n):6 a6 w1 P' l# w# }
        # Base case
    , V& x% ]4 x5 o+ ^5 M9 n2 u2 f/ O    if n == 0:, b9 z' \! `& L+ e# g
            return 1
    # U) ~, m4 x( B    # Recursive case
    , ]4 y" z0 ^# Y- B. M/ I    else:
    ( [! c) J$ d6 H% |. x' f3 Y; I        return n * factorial(n - 1)1 Y. Z9 ^* b# @7 H' h7 o) ^& d
    6 W/ q+ [4 J' d! k) `
    # Example usage
    1 s6 U- n: c. L. F) z; q& Q5 [print(factorial(5))  # Output: 1203 S2 B9 r# W9 {. K/ N

    7 @& d8 e7 h3 r: H( NHow Recursion Works
    7 @% y# U$ j* U4 g; e( [5 X, o
    , b$ D& G8 a  X4 `  D% L( h    The function keeps calling itself with smaller inputs until it reaches the base case.
    9 h3 U) H7 F, K* \  x/ a
    ' c% \8 i, ?9 U3 _    Once the base case is reached, the function starts returning values back up the call stack.
    1 a# A( Y. c8 M- v" u! H
    7 o/ D. n* k  l/ s5 [8 r9 F    These returned values are combined to produce the final result.
    ) h2 n1 O4 o. N8 V3 l8 h
    & X6 S* ~3 G& _9 U2 sFor factorial(5):2 l$ Z3 |  q8 E

    " f7 C# D7 Z8 J% G: }9 Q$ X, o  Q6 o& C
    factorial(5) = 5 * factorial(4)
    : e6 h# |9 H; M5 n, ^5 ]factorial(4) = 4 * factorial(3)
    % A7 ^8 Q% c) E/ X, `9 }factorial(3) = 3 * factorial(2)* [, Q. ?' D# \: \' }  s
    factorial(2) = 2 * factorial(1)( L# a! V2 Q2 ~& p
    factorial(1) = 1 * factorial(0)
    5 D$ t& x8 W6 G' R% y; Y# j$ Q- ifactorial(0) = 1  # Base case# S1 v8 h3 ]8 m* i# ~% l2 f& v
    ' C* M  b0 Q0 I) v
    Then, the results are combined:
    & c. ~5 u: x0 \& \( A/ {; X& G& Q+ T9 i4 ?, {

    6 u. K  }, K: L5 `$ \  pfactorial(1) = 1 * 1 = 18 B. Y9 b% J7 x% I" J
    factorial(2) = 2 * 1 = 21 {- H- B; l7 x* D$ U5 H
    factorial(3) = 3 * 2 = 6
    / J. z3 X) k. Z7 q) wfactorial(4) = 4 * 6 = 24% e: P2 j) h* L5 S% [
    factorial(5) = 5 * 24 = 120
    " W6 O# L- p$ E- F
    # p- f; [2 J! c4 yAdvantages of Recursion
    , f. b/ n1 Y- X+ ^
    5 A) }  ?" A: A    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * a7 Z( }% @# V7 `5 w1 k4 g* z# C3 Y4 G9 b/ i$ C( S2 u
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ' E$ B6 U' u9 [- t, U* s
    ! V1 u, l7 d* r+ V0 l- LDisadvantages of Recursion
    # ~  S9 U, R% N$ A; w( ]. r% X' T( C
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ; R0 }* w% ?3 h  U
    8 C  ]8 \- R+ a8 t! K2 y& v& n1 w5 U+ z    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).7 `1 Y1 u( b* M- y) ^7 Q- F

    / F$ t/ j+ e) w9 OWhen to Use Recursion( Z5 {+ W  a* C) }  d( K+ D
    # D9 b8 T6 y- U! X2 a
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    4 h$ T# }; I3 \6 [* a
    - M; Z; ]6 k) G* F; Y3 L    Problems with a clear base case and recursive case., R. P, Z* n% q7 A' K$ O' X

    " B8 e8 x( T0 l4 Z  o. y5 _Example: Fibonacci Sequence
    : X: T2 @  s1 Z- x6 G0 |. `1 v' W  p6 v4 a. M* Q1 m' G; ]4 q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:8 f/ n, h3 R2 _8 A

    2 @3 a! x% u8 r3 y- y0 Q) L4 P    Base case: fib(0) = 0, fib(1) = 1/ D# B" O' X9 O
    3 d# |, o3 n- i
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    & p! F0 ]3 Y, }) l# o% I- G( H3 Y* v7 `  O# F
    python/ ^  m- [- |, g/ a: ^
    + G3 `0 A( [' m0 |5 H% `* M

    ; a  X5 _: k' X7 Gdef fibonacci(n):. E6 ~. B4 s# M2 d
        # Base cases9 L, w0 S  K& i$ \0 r
        if n == 0:
    : F+ ]5 F$ b( |9 t4 o- ^        return 0
    # P2 j3 U: K- _6 t/ a    elif n == 1:0 v7 k2 {. E0 T0 j. y5 k: Y  f/ a4 ?
            return 1
    , d: u+ H5 x/ ]4 C, {* {( s    # Recursive case; {1 y' C" k- c
        else:$ \* x) j& K/ p
            return fibonacci(n - 1) + fibonacci(n - 2)4 Y6 m. g9 ~9 B+ K$ u! J, O1 r& ]: E
    . U& f1 L/ g2 X, a  t
    # Example usage. s3 P) V+ r% T* u( f" ~$ X
    print(fibonacci(6))  # Output: 89 c0 S9 b% y* U" S
    " c% D) c! m" }# c1 W+ K
    Tail Recursion! G1 I8 i" U/ U% _5 q7 b* j2 K- i! u
    : A' [  t; [( v& B! _
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    + O& d. i% I* s" I: {. L6 U" I3 L7 S) u$ E0 \
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-22 05:56 , Processed in 0.056541 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表