设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1096|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 * p- j3 p) h  }/ X5 j" r* N: y
    $ B! l% y5 ?2 V/ t8 l+ Y: |
    解释的不错0 ^. W7 H  b$ ?) K5 f6 g$ w2 d; a

    , d$ J1 w4 z) r2 R* y1 U9 u递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; D% @; d3 D3 M" R5 d' u7 W
    - `0 f- J  q: Z- B5 S
    关键要素
    8 s2 v( k' f: [7 ?( l, M# p1. **基线条件(Base Case)**; k- L/ y+ L* U7 a
       - 递归终止的条件,防止无限循环+ Q" `3 A" R% ]8 h
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ' b3 X0 L: Z- \9 d5 q! D1 s" u. s6 }4 p# N% c! @( B
    2. **递归条件(Recursive Case)**
    $ ]: W3 `% F6 L4 A4 u. |6 W" N0 ?   - 将原问题分解为更小的子问题3 {0 R+ L* ]7 z2 o
       - 例如:n! = n × (n-1)!% h; Z. L6 U# ^, J2 w. y

    4 Z! D- Z9 u: N& u3 G6 l  s' o 经典示例:计算阶乘
    - h' ^8 k5 m) W' G0 jpython
    8 W  \) S* q1 O: e  [3 _def factorial(n):$ r! e" @! u" [: V! M$ m! Q- j* P. s
        if n == 0:        # 基线条件$ ?9 ?! V5 V: j1 h# M6 s
            return 1
    1 h% d+ ~* c, D% X$ e    else:             # 递归条件- l" J) t  A& i) k6 S/ p& `, V* {
            return n * factorial(n-1)
    + C3 L: ?* p9 R3 B执行过程(以计算 3! 为例):
    2 n: N8 R5 D6 t, v% I# c( ~. F; M) |factorial(3)4 R, t. \9 x9 \* h- i$ f. Y# E
    3 * factorial(2)
    1 ^# s/ Y( W  S! B, F5 P6 s, a3 * (2 * factorial(1))
    " y* z. K( ^" Y4 j% b4 _/ p0 N7 y3 * (2 * (1 * factorial(0)))5 ~. B3 P% J0 j+ @
    3 * (2 * (1 * 1)) = 6
    ) g: J  f# z  j$ a; E
    - Z: R, R3 z, w3 O6 u) l 递归思维要点
    1 m6 w$ g9 G) c) \2 ]1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ) v1 }- f9 s0 D7 D3 h! e5 ^, }  S2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    3 O. w7 ]$ _0 E( i, }; @( o3. **递推过程**:不断向下分解问题(递); T6 i" h6 H3 R& J# W
    4. **回溯过程**:组合子问题结果返回(归)
    6 k+ a, c- T6 L$ x2 W% c7 O% n$ l! J; {; T8 B% j; j
    注意事项
    & C2 J3 k- N2 F必须要有终止条件
    6 u, ~- t. c* q$ q2 a: d; ^6 Q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) v0 u- U% V% Y6 O
    某些问题用递归更直观(如树遍历),但效率可能不如迭代; X( \1 s% [2 N& F7 h
    尾递归优化可以提升效率(但Python不支持)0 Y3 L( e- r* G5 `2 _) q

    ; ?( C" `4 z8 W% K) M 递归 vs 迭代
    ; X( E0 m1 ]3 @2 o; A6 K( ?6 X|          | 递归                          | 迭代               |2 m3 A; ?" E5 |9 p! C0 g, r* o
    |----------|-----------------------------|------------------|
    8 h; e$ {% S. g5 k3 @( V| 实现方式    | 函数自调用                        | 循环结构            |& E, n. X, a/ R* w2 M8 m* g! |
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |& U3 s% e/ B3 t5 ?4 k0 R
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 ^  p$ a/ M5 }; e| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    / e+ \' m3 Q0 y7 l  K  q4 O/ ?" Y+ ^: N8 h/ D. M9 D; B
    经典递归应用场景
    8 _$ f( |: _" @+ S) `5 t1. 文件系统遍历(目录树结构)4 t, \+ Y7 d; R" I
    2. 快速排序/归并排序算法( a1 ^) i& S0 C' ^8 v- g
    3. 汉诺塔问题
    ' Y- [: e% [& f; u6 V3 W' [4. 二叉树遍历(前序/中序/后序)
    3 }3 W' g" V/ x! Y) {9 W; w; z( r5. 生成所有可能的组合(回溯算法)
    . U" T# o- y! d! W( i& @5 A& S  d8 O# l5 v0 Z
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 07:04
  • 签到天数: 3096 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    - d& G# ?# Z9 o* n9 F我推理机的核心算法应该是二叉树遍历的变种。
      m, q6 t( l" t9 v3 l% E3 |7 C) J另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
      N, E4 U+ v- WKey Idea of Recursion
    : t. s5 M/ Z- x5 h: m, S6 K* j; Q
    7 U. G" j$ `. g8 t0 z+ K3 P' x6 i; SA recursive function solves a problem by:& l- _6 n; ]% b1 J: x" Z) T. ~" j
    ) R5 j1 d/ H; ~. J  E: l
        Breaking the problem into smaller instances of the same problem.
    0 l" q0 l& y, Q9 }% u8 F% T# ]8 p
    - o. {1 M+ M& P, T8 D* [    Solving the smallest instance directly (base case).5 X0 }, x4 u! i2 p- f# `

    ) F8 m- |" O1 \6 x0 t    Combining the results of smaller instances to solve the larger problem.  O3 \8 U( j1 y* {

    # m6 t& k$ A3 e* a- c% p" O8 HComponents of a Recursive Function4 r3 c9 C& d& ]+ O2 }# Z' [
    6 p9 Z" E& p9 s, a- q. r/ t4 N
        Base Case:' t8 N1 I7 X& n1 R2 }/ B3 }
    + y6 ?+ ^' i6 I) p$ J
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.5 e& @% A4 F2 f/ ^- B

    ' |* x: |$ m# `. i. U$ \  H        It acts as the stopping condition to prevent infinite recursion.
    0 Y7 `7 w$ ?; r) K1 {* P- c  n" L/ m, k0 H: F% X0 H9 C1 N
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.4 Z+ \( \& Z, m: _4 [
    ! E: X) u2 ^! e! x( V4 w
        Recursive Case:
    $ X- {& ~+ p0 m+ ~2 i% Q# S
    ) l) d& C( g8 w7 W. ]- P5 r        This is where the function calls itself with a smaller or simpler version of the problem." m. V# r1 J& L4 k
    & _$ M3 h* ?* ^- }
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    6 q  ^* C! \- j* b$ ]9 B- |) S# [2 S+ |. M# O
    Example: Factorial Calculation$ x0 b- N" r  t& g5 A& B3 `3 A

    & w5 M! i* l4 i' h/ k( pThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    + h, }+ Z$ a9 o/ l- A/ i! P$ f/ R5 z: E+ G% S3 g5 Q
        Base case: 0! = 1
    0 G; |3 D) M2 j
    4 l& t. l" i1 w/ J6 v    Recursive case: n! = n * (n-1)!
    5 Z& B  q! H9 W; X8 b$ e% x# [7 G! B! m2 r- h  ]! |; B
    Here’s how it looks in code (Python):
    & r' g3 W8 j) c5 B( Q: i0 j" Lpython$ L, P, @8 i$ f- _8 y) @, |

    ( G6 F0 S0 {# N5 C) r# U4 h) f6 q  x# K) v& D& L7 k/ A
    def factorial(n):; z. `+ b2 X' P8 {2 m' d( m) M: c
        # Base case  f: }0 ~7 X5 S! w3 M
        if n == 0:
    ( @9 f8 g3 j2 z0 F2 P  P. |        return 14 b7 G7 C+ q) M# _" j, J
        # Recursive case: X0 {) e, H6 _! o0 l" H
        else:3 D# R+ o0 h) J4 p
            return n * factorial(n - 1)7 C6 ^/ N# r  Q. q9 s8 K: J
    + n2 N1 v0 z. F$ I) g
    # Example usage
    * c, W0 j8 x4 T% c. Eprint(factorial(5))  # Output: 120
    4 ^) l! m9 n" t8 p! ]; O$ H+ X5 O. A# `; `+ f2 L$ r6 }. W
    How Recursion Works
    3 o( H: J* U  Y; p; D- a4 C  o
    . v  Z, E; D3 }9 J1 _9 c  t    The function keeps calling itself with smaller inputs until it reaches the base case.
      X. Z- v" X" y; G: E$ W  S
      @+ L* |. }( [8 i5 v) J4 T: R    Once the base case is reached, the function starts returning values back up the call stack.+ W" n2 w* H/ [$ x  y" p
    / ]5 Y5 Q0 a1 G) g1 o3 W" R
        These returned values are combined to produce the final result.
    : {  C, j( r! z  a. L5 h2 u* u, R0 F$ {3 U
    For factorial(5):3 Z0 H, F8 l( h: k0 o& O/ z3 d6 q

    1 q3 l- O* Y* _
    ! l+ N6 K0 {' y/ M$ r" lfactorial(5) = 5 * factorial(4)9 ^3 a/ n0 K. J& l3 V9 X4 f
    factorial(4) = 4 * factorial(3)
    0 e8 F6 w, B5 rfactorial(3) = 3 * factorial(2)
    2 r( _/ d" q' b* pfactorial(2) = 2 * factorial(1)( `6 B  y8 l% ]8 k) X/ T* A2 N
    factorial(1) = 1 * factorial(0)
    ' Z* w  Z; k- E! Gfactorial(0) = 1  # Base case4 b; T$ d( {" z7 y
    2 z9 s3 M8 g! X  w- A7 [0 {& F# D) h
    Then, the results are combined:3 r# d) V" ?+ V  D; k/ u

    6 _* d% O$ r# g* l: P, y" |6 R% o% @# S- o
    factorial(1) = 1 * 1 = 1
    4 K$ x& G7 {# a# `factorial(2) = 2 * 1 = 22 J% g" [, ]) K/ @1 D6 Z
    factorial(3) = 3 * 2 = 6
    ( |, e0 W/ ]; w; afactorial(4) = 4 * 6 = 24% D- r% [; n% |
    factorial(5) = 5 * 24 = 1206 j. n3 }. ~. n# }+ z2 z9 o

    % }6 P- C' u- u+ B; {6 mAdvantages of Recursion* a( z+ p/ I' w) m# t

    5 a9 s& c8 y0 A4 Q, H    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ) J2 t( }0 Q; M- X
    # e) O1 w1 l) J( S9 _5 k! v    Readability: Recursive code can be more readable and concise compared to iterative solutions.6 W( b4 O" ^* G

    , D; g$ O1 t/ ]  T1 A0 v3 ADisadvantages of Recursion
    1 s- N/ c# j' y+ @" m$ u$ c
    2 F- \8 t' s- r, N2 b    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    & ], I$ C; w7 s$ G6 X) z  K, r$ U4 |" B' v3 @
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: b6 s5 N5 L; ?4 n/ Q1 W' T

    % Z2 t0 n+ z7 I9 k5 h3 sWhen to Use Recursion2 B; o" ?  Q2 Q
    8 X: X2 l% J. X9 k: p$ w! E
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)." P! `4 Q2 l& [- t7 h% N5 s

    1 L+ A6 D7 p# c' K' |    Problems with a clear base case and recursive case.7 q: }+ U, l- _# C1 Y1 E( O

    & \2 I9 |. v0 U) c0 k" }9 |) OExample: Fibonacci Sequence3 S$ W" L( {/ h

    1 ^2 w7 D+ E. z. s, z" wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    - T. y* }  \: I) s! b) d* h' c2 g
    3 M6 V" \( @" i# p) k; o    Base case: fib(0) = 0, fib(1) = 1
    * ?2 G9 M: {4 t7 |# F0 X7 d+ v' Z  x$ `
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 d2 o* L% e) b5 `$ ^7 a" V
    ' }1 h5 a# V$ Dpython
    , B: ]1 U& G% K4 c4 a  B/ r
    ' P6 \7 G- T: n4 N" K& ~. k- k& }# R. U& J" B* a
    def fibonacci(n):
    , v4 \) X7 |0 N0 ^$ Q    # Base cases
    2 T3 {8 g; s5 W; a/ K7 ?7 w    if n == 0:! N! `! |1 L" @9 p, e
            return 00 b2 t6 P) `2 B3 a
        elif n == 1:
    + O3 g: H0 o9 j; F9 L8 _        return 1* ?; l8 M/ V# a# {1 u
        # Recursive case: r+ t1 F$ M2 X! N/ ~# N
        else:
    9 h/ m: V% K. H8 D4 ^7 k: R        return fibonacci(n - 1) + fibonacci(n - 2)$ o: V* `6 a. x9 x3 ^9 q$ g

    7 e; D: s) F% s' P# Example usage8 f1 X0 T+ H3 n* M+ s$ N; B
    print(fibonacci(6))  # Output: 8( l( k2 r7 f/ Z+ C* [

    9 x& H0 g1 {, b9 nTail Recursion
    # N9 b9 v0 X( E9 N! ^
      }9 K2 v" R9 V" vTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).: T6 {' w! z  N' r

    ; t% }0 f* r2 Z+ I" b* r& KIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-20 04:53 , Processed in 0.030016 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表