设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1231|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . h! a' d2 z: I8 d4 D1 S* I" h, y# R
    解释的不错
    5 Q- J, P- ~0 `: Z  p
    ' r7 @2 O  ^4 s7 [6 z# z2 u递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。) K* _3 \; O6 _+ Z
    ( V7 l2 H  u- k5 t
    关键要素
    / a5 X2 U" ~! y5 q" U" M1. **基线条件(Base Case)**
    # K* p# Y% W2 z: S   - 递归终止的条件,防止无限循环
    2 D) N" `/ \/ X$ v: \/ P   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1) s7 @  l: @) u$ H' Y) _- o

    5 y5 R7 c' m4 x5 E2 v" \/ n( X2. **递归条件(Recursive Case)**
    . Z* N% y8 M# M3 \   - 将原问题分解为更小的子问题
    ! \% C4 S/ k' D   - 例如:n! = n × (n-1)!
    7 \) a7 B9 b. T0 `, k% h6 d
    $ G/ B! ^7 R* U( O 经典示例:计算阶乘
    # G: h+ D# }# f3 G$ ]python
    . k& S1 d) i# V6 k; adef factorial(n):0 `1 k: V( g& w
        if n == 0:        # 基线条件1 p* q1 h  y# q
            return 10 f5 u% @8 Z$ y- Y
        else:             # 递归条件% a2 v7 P- f0 j) M: ?. A. X# n
            return n * factorial(n-1)) Q: c( `+ T& h8 ]* T- z% F
    执行过程(以计算 3! 为例):
    9 {/ e: |% f# e- {, R/ j  y& Pfactorial(3)' I( h/ |. b% u) t; e- u
    3 * factorial(2)
    0 }: ^( z) m6 G/ l. E3 * (2 * factorial(1))
    ; p: e$ |4 s  N& b* F( ]- {3 * (2 * (1 * factorial(0)))( g, F+ f; F" P0 F4 G4 m$ S
    3 * (2 * (1 * 1)) = 6* l" l# j" @5 C6 L0 k

    ( O! m) h/ t8 u& o; g  ] 递归思维要点
    8 x' Q) M9 y+ f' v+ j3 D$ N7 j6 r1. **信任递归**:假设子问题已经解决,专注当前层逻辑/ F, e# O7 M9 p" ^% d4 h
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间). C% ~9 J1 g$ C5 g& ^2 N
    3. **递推过程**:不断向下分解问题(递)* P5 e0 h% B' I+ t; f0 H
    4. **回溯过程**:组合子问题结果返回(归)5 O/ p5 _# f, O) z8 K

    1 o/ G7 s' {& L" m. C) F1 ` 注意事项" j, r4 u; y% j& @, z1 i: ~
    必须要有终止条件1 Q- R+ c, B3 w4 ?
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)& e0 y  r! K; a9 e. U* x8 t$ a, }
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . ?% z6 p! R% I, q' Y  i尾递归优化可以提升效率(但Python不支持)( P6 x% Y+ q2 g7 R
    7 b$ o; g. V3 E
    递归 vs 迭代5 r: n4 c6 E4 H
    |          | 递归                          | 迭代               |
    3 r2 `  X/ B- s- [|----------|-----------------------------|------------------|
    . P7 i; Q& p" |) e& `& J| 实现方式    | 函数自调用                        | 循环结构            |  ^4 P) ?; R/ y0 u2 ]& y! |
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |7 [) ]1 i( ?/ W$ }. O4 K! l3 ]! Y3 Z
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' h3 U" {$ i0 S4 s0 w8 u
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |0 V- ?# i) Q& |9 |1 C' Z

    8 l$ J* H" T/ {' I2 ? 经典递归应用场景( `4 m2 t0 s9 }% y3 q' y
    1. 文件系统遍历(目录树结构)
    0 h; V: V" l0 v0 ^( {" X9 q# c2. 快速排序/归并排序算法
    " c$ _, J9 d! o) j; L3. 汉诺塔问题. `4 F% f/ A3 N' F
    4. 二叉树遍历(前序/中序/后序)
    1 m4 R% `' G) @# B8 Y/ v: j  d+ M) O5. 生成所有可能的组合(回溯算法)/ V. o5 L% _8 i! f5 P" r
    3 C) h, Z: v  g3 B
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    9 小时前
  • 签到天数: 3104 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    $ x" e, S( j  m! C$ W5 J我推理机的核心算法应该是二叉树遍历的变种。
    0 N& i- F5 X/ U7 }0 ]& N8 Z( M另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:/ o7 |& H: L1 U0 E7 d
    Key Idea of Recursion% W% T. o3 `6 O7 V8 q) p+ o

    8 K7 E/ ], [/ c) B; d$ J, h! ^; JA recursive function solves a problem by:
    . O: W8 t, w3 H& n9 r, A
    0 ?/ I1 b: n0 S6 Z  U    Breaking the problem into smaller instances of the same problem.
    4 }6 f4 ]( s1 f! |$ y/ A% ]
    % F$ D- U9 e6 E  K  ^3 r    Solving the smallest instance directly (base case).6 c$ Q. D% q8 c
    ' `- }4 s6 }8 K& F
        Combining the results of smaller instances to solve the larger problem.
    ' U4 Z! p& k4 v5 J" ~4 z+ F* |9 H1 K
    Components of a Recursive Function
    : I) f" M; \& R: i1 I; u! i& b7 Q; v: D. c" q' C, v; `5 a
        Base Case:# |- s7 n- j- p
    3 U6 Q9 A4 y# M5 s! T/ y- S
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    7 p$ I" b$ ~4 e" |0 A+ D
    0 v" R& o4 J9 f# X& D        It acts as the stopping condition to prevent infinite recursion.
    9 o& p6 s% G5 g2 c# p! Z# ?8 |* [0 V- e$ ?3 i1 F2 }
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* O6 C. @8 m: A$ P
    9 Q: L3 A9 c" l
        Recursive Case:' M* a: C% K8 M
    # y- m% o- X4 ?: s( N
            This is where the function calls itself with a smaller or simpler version of the problem.6 ~7 {2 ~' x, @: U! b+ g" F: P# B

    6 ~+ V8 h( w" [6 v; t- K# s4 l        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: A9 R7 \( g2 M0 V9 m. T. I# [
    1 M7 G+ q$ v3 H
    Example: Factorial Calculation
    # Z- M$ Q* Z3 f, E! D' g. e+ i3 ?5 O5 Z. L( _; G
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    $ S7 j* q$ j5 I" B) `! a3 e6 t: f: \1 ~) P3 w% ^  F" x2 b
        Base case: 0! = 1- ?" L8 a+ C, |6 K5 P# R7 P$ [$ q

    6 A0 S* G+ U2 g    Recursive case: n! = n * (n-1)!
    6 A4 }# I: i) U- @
    * i0 \$ p' \, CHere’s how it looks in code (Python):# v8 c) z- _9 {
    python
    6 u7 B: S9 G9 S' [
    * V" Z& f0 B  A  ~. V+ C: S5 n  u5 \$ @5 H  S: v4 Q' n- m6 K
    def factorial(n):; _3 y0 P- z+ [$ C
        # Base case9 W; @& V3 {  R4 H2 G
        if n == 0:
    + S) Z# ?+ z) v# Z; f5 ^8 F        return 1- \' f8 X  u! a& f
        # Recursive case3 F' C+ O0 r( B- Z: x
        else:8 d7 w' p$ S7 p3 ]
            return n * factorial(n - 1)  R; n2 _8 s; U7 I
    * i3 J3 w- b  m
    # Example usage
    # L% d0 O& W: N4 Tprint(factorial(5))  # Output: 120
    * c1 X1 q: H" W! V$ b
    " D( N" W2 y) r& BHow Recursion Works
    ( f+ \* M( l& q' o4 k( a" u7 b9 a+ x* ~0 g
        The function keeps calling itself with smaller inputs until it reaches the base case.
    # Y& U- ^2 z7 E% x+ K% I& C% E: H
    ' u. [4 o2 M  A1 d    Once the base case is reached, the function starts returning values back up the call stack.
    ) |+ }8 Q. d2 W- Z  `$ [1 A  W) O0 x
    7 W# f; b# n! \- P0 C    These returned values are combined to produce the final result.
    . Y+ x9 @" n" X) x3 {5 d
    ) L# D: [! M& _# h! q7 dFor factorial(5):
    $ l2 r( ]0 R1 I' x8 t+ v. v% L% A0 U  u) y4 _6 f& a1 _

    ( B. m8 N! k5 H+ [factorial(5) = 5 * factorial(4)
    5 T7 d+ O, S8 u+ z# v8 Xfactorial(4) = 4 * factorial(3)0 V& X" O0 E/ K- n7 k1 N
    factorial(3) = 3 * factorial(2)3 g- Y7 d9 G7 A
    factorial(2) = 2 * factorial(1)" s, y! J. n- S2 q6 a9 ~
    factorial(1) = 1 * factorial(0)
    2 n9 B# V. E- l2 zfactorial(0) = 1  # Base case7 r5 m2 \, n$ X% C$ }) u

    & a0 ^- q9 L" Y$ m' }& @Then, the results are combined:
    ) t) n2 L. j5 F7 s9 z: d( H4 g& c4 S/ K9 K, A

    0 `/ x1 k/ ^: t# x0 D/ m( |factorial(1) = 1 * 1 = 1
    5 R. D) B' B- [9 X; ~5 afactorial(2) = 2 * 1 = 2
    ' K6 X# G# q, Cfactorial(3) = 3 * 2 = 6
    & L1 l, I% ]' g& i6 Y- yfactorial(4) = 4 * 6 = 24
    2 }3 C1 p6 p- e. o8 ]5 n. w- ufactorial(5) = 5 * 24 = 1207 ]' D3 o, y4 a: E; L( M$ s  i
    0 i, R/ n" S4 ^6 t# Z
    Advantages of Recursion4 }7 b* A: M- P/ d% e

    ! u, g1 F9 T- S7 R5 D' ?    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    + v8 m$ P/ \  z0 Q- N& Z* L4 `* D9 F& T. G, a5 i
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % }  _4 @4 q, x
    2 ^( u; m; d6 f% v2 |& ^Disadvantages of Recursion
    , p' ?" R/ ~+ @3 K$ }+ Z
    6 W9 i. x' L& K. V$ ~; y) s    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ; y7 B3 P! _5 `" }4 V+ \; `+ x
    : v8 G$ e7 ^( Y: ^* v3 x6 O3 E    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. e' v5 F0 U9 D" @8 g, ~* {

    # o# j3 @/ [* B% GWhen to Use Recursion  a) F7 o( ?# g0 o/ [- \

    3 |& z" \2 Q9 i    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ( m* I8 n9 j3 D. ^6 _
    - z. w" r/ X2 H' |7 f4 D    Problems with a clear base case and recursive case.
    3 _, w+ Y2 M& ?* Y+ g" l" q6 ^8 ]7 V" a$ q. P7 m! l7 y+ j. K
    Example: Fibonacci Sequence' R9 `4 u% Y' m4 `' r
    / U/ T. {; U5 s/ q& W+ N9 R3 ^
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:9 b) ]$ W9 c7 F* T. A" }
    1 I# O# T) w& \& ]4 X* |# X
        Base case: fib(0) = 0, fib(1) = 1' g6 m" Q, c. a" \' A

    # W3 ~* ^+ [. L' T( g2 F    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    % t1 D* L" z. T1 v; ^" F: V! J
    9 P2 }2 d, r. A7 Q4 R" Hpython
    ( |3 L9 Q2 d. W- J, `4 K7 O, o. L0 X0 z' ^0 h' t5 a& M
    : @# d- t1 b: Y8 X0 j2 g2 Y
    def fibonacci(n):8 g  t8 n% q. h% l! E3 j6 X
        # Base cases3 X; w' H; r: t2 t
        if n == 0:
    3 D# P& v+ M7 v7 s7 l4 _        return 0
    % q: C4 E: S1 E* B: i# A7 y5 S    elif n == 1:8 W& [, F$ ^; B2 b' {& n
            return 13 N( |! |4 h. c# s! I
        # Recursive case9 F/ B7 C4 u7 `
        else:
    3 l3 D1 ?( o; l6 Q) l) {        return fibonacci(n - 1) + fibonacci(n - 2)
    ; _- z  S6 N$ @, c8 g* A
    ( o% _9 |5 d5 M, n/ E# Example usage. O/ S5 Y7 X* [6 l- ~7 L* `: r) N
    print(fibonacci(6))  # Output: 8( s( Q4 \# `0 ~3 f  c6 {

    ! D$ O" [* n2 Y( J8 d5 nTail Recursion) |8 R2 q  @0 o, f% Y$ b
    2 O9 b5 F, `. `6 o, i( ?! P
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)./ y6 S3 P- e5 V/ ^9 i

    6 M# b( @7 ]: _$ K$ G9 ~3 XIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-29 16:37 , Processed in 0.032143 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表