设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1388|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 6 ^& L8 ^$ Z( d1 i' U) ^3 ]
      v2 M( E! x$ W" h+ W
    解释的不错! g; T. m. u, D5 T; S9 G8 K( d2 S: [8 O

    8 d5 p, E  O( n  [6 A递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。- c  E+ \, o' g
    0 W, I0 ?# I. S
    关键要素# l  d* s7 y( R& M2 d9 P
    1. **基线条件(Base Case)**
    1 ~2 |: y* `% p# i/ s   - 递归终止的条件,防止无限循环
    # ?3 B# [; e  Z   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ) m5 k6 |7 f  s* Q3 V) R& A( {
    , v; i1 J  c; F# e" J& Z, f2. **递归条件(Recursive Case)**$ x: W. [8 a% {+ C4 e
       - 将原问题分解为更小的子问题; u% T% o% r& D) Q& i
       - 例如:n! = n × (n-1)!
    1 G+ i1 H* O/ g  J7 d/ _0 Q9 u$ I- i* v& _
    经典示例:计算阶乘+ |, m/ k4 B3 U' t6 f6 d7 N2 S
    python
    / ?2 K% s/ C* S8 o& c. cdef factorial(n):
    " g% z! |2 x4 }    if n == 0:        # 基线条件
      B! R+ B8 ?- b# [8 R        return 1
    ( \8 Q* _( g6 U    else:             # 递归条件: k9 {& t7 `; Y& c6 u  L
            return n * factorial(n-1)- v; \5 h  Y( T2 A# e' G
    执行过程(以计算 3! 为例):
    8 f5 g: s8 X- G8 i4 N" ^factorial(3)5 r. E) y6 p( H2 U  k) @
    3 * factorial(2)
    + b" z" G* b& b' t& W3 * (2 * factorial(1))
    ; d- E! M  W: T6 }/ \3 * (2 * (1 * factorial(0)))
    # \$ `" L+ t7 ^" M2 g4 H3 * (2 * (1 * 1)) = 6( J+ k, T6 @5 M5 u( [
    & }/ C6 G( `8 y) T- }8 |
    递归思维要点3 D6 c+ H, J* P: O- U& G
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    : I6 p( j9 K3 J& G  A9 ?7 G% g; w3 q. z2. **栈结构**:每次调用都会创建新的栈帧(内存空间)/ y* W( h( z. s& q/ M, _1 G( N
    3. **递推过程**:不断向下分解问题(递)# I) b9 Z' j% X# \3 W+ \: f
    4. **回溯过程**:组合子问题结果返回(归)
    0 ?. v, U% V9 c& G  H3 u% c
    / q0 \' g: |3 g 注意事项
    2 H+ w9 [5 c# m  N必须要有终止条件
    7 Y; f+ g6 k, J* y+ R递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
      b' I+ c$ x* V, j7 S6 [7 x' ^+ w: C某些问题用递归更直观(如树遍历),但效率可能不如迭代
    4 l; X) I! ?% d5 J0 A# P" f尾递归优化可以提升效率(但Python不支持)2 _, q( s: C/ s- o
    * h! e: v7 S: Y6 l2 p! Q
    递归 vs 迭代
    7 `- n, Q9 \$ Y5 \|          | 递归                          | 迭代               |& I7 ~2 a: A+ i! R6 K
    |----------|-----------------------------|------------------|* ]/ |, g9 ~7 r. l- i- F% Y
    | 实现方式    | 函数自调用                        | 循环结构            |: V3 X% ^2 V$ d0 f. Y) ^2 A4 h: p
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; _2 i8 k  C% s' `! Z" j; Z4 h
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    6 g5 c, [' `# y| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    7 W; `* M9 X! i! s7 Q6 H3 D
    1 x& u' f1 j( b 经典递归应用场景7 t) ?1 b0 A2 u& X$ @# [
    1. 文件系统遍历(目录树结构)' O  J  m" z$ ~6 f& h* I# c* f/ i4 g
    2. 快速排序/归并排序算法! s+ f3 ~; ~' K
    3. 汉诺塔问题# k6 F. f( W% E4 X
    4. 二叉树遍历(前序/中序/后序)/ G# m7 ~. }" H3 e& i( S
    5. 生成所有可能的组合(回溯算法)
    ' c" Y( [/ W/ W% P( ]
    % L' o' ^1 I7 S- \+ t. S% w5 W试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    9 小时前
  • 签到天数: 3111 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    8 R! f0 B+ g: |0 m7 l, p我推理机的核心算法应该是二叉树遍历的变种。
    & O2 o! g" F) f. D% p& e: D另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    5 ]2 K; d( T' c/ B+ z) YKey Idea of Recursion% M( H) b" B0 a4 g  b- b' u

    6 {5 c8 F. S7 F: i7 t2 WA recursive function solves a problem by:$ Q( R' w. s* h/ v/ L

    2 g" _: F* {8 Z9 R3 g( l    Breaking the problem into smaller instances of the same problem.
    ' L* t; I0 K; o6 C+ t7 Y. ?1 C3 \+ x" _# J5 T
        Solving the smallest instance directly (base case).1 m& Q' Y+ h0 u9 j1 @% K" M
    : Y8 o" D  G( P& e: h; p. j% ^
        Combining the results of smaller instances to solve the larger problem.! C. |3 z$ e- j  l& l
    & L5 f' A6 n/ \* J
    Components of a Recursive Function/ p% L; {+ e( L: l$ E6 s, I* l7 \
    " Y; J; {: P+ C8 g. J  T" Y' T+ k
        Base Case:
    5 _. q2 ]: f  H8 P# ]0 \, T( ?' U0 W
    , I  {+ o+ u$ T3 f( J( m* m        This is the simplest, smallest instance of the problem that can be solved directly without further recursion." A$ w7 o+ @% Z! F8 @  U
    * r& k; M& v& e- O" r" s9 R
            It acts as the stopping condition to prevent infinite recursion.
    0 J+ y/ t. F" Q/ V0 c  E6 r5 ^6 R  j. n
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    # O* F, e& W9 `9 `9 Z8 K* E$ X. ^8 K
        Recursive Case:
    1 _; W, B6 g9 w& Y
    ) w6 A4 s6 L& o6 m- w        This is where the function calls itself with a smaller or simpler version of the problem.' T' h) ?" b- F3 ^5 P

    + e' F  x, J( i# J        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' f6 h3 Q! C. Y# e4 X4 W2 R& s. S' s! _

    # D6 S2 v! c# e: _! w) yExample: Factorial Calculation" H- E9 G$ w4 t0 }+ J

    ( N7 V5 g! Q0 Q  e" T6 S+ JThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % n  A" X  w% m' A# q. e* Z* Q% F; ^# t, l4 I
        Base case: 0! = 1) ?' _; \2 i2 `* e
    " l; ~' ^/ Y9 |$ S6 p/ Q
        Recursive case: n! = n * (n-1)!
    8 I7 f9 Q' j5 u6 G9 i2 H8 U( Z) H( a
    Here’s how it looks in code (Python):& R3 [  X3 Y* W' b3 z
    python
    8 m$ M8 S# K; c0 S, G2 _2 q1 h, ?: y& A( M& N+ u3 ]8 ]$ _
    + ?& T, o6 J6 u, C
    def factorial(n):4 ?5 J: e( @0 W+ f& C- m* Z
        # Base case
    ) r; s# @0 R& p    if n == 0:) }. }  C- c) V4 P8 Z7 d+ h
            return 1
    4 b2 O9 T7 Q2 g, P6 @2 g' I. P    # Recursive case
    & {  e) G& F" f3 _    else:7 N. l8 O6 f" J4 P5 {3 g  r9 C
            return n * factorial(n - 1)1 z' D8 M5 |+ E6 w8 K$ {+ }% L

    8 E" x/ t/ H0 l5 M+ D# Example usage
    & w  |! l# B, }) i' C' _print(factorial(5))  # Output: 120
    2 b, w1 W5 |) _1 R- N4 [, ~8 X0 N
    How Recursion Works! `" d' b  Z" P3 h. S, e2 d
    ' t% j$ F: e# w/ o
        The function keeps calling itself with smaller inputs until it reaches the base case.
    " U1 D0 f' T! s
    . ]+ y) }$ W9 a- y$ v    Once the base case is reached, the function starts returning values back up the call stack.3 v5 [$ Y# |1 q. c; v% j6 x

    # f6 ]% |" N+ a# q1 d    These returned values are combined to produce the final result.9 {# q( x1 D+ b+ D/ e+ {, g

    & e1 V2 C* K9 I4 L% j7 c& lFor factorial(5):2 |! r8 f3 }+ [% {& k5 b! z

    % d8 M5 i9 s' M$ u% @9 [
    : L) l4 U: O- w. C9 h* V: Afactorial(5) = 5 * factorial(4)
    7 }8 {: y- Q/ S( T0 mfactorial(4) = 4 * factorial(3)+ H2 A* Q0 z) |  j( L" _, j7 T
    factorial(3) = 3 * factorial(2)
    - A+ a! O5 `% F8 m* ifactorial(2) = 2 * factorial(1)( j' U: I# O; S2 I6 G9 O- y
    factorial(1) = 1 * factorial(0)
    ' D+ ]% P+ |% Tfactorial(0) = 1  # Base case
    5 T: {1 G3 W0 M: n' z% ?' O4 Y/ a0 S' b; e  f2 K/ S9 N
    Then, the results are combined:& z  ~. C0 H5 n5 l4 z4 W# X3 M2 k4 T
    9 v) Y5 j7 C# n4 C8 Q
    6 d" |: p/ T( O" b$ L/ U% i- x
    factorial(1) = 1 * 1 = 1
    1 u  y0 P6 y: f/ \6 ~factorial(2) = 2 * 1 = 2; Q2 Y: c7 V7 e% ?; r2 H, E7 M" P
    factorial(3) = 3 * 2 = 6
    : o! |+ I4 l: i& Y( w( mfactorial(4) = 4 * 6 = 24
    1 i  x4 G* v7 P- Y4 afactorial(5) = 5 * 24 = 120! ?  D! O( h5 [# r# q
    # U! ^; J6 ~/ N( f' E/ \
    Advantages of Recursion- Z+ t. p( l' B7 S  h5 h7 C' O
    . o$ s" e$ _& [$ ?# r
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ \( r' v# O. }0 d

      c$ a: g1 H+ h- P4 u8 [    Readability: Recursive code can be more readable and concise compared to iterative solutions.1 `( k2 q/ Z+ F' k/ f

    , B7 {3 z# x! m  [* eDisadvantages of Recursion& Q' k5 h8 H1 J" E

    : K! Z( {8 Z% X) k$ O) d7 q, |    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    * Q. q: ^$ ^, U1 A- Z
    ! J0 O  }, J$ ~# I    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    7 h" k, k2 _0 G) W9 {' D  h
    1 w' H9 H/ r. ~+ _/ }When to Use Recursion
    + s9 _$ m( j$ A* F* y% c, _3 \- B  Z: a* [
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).( H/ m( s! S0 H. J( {9 C1 T, H

    9 O7 m8 \8 D2 Y  r' N    Problems with a clear base case and recursive case.
    5 x' V: R* A$ t! q. R4 R$ D% B- F# h1 Z  X" y' S
    Example: Fibonacci Sequence
    0 b7 N0 r6 x" {* J2 l7 x- b. o0 `
    : d* q  [" ^# V: U4 w  NThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    6 C9 p: L  J3 ^% Z2 h
    * L7 M; m- @2 O) [  M9 e. }    Base case: fib(0) = 0, fib(1) = 11 R$ v; e3 v. f2 e

    # F: q- R4 G. J. x    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 w& [/ H; T4 c' q; f) C! h. p0 w# {; O
    python
    % ]  B4 t0 U. K) U8 t* r1 t6 e5 d- b: U% }7 |1 `% u
    . S# g+ N, x  p% A" F( s7 H2 Y# _& g
    def fibonacci(n):
    ( I1 r4 a& Y+ v" s' \7 A7 H    # Base cases
    3 k9 T& T3 w) r% @' Z$ u) H    if n == 0:0 ]  }2 I5 m: T' \  g+ d: `3 C
            return 0
    ; K6 y# U, x; P# a    elif n == 1:
    ' `# V& h, ~9 t" ^1 Z8 p5 x: ~        return 1
    ( a7 n' N7 v1 ~  K  G  k    # Recursive case: r/ n7 a; t; G& d/ C/ X
        else:9 w" n( C# s+ S7 r# P
            return fibonacci(n - 1) + fibonacci(n - 2)
    7 h* t: W% Z7 I+ n7 V9 P7 S. L
      ]" k3 e" X1 l) l$ h# Example usage$ T- ?# g; R2 N6 w
    print(fibonacci(6))  # Output: 8
    1 i3 U/ h. q  W% X" |# {5 E" _$ B2 h. }
    Tail Recursion4 T. f- U" u1 }; ~
    & T! x# B2 i: `+ n* g
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    7 _+ _2 o4 ^3 v' r+ x6 s9 j7 L6 ?7 |8 o4 y. s# I
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-7 16:46 , Processed in 0.035513 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表