设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1356|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 1 p: z" c% [, E3 t6 U1 J& |
    $ [  t, g5 t/ _3 A5 f% F' F
    解释的不错4 w) A6 E. w1 R% }9 J9 V
    " t) g3 c1 e+ r, t2 d" ?. |
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; e" q. v, u: ?. l# i" j$ V' X& s7 B
    1 H, w; `1 p6 r- S; U0 d" a) T
    关键要素
    0 s4 t% b. @3 t0 A; \1. **基线条件(Base Case)**
    * k8 K/ ~3 ?. ]) F' |   - 递归终止的条件,防止无限循环
    ; o. R9 v; A) ?3 Q0 S1 [   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    4 K: N- P: f) P; m0 f# M* N; ~' Z! u7 W. E
    2. **递归条件(Recursive Case)**
    / f( x3 p$ H% x" G  g   - 将原问题分解为更小的子问题: H% b8 k2 W( {- {% B, G
       - 例如:n! = n × (n-1)!
    2 v$ S8 \4 d  y- ?  \% I' z( `/ J0 ~* ?
    经典示例:计算阶乘
    % }6 `/ T1 |4 u  Rpython# p7 y$ y7 ~* _; h( R
    def factorial(n):
    1 w; x, ]- W: E: o6 L$ W+ U! U    if n == 0:        # 基线条件
    / ^  E$ a, z" b! c1 N/ w( F( x        return 1: Y6 L6 a& X, K% Z% m! [
        else:             # 递归条件& Z- w. e) ~! t4 _. J9 H
            return n * factorial(n-1); r# e6 h* V. k5 U
    执行过程(以计算 3! 为例):
    ' P) }+ U: u4 Tfactorial(3)
    & I% E+ }4 n5 L3 * factorial(2): a1 b0 `  }: a+ Q, |
    3 * (2 * factorial(1))7 R) p( ~; t- L  F* z
    3 * (2 * (1 * factorial(0)))
    * y# h" L& V5 O, a& t" x3 * (2 * (1 * 1)) = 6
    7 H: e% }+ `# `0 X9 d$ d. @( P' @$ P5 @3 J* @% i  J4 N7 e
    递归思维要点6 }  z; X2 K! ]$ U1 o( f4 i. I
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑) M5 F5 [+ o$ A9 Y5 E- J9 A
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)3 b3 d8 P9 M% f" D
    3. **递推过程**:不断向下分解问题(递)0 g( Y& `0 g& ^& D6 v  j# |9 ^
    4. **回溯过程**:组合子问题结果返回(归)
    , n! b. o+ k1 u4 @* Y
    7 d, r- E8 }) e( {' U 注意事项
    3 W- t5 R, E. X6 H$ n, l必须要有终止条件  F- u# g4 [( f) @: }
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    / V' \6 z9 }& a7 `+ g某些问题用递归更直观(如树遍历),但效率可能不如迭代) V# K, z" b" R
    尾递归优化可以提升效率(但Python不支持)
    5 M/ B7 q. N& F' z6 w4 [+ Q" t
    5 a; c" W7 \6 p; U 递归 vs 迭代
    ; y# g6 v( c7 j. s  ]- n; ^1 ~, `|          | 递归                          | 迭代               |! g. M) n  Q/ z1 `: x
    |----------|-----------------------------|------------------|: c' k  O6 v4 e3 |" @  C& T( r
    | 实现方式    | 函数自调用                        | 循环结构            |
      w: w& Z4 h6 z, a7 S| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 k; z1 J) {  H
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |  ]! p  @; c- F* d
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |' T7 @2 n/ I- @9 h) n& P2 {! \

    3 R' f6 }3 s  ]( j. {  e 经典递归应用场景
    6 S% b9 j, y( B( ]$ N1. 文件系统遍历(目录树结构)4 C# F3 G$ U/ _) y8 {; V1 z
    2. 快速排序/归并排序算法$ d2 {* ~( ^& j* J
    3. 汉诺塔问题$ a; }, W& }, v
    4. 二叉树遍历(前序/中序/后序)+ @& m* E( J8 V, p, T
    5. 生成所有可能的组合(回溯算法)
    5 v1 ~7 z  V4 c- }2 j& w" V4 K3 q9 c2 d' M$ o6 J8 _! T! |+ y% R
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 08:50
  • 签到天数: 3109 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," L  j: n' ]% R3 x
    我推理机的核心算法应该是二叉树遍历的变种。
    0 \6 X, y2 ]) c: K$ b另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 `2 V1 [. j- O* Z& [  J) w
    Key Idea of Recursion
    1 y1 I0 I; E/ J7 P7 b# j! z
    1 {$ w8 z3 w3 g0 N: |- xA recursive function solves a problem by:
    ! J& K" [5 t+ y) E1 k# C$ Y8 f- Y. Q. k! d7 y
        Breaking the problem into smaller instances of the same problem.# ^8 w: K  B" O6 i
    ' y) j' H7 V9 b! b2 c
        Solving the smallest instance directly (base case).
    2 ?5 H3 T- P+ V, G' j) F* a" O5 e0 \- Q8 S
        Combining the results of smaller instances to solve the larger problem.: B1 K4 |4 e) ]/ a. D5 G; U
    ( t+ ?8 V4 U( x
    Components of a Recursive Function
    4 _0 F+ u( |8 q4 S2 M7 C6 s6 y2 Y  n) \8 c! ]
        Base Case:
    / N+ J! ^6 O& S+ B; \% ?* L
    , P/ G$ B6 N. D: J7 c: E( g        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.% c% Z$ ~9 Y7 H( D+ w7 R9 i

    ) K3 _! w- v: Y$ H. G        It acts as the stopping condition to prevent infinite recursion.9 O! Y: R6 u$ ^
    1 ~. c: n  D2 ~$ ~7 {$ v" w6 y( o
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    / `. f* _, l2 O/ P7 m/ Y
    % ~( g/ D4 O- ?$ N& _% o& J    Recursive Case:
    " h7 C: [2 R& \# u" j/ N0 D
    8 q" D9 k  ?% K+ X+ L" p- K        This is where the function calls itself with a smaller or simpler version of the problem.. n4 j* a9 L& M0 h& \$ f/ l9 |# q
    & r5 ~# V7 j, o4 o
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ; h  Y" [) p6 a& V2 q1 ^3 W% _8 O3 c
    9 M1 V* Y7 m1 w9 S# P) {Example: Factorial Calculation5 T9 E) U5 d  _5 V% s5 h

    9 Y5 y( A' P1 }" BThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ; @0 v% C5 n/ l, D! r8 G: L/ r7 P% S% P# I
        Base case: 0! = 1: J* u2 @  F: |" D
    + H. O  F) t9 g. f7 J7 ?
        Recursive case: n! = n * (n-1)!/ ?  m9 s0 C' F0 g
    + d7 V! j5 v: `) b; b1 X$ T+ n1 A3 i
    Here’s how it looks in code (Python):5 k( T5 Q: x# ~1 @4 _
    python
    7 e8 @& y. V2 j8 `
    , c$ ?1 s  b7 Z- ?/ g, t. Q; m, k2 C
    - {  q3 u4 \" f- K/ Y$ x  X, d7 jdef factorial(n):
    3 R0 [+ F* A" U    # Base case
    ! m1 S# n' k4 P    if n == 0:9 f1 q6 d  f( a$ t" p0 y( `
            return 1
    1 W# b0 a, T7 n! H    # Recursive case* p+ _( [0 q9 ^& M5 w. `! D: N- T" z
        else:1 s# |7 v. @- R) H5 K. O& H
            return n * factorial(n - 1)
    6 S! u. S8 O$ M, K% |
    . k/ C. g: t: g8 ]0 |; y# Example usage
    & Q+ j0 _( L' fprint(factorial(5))  # Output: 1201 M+ J! L" i- r7 l# j

    * w- o1 d- e' I  D0 u9 A% `! RHow Recursion Works  l& F. V- n0 g% p# a# s
    # [6 x! J% b6 L4 K! W
        The function keeps calling itself with smaller inputs until it reaches the base case.
    $ d4 T( p& i0 z% `! V+ C' V
    9 N2 {: }, J) J4 _" h: h    Once the base case is reached, the function starts returning values back up the call stack.5 ~% |6 E' m" T2 e# d9 {
    2 m$ U1 p6 A# `
        These returned values are combined to produce the final result.
      R1 Y7 |1 v" ^$ B9 _; x9 }0 I# r: m
    For factorial(5):
    1 ^" j: L# p9 M6 S
    6 s3 z  h  R5 S2 @( A* s$ R6 F) ?' q8 V" P! B
    factorial(5) = 5 * factorial(4), M, h1 t6 c4 _8 R9 U9 J8 V' B
    factorial(4) = 4 * factorial(3)
    3 h& o# p9 k/ T% E% v0 @factorial(3) = 3 * factorial(2)
    7 l7 s8 H3 W1 Mfactorial(2) = 2 * factorial(1)" G2 M  Z( _9 ]7 ?
    factorial(1) = 1 * factorial(0), c" t4 s8 ~. O" C  c
    factorial(0) = 1  # Base case, j1 ]" [0 t) P% X0 L
    , o) W8 P) S$ I6 H: U9 E4 W, o" {
    Then, the results are combined:
    4 W: S0 K% C6 b5 d7 ~9 f/ u- u$ m* }  f5 N) m$ h" Y
    $ f' ?# c8 y6 l, |: B! B* R7 H! Y0 P
    factorial(1) = 1 * 1 = 1
    9 o9 S) t% Z* n0 n" c: ^/ ?8 yfactorial(2) = 2 * 1 = 2
    5 E. g$ W5 i0 I1 hfactorial(3) = 3 * 2 = 6
    ) D  c; L& J0 {+ `, W) g, rfactorial(4) = 4 * 6 = 24' C+ |  G  X1 o7 C6 H
    factorial(5) = 5 * 24 = 1201 y0 y- r! U- M' W

    5 r3 _& u* z8 R3 K9 \  a/ L: |% _Advantages of Recursion  e8 h; w" m& z6 L8 i
    / r( r% M  k4 t! z0 b3 ^% H
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    9 U3 t$ n+ j0 U, W# r- ?+ [4 P; f9 E9 [( o1 g+ I& K$ h
        Readability: Recursive code can be more readable and concise compared to iterative solutions.6 q1 V$ N8 B7 p
    7 U# Y# l* Y% C! ~/ @
    Disadvantages of Recursion
    : L  s$ t% [% o( l) d+ g/ `1 F  l- V; g. Y8 N. {% d
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    3 E2 [( A$ o0 u8 _- _% _% g
    " Q0 \% ^* K$ C4 I/ W+ l    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    6 W9 C6 k  ]4 P" _2 a# r
    * C; s6 A% L  G! }When to Use Recursion
    ! i6 B2 y# t# X3 h8 x7 v& A8 p% c
    3 @. r$ u- b1 Q) P; E( \    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: ~& S9 `3 V' o, T3 G

    . {% c, U5 t; L% g! @: f    Problems with a clear base case and recursive case.
    9 W$ F9 I! n$ T6 q; h
      y6 P, v6 h( T' k$ lExample: Fibonacci Sequence* N% J! u- h" W, n6 o, C% _6 C0 A
    % N4 p6 W7 g* Y& Y3 a
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:2 y0 B0 w! ^5 C- t9 ?. J

    3 c- C8 T! z0 p& X5 S$ c5 P    Base case: fib(0) = 0, fib(1) = 1
    % `* P( m# C- _/ d. L8 W" L2 t0 P% x9 M: y/ E# c
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    & F6 e/ a$ p1 y  {- [5 ^, K; f+ j8 ?+ A$ Y- z5 }/ F$ d
    python) ?" w5 E) J$ K+ M6 k

    - b" ]1 ^2 [* n& S6 i4 l
    ) U5 u" E4 E! i1 {/ ~* u& Tdef fibonacci(n):" m% \7 s, Q" i* Q+ v% F7 e
        # Base cases
    ' m" c& ^4 ?9 ~3 N) F3 }    if n == 0:
    6 H$ A8 @4 h% r# f: E        return 0
    - s& V# I0 F, i/ k    elif n == 1:
    . |  ^3 X1 Z9 C- X        return 1
    4 F# b# n" F: N3 z) q$ R" ^" Q    # Recursive case
    4 x6 s# L7 U7 @3 K+ x    else:& @# l# |; ]$ h4 z
            return fibonacci(n - 1) + fibonacci(n - 2)) _9 {4 @" f9 I

    8 o/ h5 ]0 e8 P2 u* d$ ^# Example usage5 p! ]- Y+ s4 I, Z4 e4 q
    print(fibonacci(6))  # Output: 8
    1 f6 f, T& g$ z  [
    3 {7 F1 T- g1 z/ q# U' ]0 O( zTail Recursion
    8 p- M7 f. ^+ b: U6 W- O" d" A0 @& J# e' f" {! _, m4 D
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).5 e2 U3 g! [, U& P! S
    7 q7 @% o$ _+ e, Y7 |! G
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-6 04:48 , Processed in 0.033884 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表