设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1869|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 . W: X% N6 }. c
    # i( V1 z! }) D
    解释的不错4 R/ S( e% _6 t( U3 e

    ! A0 @2 }! L( Y5 V, B递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。. F+ j4 W; m* z1 E* h# f

    % R- M1 {1 [/ B1 f" Q9 x 关键要素" g, \* t, W3 i
    1. **基线条件(Base Case)**5 A& n0 T& {' r
       - 递归终止的条件,防止无限循环+ A- }; b6 w! O( j0 C" \* G
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1; [2 B/ J) M1 N* v5 I: U

    8 E1 {2 S8 C) i) ?, w; b. b2 @: f2. **递归条件(Recursive Case)**
    * |& i9 c' B' `2 w+ U   - 将原问题分解为更小的子问题/ {6 r! q4 l8 C( j/ S8 }; b
       - 例如:n! = n × (n-1)!
    7 ~# `+ B  G1 @+ W/ e$ I% |  D* K
    # N$ N# c" ?) h1 R, |; ^ 经典示例:计算阶乘) @+ e6 h4 {" J7 r* V
    python
    2 [( W' y8 [* q8 P, Y3 fdef factorial(n):  ~: [6 c. D5 p: _0 I
        if n == 0:        # 基线条件6 p9 Q+ C( ~& c) B( r. X" S
            return 1
    . I% P; S2 ~6 E" A' V# {% w    else:             # 递归条件
    ; Y) M! d' q( B- l$ |- J7 \        return n * factorial(n-1)* n% }. e8 y3 P5 E8 D6 }1 a  S# s
    执行过程(以计算 3! 为例):
    - _4 l3 \% v7 _2 Bfactorial(3)
    4 H+ Z$ p: g1 V8 X! T# r/ u2 J3 * factorial(2)
    6 V2 H: k& K, w  K/ x3 * (2 * factorial(1))/ K4 Q  V) |0 Z0 P" I, h
    3 * (2 * (1 * factorial(0))); g( L: k7 F4 N; ?  L% d
    3 * (2 * (1 * 1)) = 6. f: D: ~  W* s7 s# T* f" Z

    3 Z. z" y8 A# a2 \+ Z 递归思维要点5 \6 c% ]- C- q8 l& k3 K3 [
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
      Z0 K8 b% n; p  g2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; T5 k# t) L: K7 ~3. **递推过程**:不断向下分解问题(递)
    * ]8 T9 m# v4 N( @4. **回溯过程**:组合子问题结果返回(归)# i2 f( J5 x$ v* O* T# n! I/ C+ X7 l

    $ ~5 b1 r6 K* b! R 注意事项8 }) a+ t. k* Q: k8 L6 A
    必须要有终止条件% n# ]  ]" b2 _) r/ {
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    6 |6 r1 [: K9 f: B0 ^0 k- X某些问题用递归更直观(如树遍历),但效率可能不如迭代
      B& D7 A/ c# O/ ^2 J- f* y( t尾递归优化可以提升效率(但Python不支持). l* _0 p; Q' P4 ^2 }3 ~8 ]
    0 D3 p; ?, l  d: o
    递归 vs 迭代
    4 c4 }3 O4 P8 O  z|          | 递归                          | 迭代               |
    # B) A% J- j7 I, z) h|----------|-----------------------------|------------------|
    2 I- e. {# p' _| 实现方式    | 函数自调用                        | 循环结构            |
    $ k( w/ _/ d5 m! F8 \  A7 G| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 _' _8 d" k7 E0 [& ]8 j9 W| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" U/ X% L; H3 c& `3 ^* ?5 z- }
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ) j  l: a/ e  @; w1 n" C0 f# x6 s6 c) Y: j6 y/ }) F  c) I
    经典递归应用场景
    4 H( i' {8 W: {6 y  q" X# h$ A+ f1. 文件系统遍历(目录树结构)
    * o" [6 o6 ]. ~, N; ~3 Z) `2. 快速排序/归并排序算法
    . ~) S5 k: w( H: q3. 汉诺塔问题
      e/ m0 g6 A* {" O% b4. 二叉树遍历(前序/中序/后序)
    ) @9 L0 \* Z7 @5. 生成所有可能的组合(回溯算法)
    4 I6 N5 y% O5 M! h  L" T
    ; s& @# t) @9 s- }8 O  ^试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    12 小时前
  • 签到天数: 3147 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,; s8 D3 P9 w1 T* H  p
    我推理机的核心算法应该是二叉树遍历的变种。
    1 p& Q. Z: V# D/ m/ N) F另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 w+ x! A8 {' }  j) D2 y# }! ?, n
    Key Idea of Recursion' w4 f9 U% ?/ B0 _
    " y. |6 r- r3 e) _
    A recursive function solves a problem by:
    , @! @0 @6 W( {- w" b  o
    + ]% N9 Z: h8 ~    Breaking the problem into smaller instances of the same problem.- c4 l/ e8 ]# g+ h' v- c6 Y+ H

    , x/ P' A  G4 U& E1 ^6 P    Solving the smallest instance directly (base case).
    ; w5 e, l: _3 v% R$ A; J
    0 c5 ~' b, N! R5 g2 \7 U2 V    Combining the results of smaller instances to solve the larger problem./ x$ ?$ N! A: |0 E* L
    . a7 a. V3 ]8 H$ j
    Components of a Recursive Function! d2 P3 M% `, P3 j; Y- q* T' S
    & L9 j- d2 z, V  F% C; a5 c
        Base Case:  F; T9 e- }5 V. S0 _; T
    0 T  g1 C7 |6 b" g, @0 `
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.# _5 {- ^  o9 A  T, L7 K0 i- Y

    . S5 V" i" o- d) I, x% |3 a/ m        It acts as the stopping condition to prevent infinite recursion.; h, _0 m- _' h6 T! h

    2 r. q; d. S- c& o$ ^2 b* F. F        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    + I- r+ L9 G" T7 F$ `( T5 e5 Q& N- W# L- m; a' }
        Recursive Case:) G6 U0 I+ O" b' d
    ! u! R" \9 h$ j4 v
            This is where the function calls itself with a smaller or simpler version of the problem.
    . _( }7 E. ]3 u$ a( J3 w7 b/ H8 @
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).2 c: m5 Q/ [, ^: r7 A, ^$ [2 u

    5 J7 |3 K/ _" _7 S" }Example: Factorial Calculation
    6 F: N+ H+ l$ z8 m4 T. K) l" I& B  K+ X8 M
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:$ E* @, ?' w0 X0 C

    4 m8 q( f4 c( z. T  B0 m, c4 p5 z    Base case: 0! = 1
    8 a4 K: Y  {6 a1 q2 N
    % Z/ I2 s5 U( Z" X1 U5 ]    Recursive case: n! = n * (n-1)!
    - t6 s* H; y! U6 d1 b" U( @, X. q) c4 ^
    Here’s how it looks in code (Python):2 r0 `/ a# `4 Z9 D+ a- P$ t
    python9 \+ J+ J* z9 _! v5 Y- P0 v
    # I  P- F( D/ V0 o4 K; l0 @2 @: _# N4 Q
    & F, n: Q! x/ K+ ]0 J
    def factorial(n):
    9 _, z: l' W! ~: J  {    # Base case
    9 h8 A& t# i- f$ K    if n == 0:
    , Z. s) E0 U- y        return 1+ M. s) \: Q2 \. R4 b( G
        # Recursive case* ^' x" Z+ Z& Q, E; f/ I
        else:5 \# y" M$ q8 C  @, O6 h' `) U9 `
            return n * factorial(n - 1)2 u" o7 Z6 }; W* p; V
    2 @; q: N* [. N6 `- `8 y
    # Example usage
    ' ?/ P" P0 e  A1 s  g$ Iprint(factorial(5))  # Output: 120
    * ^- x3 G% b7 y/ Z1 ?, ~4 V' y
    0 s) u" x; K5 C+ U, \; M$ }How Recursion Works2 ^8 i6 e/ ^" t
    ) j% q1 W( O5 K" V0 l2 ]) _8 S5 @
        The function keeps calling itself with smaller inputs until it reaches the base case.
    6 r& H% b. z" Z9 m$ ]; G2 C' q
    7 Y8 p. C- o4 C7 y1 M, u+ {    Once the base case is reached, the function starts returning values back up the call stack.
    : Z7 ~2 I1 h$ @  Q' `, ~3 m0 Y/ R  `) C. l6 o- s' O7 t1 i
        These returned values are combined to produce the final result.: L* n, p! `( @) B
    2 K5 b* {0 `) }
    For factorial(5):
    0 S! Z+ c: b8 G* C$ a  I" p/ q6 A9 V3 ~. `/ [
    . O. c7 {4 z1 i: s) l
    factorial(5) = 5 * factorial(4). e% L4 B3 F/ b4 a
    factorial(4) = 4 * factorial(3)
    & J5 ]' f) Z1 ~/ Gfactorial(3) = 3 * factorial(2)
    , o8 q& f, Z7 o  @9 ^factorial(2) = 2 * factorial(1)
    6 t+ {  F% @7 a6 xfactorial(1) = 1 * factorial(0)  J& o) N! z/ X, R8 Z: Y
    factorial(0) = 1  # Base case/ W9 Y, b  H; g3 s! {* f
    3 s8 Q0 V! e; g- i
    Then, the results are combined:
    9 s, \) d1 k) F, S8 V9 l, T2 Y' U; P  T6 H+ C4 ^1 r% z7 H& w

    2 g3 v2 t( u) Q& [% P$ |) bfactorial(1) = 1 * 1 = 1
    6 p8 o! _( [4 g; q, R% Gfactorial(2) = 2 * 1 = 2
      D0 x# I' C8 I8 m) ]! h' m& Ofactorial(3) = 3 * 2 = 6+ w, P1 ?5 _" s* x9 B
    factorial(4) = 4 * 6 = 24
    6 _2 _- T6 B, H8 pfactorial(5) = 5 * 24 = 120, M. n' u; T4 V# e8 b

    " S3 k" E2 X5 X+ RAdvantages of Recursion% F% T  H, M" _, u. M% g

    ! j0 G) W# w/ `  _  _    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    2 U( n) K; W8 m1 D/ N+ M% e4 J/ ^3 k8 M5 N" v) a
        Readability: Recursive code can be more readable and concise compared to iterative solutions." n5 j6 w8 Y& y* e( L
    ' x) U) o# T. w* N0 q6 e( T% b
    Disadvantages of Recursion/ e% S4 n# n2 s
    & U4 d- S4 [  A/ s' B
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    2 S* y! e1 ~! j- Y7 W9 n2 b* W" C) a6 X4 c. f
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    7 x6 Y8 X, ]3 M) ~* H- `% g! R# j/ h; A4 u# ^
    When to Use Recursion
    2 }5 I$ S7 O5 p6 |' }
    0 c9 f6 f# }. @$ h2 g  t/ O& f2 U    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ; ?+ e( u: h0 r6 U! S
    2 W) C( w$ c1 e    Problems with a clear base case and recursive case.
    0 ~5 ^/ Q. D9 f) i5 c7 Y& v; a9 f/ e1 a1 g$ ^
    Example: Fibonacci Sequence
    : V0 D5 j, O  G0 d( ^
    & h. i9 P/ Q: E0 k- c5 VThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:; q- q. p- P3 \- {* x0 z

    / i) S3 v2 k3 S: b/ V3 K    Base case: fib(0) = 0, fib(1) = 1' b" }7 M. Z/ F0 f/ R7 p/ ?  l% M- B

    ; D: `- ?4 E: y8 X    Recursive case: fib(n) = fib(n-1) + fib(n-2)
      k; r4 _2 _( p& g# y. P  k$ b4 d! f3 W' D' q
    python
    : e, x) u8 Z3 S. X/ m
    - Q" I- X1 e5 A4 F1 i# T* C3 k6 K( k
    def fibonacci(n):# v- s7 ~8 C& P* `4 z! k
        # Base cases
      M" E$ {/ v" v+ R5 d    if n == 0:
    $ k5 n6 C5 R# ~        return 0
    $ q7 [+ P/ a3 R, H9 A' V8 p7 Y  l    elif n == 1:
    , u5 y( s& D0 X1 Q6 g8 x5 T# w        return 1( H  h" D7 D& x2 v$ c' ]
        # Recursive case
    4 l& `+ u8 {& `& m( |, a    else:% B. U$ t# s% U& a" T! g
            return fibonacci(n - 1) + fibonacci(n - 2); i# M( R& r, f
    " j8 G) h- Y& M" E6 c7 t
    # Example usage
    / v9 ~) _. X1 a8 P4 `5 i8 C3 k- Eprint(fibonacci(6))  # Output: 8
    7 ?6 R  G! l4 p, q, Y$ G' z0 j* J$ H1 J2 v
    Tail Recursion
    6 k- u" W% u) }
    6 ?3 L& G) c; x4 B- l) QTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
      t4 S1 A9 [# t: H+ T+ H  l, M& m- ^* m" {) C, E' c
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-17 19:20 , Processed in 0.030726 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表