设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1376|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 + q* P* J( x) A( {8 h5 m( j7 a. z
    / q; D+ p( h9 V5 x& V: L& m
    解释的不错; t1 M0 a3 f, H! I* h

    - P7 E% n" X4 [递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# v% X+ H* X' i) C' }9 s
    & h7 v2 C$ U# C0 {$ B8 i
    关键要素
    # p# V0 o$ f$ e, s+ p1. **基线条件(Base Case)**( h( [% }5 }" @0 K( G' j. }) i
       - 递归终止的条件,防止无限循环  Z7 m% N7 M. @$ I1 l  o
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& W! N7 d  T* n+ i4 Y
    3 I3 \8 C+ x) q8 K& P
    2. **递归条件(Recursive Case)**
    ; R; c, X" l2 h0 b   - 将原问题分解为更小的子问题8 n. K( y  k3 U: q7 C$ e
       - 例如:n! = n × (n-1)!. _8 I1 K- Y6 ]# L1 q
    1 x) B: o: c1 a, H3 W/ E; K- z9 H
    经典示例:计算阶乘
    / a* }* A" M+ f* X& y, wpython6 l7 K* g: ]% V( G
    def factorial(n):
    5 @! t/ Q& |6 z  d/ Z    if n == 0:        # 基线条件- n9 J( h" D( @$ M1 N% f
            return 17 e6 K  Q7 _7 c, @; Q
        else:             # 递归条件0 A% n2 l/ H- k/ N0 ]+ s
            return n * factorial(n-1)- P: C9 c- \' p% p8 x- r
    执行过程(以计算 3! 为例):
    6 J$ M4 a1 @* G) C5 U" N8 O; {factorial(3)
    $ w7 e) V1 O& F6 w2 n3 * factorial(2)5 ~! q, G( z: N* N
    3 * (2 * factorial(1))
    $ P/ G( k7 ?+ Q7 }* u( o, F3 * (2 * (1 * factorial(0)))' \/ c% [. H6 F( x! U+ t+ M# J. @* E
    3 * (2 * (1 * 1)) = 61 n5 N9 J* r& D0 ~7 l9 b

    2 Y( ], L" g  @3 z$ G- b 递归思维要点6 A( g! r1 l' B
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
      d7 s4 p* O3 ~+ G7 u2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
      I' s, F$ k( q4 b9 ?3. **递推过程**:不断向下分解问题(递): w4 ~/ k( R7 ~
    4. **回溯过程**:组合子问题结果返回(归)1 P) n, ~3 d% N7 R5 }; ~" y

    % Y' g6 q# z5 w9 ~/ l2 t+ \5 Q 注意事项
    8 c# |  X% K1 z9 U必须要有终止条件! p1 d$ n( b) \0 |2 o. J
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)! T. v: W! }) `  P' A1 e6 O
    某些问题用递归更直观(如树遍历),但效率可能不如迭代" e6 |4 w% d& `7 r
    尾递归优化可以提升效率(但Python不支持), P# D; F0 P) I" R2 L5 @

    ( L& O$ [* z3 O0 Q5 ~6 e$ [' r 递归 vs 迭代
    5 d" C$ d$ [+ }5 t( Q2 m|          | 递归                          | 迭代               |) ~0 N: }: ]* I4 C6 r
    |----------|-----------------------------|------------------|0 P% V7 K0 [) M2 a( y7 u1 o+ O3 L
    | 实现方式    | 函数自调用                        | 循环结构            |' @/ ^# |, V( _# G" f% j
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |' ^5 m5 ^  r  M8 ?
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& g, I* K% X2 x+ e+ K
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    8 g1 \: `' T, F8 X" G6 M  g' B. C5 ?% l& {" X- x
    经典递归应用场景
    4 J0 o- s6 |/ h1 \& S. D1. 文件系统遍历(目录树结构)/ f6 k% Q2 e- [7 ]% \- y) w
    2. 快速排序/归并排序算法
    + ?# l) u# v; O; U/ o3. 汉诺塔问题
    $ b/ R7 R! j8 `) y2 m4. 二叉树遍历(前序/中序/后序)
    , t8 b" E) H7 I7 V" v7 Y  e5 I- L5. 生成所有可能的组合(回溯算法)9 y; ~6 n( M  x, ^" d
    3 W' L2 N0 q8 G! `
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:11
  • 签到天数: 3110 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,% F! u# ?# P5 j7 u  {$ A
    我推理机的核心算法应该是二叉树遍历的变种。) E/ T0 Y7 T/ s' l
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    , |3 C* z6 N* ^( u% R9 @, dKey Idea of Recursion2 R1 P% d. i( M5 T0 J2 k2 e& S

    7 Q+ I' B" {1 e3 p% b1 O2 iA recursive function solves a problem by:
    * J9 w9 r7 ]( ?# R6 i4 ?2 d$ M$ @+ ?
        Breaking the problem into smaller instances of the same problem.
    8 N* c& W* T* j# L2 o3 x0 F
    1 f( M. d! S$ {    Solving the smallest instance directly (base case).8 ]3 w6 T! V: Q/ L$ k) W' }

    ) x$ r( a0 _- y$ v1 O$ }    Combining the results of smaller instances to solve the larger problem.7 [8 K2 u# g( Q9 v3 r0 q. A( S
    ; ?, I; C+ @" V4 }; ~  p9 j/ X
    Components of a Recursive Function
    # v) n" E. }9 V4 J% h2 \9 L) H) g! o% C. K6 L
        Base Case:
    " {" R4 i* a% w. ]/ R5 c% T0 z2 o% W
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    + Y1 L% |6 x, C' ^- t, {& m8 H/ J2 G& o5 z
            It acts as the stopping condition to prevent infinite recursion.5 P- x$ T% P, ~$ H7 ~$ x4 e
    % f/ I  q7 F: v2 W
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % s# l% }  F1 H# B- P. ^; P
    " F1 X5 O/ u( X" ~/ g# t    Recursive Case:
    ; P* W1 m. @) T' T: ]7 U: a
    1 V. ]- z! b& s- B0 u6 s* O. U5 U4 c( g        This is where the function calls itself with a smaller or simpler version of the problem.
    + z( E6 R  D5 c9 I5 @& z/ s0 W+ X) p4 m% X8 t$ g1 E( r
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    - ]5 |7 A' {  G0 o
    , ~( H2 i5 ~8 C! i9 d4 H+ NExample: Factorial Calculation. q! _7 W: g/ D) L8 \5 k
    ) j9 ^3 N1 n0 d6 K# E+ G
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:) W% |' V! [3 t  G

    & l, I* h0 c: j0 F  h    Base case: 0! = 1, }5 ?9 ]" j$ Z) Q8 W3 V
    5 a1 ~% e( J6 E! O- i4 w# ~1 |7 n
        Recursive case: n! = n * (n-1)!
    5 @* \9 f+ i& f* }2 x9 s, ?
    1 ^5 `( k$ I& F3 BHere’s how it looks in code (Python):
    * Z: Z- [& b6 lpython' D* [6 j% @: Y: u8 L1 A5 e

    3 ^' Z) w& d( C7 @7 _9 ~* z# ~1 E$ h& \4 i/ |
    def factorial(n):. w9 b% h  a$ J1 U; ~9 j
        # Base case
    4 y0 N% o: s" c/ ]6 R/ u. T  |" r    if n == 0:
    9 ~9 f" q" Z# I0 k6 f: L& k1 Q2 Z        return 1
    * T/ b8 f! N( C6 I    # Recursive case
    0 {% c( s- V' t$ U9 O; F3 P# f    else:
    + h& K/ N$ E+ S& \& t. z        return n * factorial(n - 1)
    $ I8 D  n3 z" i1 E. W, q; @& k/ L/ S6 H7 o% Z
    # Example usage
    0 B( x* T- j3 a# p) v- ]print(factorial(5))  # Output: 1200 j, v# L7 \9 K# U. D4 X

    5 l/ Z& E2 z$ }How Recursion Works
    ( V. p- u+ g  v# Q
    & Q: V' Z6 X; t( p6 {2 V$ A4 P    The function keeps calling itself with smaller inputs until it reaches the base case.
    & U: X  B+ u2 N6 \) l, e- j$ [5 l, Y6 T( I
        Once the base case is reached, the function starts returning values back up the call stack.
    ) q) D% ?. U. |. L0 g; M7 M  S1 _2 C. ]! e$ @
        These returned values are combined to produce the final result.! Q, n9 C# _8 A  T  ^( X/ l2 v) q
    " W2 A+ Y3 R0 P# X1 M3 L
    For factorial(5):3 Q' ^2 Q- Q! W5 i* A8 q6 ?# c
    % ^. {$ U6 D: W) ^5 M
    * i+ [0 L  Z" |1 v
    factorial(5) = 5 * factorial(4)- W6 U% Y3 P$ g9 [
    factorial(4) = 4 * factorial(3)
    9 Q7 s% j9 Y# Q& J8 Q; ^) f6 X. Pfactorial(3) = 3 * factorial(2)* n. H% c& B1 ?1 K% q( }
    factorial(2) = 2 * factorial(1)
    5 \" @. {& ~; C) m/ [factorial(1) = 1 * factorial(0)! m2 u* I7 R  K3 B6 d
    factorial(0) = 1  # Base case
    ; @8 m1 B; `9 o3 K0 F8 X" R
    2 S2 ~, [+ J# B; |6 q) c7 V$ ?Then, the results are combined:9 U. B' z- f2 L/ A) [. \0 q
    4 x9 C8 i( e0 A3 e' `' `2 D
    8 A' H0 ~: P/ p: v0 U: _5 |
    factorial(1) = 1 * 1 = 1) H) n; J/ C; m/ l) R4 |( O
    factorial(2) = 2 * 1 = 2) Y! v4 R1 z' z, I6 M
    factorial(3) = 3 * 2 = 6/ R+ z# ]6 i% c, G0 w1 m1 U
    factorial(4) = 4 * 6 = 24- t  K; O9 {: t: z0 r7 k% a* i  c
    factorial(5) = 5 * 24 = 1203 d( {7 ?( `" O! Q' I5 h
    - O" l3 Q/ R9 {: _6 U! @) T
    Advantages of Recursion% f+ h. K0 p$ `1 C( {

    ! ~- i' ]1 V/ l    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).  r  n5 ~1 S* @  A  h

    : G: S! R# F( N. K# d* F1 T    Readability: Recursive code can be more readable and concise compared to iterative solutions.5 K. C$ D! t/ B) H
    & e: S  `0 F2 b% N+ Y4 S
    Disadvantages of Recursion
    / o7 @( Z, R% A  U% @6 C
    2 U3 P/ v; x( k    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ' e; S7 U4 _, `% H  b" z# k
    ) d, H% p; F, z, S: m- g    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    9 r9 h% Z- M. U+ u
    8 ]) {5 s% }. {& L+ hWhen to Use Recursion
    1 m6 z/ r! p" ~% k% N. X8 w/ F# e
    7 d0 `' E  v" I( p6 x. m    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).3 W! A  e( H4 O0 t3 M

    / G" K2 x7 @4 I: B    Problems with a clear base case and recursive case.
    - I; F8 n2 |- D+ Z& r/ c2 U  e, ?0 ^5 O; x& a) v9 r
    Example: Fibonacci Sequence
    " s3 F+ P9 Z- q& h
    . C: ~! e# I" E( h; Z1 ^! pThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    5 m; ?2 h/ `, a1 H5 d/ d& j$ f% x
    + }  j+ W, a) \6 v* Y2 e    Base case: fib(0) = 0, fib(1) = 1, v* e4 o7 i% x" I: ]: ]
    % z4 K; R6 X) H9 f6 L
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    9 M, i, _3 Q) m
    ( B+ @3 L9 X3 a! l8 Opython  d, f0 c4 L( o  d: O" D
    / Y' E! @2 C$ I" D
    / i( z8 a) h+ k2 q* }
    def fibonacci(n):8 O; a0 V4 R) _# \, f! G
        # Base cases
    ! v2 i  z: N( t) @" y  Y( U    if n == 0:
    0 O, |; L0 X$ T        return 00 S- ]' \1 @, ~; j. w
        elif n == 1:
    # k5 r3 _' S2 `5 M; |! k" ~5 O! g9 y0 a        return 1
    $ S: I8 r5 V* I    # Recursive case6 R2 }9 k$ S. L9 U0 o
        else:0 U4 v4 m" g& ]( O: p" }3 C6 q, }* `
            return fibonacci(n - 1) + fibonacci(n - 2)
      W% K- e1 b; H9 n: K2 o0 @
    : N( d+ v/ [$ l# Example usage
    # P: v7 k. V( y2 T: Iprint(fibonacci(6))  # Output: 85 X3 w1 ^& ?$ q9 {  W

    $ C" k, z& s% x1 HTail Recursion1 u- c1 }% r" j3 h' _/ d9 d

    4 y( y+ D2 b; q; \8 i0 j1 {Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    - c( d1 [- K9 F% J9 N+ j3 k# ~# }9 c7 J( o- p* W- F. R
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-7 04:06 , Processed in 0.030595 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表