设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1208|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 5 q. c( v( F, R/ D/ u, ~5 b$ }5 O

    / C+ A  h+ j$ O3 G解释的不错8 a! j) h5 K4 `

    7 b$ N: u: t, }* r2 E递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; r; T- E, ?0 @7 V! @

    ) S# a. g* e3 ?. i 关键要素/ W3 ]2 H: i$ T' o. S" k' g
    1. **基线条件(Base Case)**
    " l5 W- |% p' ^. r   - 递归终止的条件,防止无限循环1 |! L& Y$ c2 |9 k' d( B. w
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , }) ?' g6 @& I- l, @- o
    4 D! J- M) g6 t% s& I& `2. **递归条件(Recursive Case)**. @3 `! P& T3 _
       - 将原问题分解为更小的子问题
    & t! u1 j* V3 B% L: l5 w. k   - 例如:n! = n × (n-1)!
    / H' u5 K7 O6 a3 W" x, w' X9 v$ x9 N9 H9 T
    经典示例:计算阶乘
    7 W( j. C$ G! ~" gpython' a) ^7 b4 o( m
    def factorial(n):; q# N& f# k$ ~  \- W
        if n == 0:        # 基线条件
    3 \0 m$ v& |  G1 i        return 1
    . l* c( V; o$ E! Z) ^6 F    else:             # 递归条件! r5 K4 k- Q7 f
            return n * factorial(n-1)
    4 z8 j; h* p  ~+ _, e: z  q执行过程(以计算 3! 为例):
    , b7 P7 Q# I/ _factorial(3)$ @$ Y6 i; J. @  H$ E$ L6 R# i
    3 * factorial(2)
    9 ~; n1 X% f& q& C3 * (2 * factorial(1))! N$ R& h. G1 e% U
    3 * (2 * (1 * factorial(0)))% U( V( [7 \, w+ w% A
    3 * (2 * (1 * 1)) = 6  o9 J& n' N1 w; F
    + a; N' h* i  d8 s5 s
    递归思维要点
    ( W  w9 l% a8 W- B1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . a7 y' O( P, n" s2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
      m8 }, s' H% y; G4 d8 S3. **递推过程**:不断向下分解问题(递)" @2 b4 e* ?* U$ Y! C+ d# @& y1 v
    4. **回溯过程**:组合子问题结果返回(归)
    ' z5 F& m  T$ j- y# u5 N% _
    3 V' ?7 w5 B  e 注意事项% L9 U7 |& X6 A3 E9 c5 e
    必须要有终止条件
    # {! b6 b5 K2 v0 k# H. y8 G7 z递归深度过大可能导致栈溢出(Python默认递归深度约1000层)  m& S0 \) [# ?' _) X
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    % c- K  v6 ^, c9 x+ k  `尾递归优化可以提升效率(但Python不支持)
    5 x1 c& s2 g" T' @. X8 S0 w$ v( u* j9 ~
    递归 vs 迭代
    ) r2 w2 S/ I$ P' g$ d( s|          | 递归                          | 迭代               |% h, G2 S0 D' K
    |----------|-----------------------------|------------------|
    7 K# P% Y7 E! v' x| 实现方式    | 函数自调用                        | 循环结构            |! R7 Q4 C. V% Z: b8 O
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; k' f8 p( k6 M
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |% Z. l0 ^! q' I  V4 m
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |' K4 E! |' X7 r- m6 H4 N! C
    $ h4 ?  u$ s! E" ]1 Z- }* U% i! Y
    经典递归应用场景3 @3 \9 B- e: Q. u3 s1 I, T- S
    1. 文件系统遍历(目录树结构)
    ( }. X2 c# c5 R- t2. 快速排序/归并排序算法4 M3 c8 }5 J; O. j
    3. 汉诺塔问题
    5 n" }+ S& d& z2 {3 r. r4. 二叉树遍历(前序/中序/后序)# \2 U! z' R: O' C6 C8 b
    5. 生成所有可能的组合(回溯算法)
    $ b( @+ s1 G" @6 t* z% J; V* Y
    6 h7 d& K: V' ?+ q2 I1 r试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    前天 06:41
  • 签到天数: 3102 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,2 ]1 C- F) J& f' q: t- T, M
    我推理机的核心算法应该是二叉树遍历的变种。
    ) z/ v  K! `5 M1 D& y另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:4 p: e' c9 o+ e8 }  A3 X
    Key Idea of Recursion
    ! }8 Y* g- v! g6 c- }& _7 b( q$ S1 u' Z. w+ e  Q. E9 }
    A recursive function solves a problem by:
    1 E' x( S- H! ~1 m" q% B6 |  W: l: Y! d: d$ l
        Breaking the problem into smaller instances of the same problem.* f9 z# q) w/ q
    2 |: B. f8 a9 M; [4 k
        Solving the smallest instance directly (base case).
    # Q+ N9 e$ O0 \6 d6 l) @
    * F+ c% ]( G5 s    Combining the results of smaller instances to solve the larger problem.
    ! [/ J/ G- x/ c* @+ W5 K9 Y7 H8 |% o3 U! E9 h) _# B
    Components of a Recursive Function
    1 u7 x" R* w! ^/ b. j* J2 ~# Q7 q6 s7 P8 y# Z1 Q
        Base Case:+ ?) G5 s6 o+ w

    2 f, {, O" }4 {( N        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  }/ A+ ^/ }* W) |9 R, V
    " K' ~+ c; K; p
            It acts as the stopping condition to prevent infinite recursion.
    % l) N! s; q: k9 x5 t, K
    + V+ M; q/ k& `        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* ^5 F0 `) Q) B; s8 r

    " K6 t9 O# A- ~  G4 |" J& e    Recursive Case:
    9 F3 H3 Z2 H" B
    6 l$ X" [  k) W. A        This is where the function calls itself with a smaller or simpler version of the problem.
    2 ]/ x2 \: D8 y( T! j/ B6 S/ u4 E, |4 W# t3 M% E! Y
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).  R# T* |  q6 \2 Z  s8 u& G
    2 c/ B! ]* _4 d( H
    Example: Factorial Calculation1 o! Q! _& ?% W& s3 A/ m
      y* ^2 t. m" x, ]1 y, g! r3 H
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % X$ w7 j0 F2 f* |. W2 I
    2 p$ w, x' f, C    Base case: 0! = 1
    , F" j5 W! p6 O$ }0 c/ j+ r$ m4 `. a5 T: g; F
        Recursive case: n! = n * (n-1)!
    0 x/ e  @1 I1 W% \4 P& U/ I) q2 W, O8 n! }% d
    Here’s how it looks in code (Python):
    ( P/ J$ _3 j4 @% p6 Lpython
    0 J! t% A! g) H8 [0 Q
    $ E" D6 g( @" b8 W! @4 Y
    . m% z& m' f, j# I0 v/ Fdef factorial(n):; X8 d4 ]$ ^9 a# j- ?& c
        # Base case
    ! ?& m# V: q3 T. K( [    if n == 0:
    9 l4 `7 l  E' Y1 v        return 1
    5 m0 v  m8 @  u. U1 W3 J    # Recursive case
    * G; B- ~! Y! ?9 H. l    else:
    ) H- d" W, u! N  G: _, g( O        return n * factorial(n - 1)* i. B- l* Z/ E( R) z& w
    . {1 h* v% K, l  D! @! E
    # Example usage
    : B8 c: N! \3 O/ h0 M: Zprint(factorial(5))  # Output: 120
    3 ~+ U3 {7 ]9 z5 R
    + }, Y9 `% K6 N0 oHow Recursion Works
    9 h+ z" M3 P( j( D7 m4 m3 I& |( J5 m1 m* X9 N
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ( c: ]3 j$ v  p: I  S
    1 _, U& _* [& v/ r$ b0 Q9 r    Once the base case is reached, the function starts returning values back up the call stack.9 U- I% G+ w# j1 x
    9 f0 H1 [) O& s2 C+ k& `2 k. z
        These returned values are combined to produce the final result.7 i0 z1 c: q% B' w& _$ d  i: ^

    ' f. t# Q- G8 a5 @8 iFor factorial(5):6 q6 h+ u1 ^! N( G
    $ t$ K. `0 I2 `) \7 T- Z* X
    2 `4 M6 R* M! R, `
    factorial(5) = 5 * factorial(4)
    ) G* O- |9 k3 Z7 k7 @factorial(4) = 4 * factorial(3), h7 Q/ o, H  M' A1 x' P
    factorial(3) = 3 * factorial(2), ?" o# K0 A4 o( i+ k
    factorial(2) = 2 * factorial(1)
    $ W/ G7 G& h- m& n. d) v% \factorial(1) = 1 * factorial(0)
    8 w0 R# B" o$ Ofactorial(0) = 1  # Base case
    $ F* |3 @9 f$ x  B
    ; ?5 g' }% C) u! w" h( x6 f& [Then, the results are combined:$ `' x% ?- Y% e; @  b4 J1 K  l
    6 c( h$ k7 ]$ f$ R( V* [8 R
    ; q7 L3 v' Z9 }, F3 E! ?6 `& r- k
    factorial(1) = 1 * 1 = 1
    # h3 A0 n1 t0 ]# bfactorial(2) = 2 * 1 = 2
    2 x' q+ N: Y: Wfactorial(3) = 3 * 2 = 6) W: b2 ^& ]" R( L. v% C; B
    factorial(4) = 4 * 6 = 24
    % k: l5 k2 X$ A  _5 k: A, K+ M, xfactorial(5) = 5 * 24 = 120( x+ I# @( F0 E% p  k

    0 M# M0 v9 a9 l7 Y0 a) Y( r  FAdvantages of Recursion+ q8 _* X. f) O, W
    3 \3 V( y7 i/ v3 T& f
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    0 I% v. `3 R  D- U7 \& r" i9 x
    5 o3 c$ n8 K4 h* Z) q    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 G& s0 M  ]  Z% s3 P- h+ z. j  M$ q
    Disadvantages of Recursion
    : q# c2 ~8 O5 Y9 w' r; J6 V8 @9 x! Z1 Y- n5 b
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    1 M  N# {% e- M0 G
    8 d9 m/ B. c2 P    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 g/ A5 e) m" f7 B' g' ~

    6 R" m6 F& r  H. h+ t" P1 vWhen to Use Recursion
    ' s  S0 W. U. o5 i
    ; j; }) O; a" I; G( ~7 v    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).& l" _" r" D+ b) N

    / S: Y8 u% [2 C. |. }) c) {$ B    Problems with a clear base case and recursive case.# Q: F4 `, ~+ ^7 p: c. M1 B
    ( L) n) T- l+ K, B/ I: R* P
    Example: Fibonacci Sequence
    ' q+ k+ u1 k  ~, E; w- e
    ) [0 u9 p5 a5 ?0 YThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    / c- v+ v7 d5 I) o' n/ i0 Z1 M' d$ g  t0 i  [4 A- a& m3 _) D1 u
        Base case: fib(0) = 0, fib(1) = 1
    4 W8 ?, W+ c3 S5 z2 l& [* Z; X' q$ o! v" z; w, T4 L; N& @
        Recursive case: fib(n) = fib(n-1) + fib(n-2); P% `1 n$ K1 g; z% }) J7 m

    ! f6 c' U( a, d* V2 w6 X! g. z+ A  vpython
    % w( i& b* o2 |2 [  U0 r' q4 Q2 p& H5 w/ D" ]3 Y3 ^# q

    ' Q) e3 y- A+ \6 _& Adef fibonacci(n):9 M9 R8 ?7 a1 w
        # Base cases% K) T% b9 a6 o
        if n == 0:' x9 o+ I. K5 i: R7 c. \9 ~- M
            return 0
    ) E* S: _; V; O  |    elif n == 1:
    * o0 ?6 ~6 V1 p  C  V) O* ?        return 1
    + R1 p7 d* {1 n& W1 p- P$ t! x& h* a1 j    # Recursive case
    3 B" x9 D8 P. `  C; x  O+ e  q    else:
    + M7 T# S! C5 {% v+ @1 o        return fibonacci(n - 1) + fibonacci(n - 2)
    6 V- h) t* D# a2 Z% U' o" K7 I& b. H
    # Example usage. ~- E: L* f, ~5 N
    print(fibonacci(6))  # Output: 8
    / `3 P% V' [( [0 e) N# F5 [. e, w% j" B
    Tail Recursion6 Z+ Y5 k& v2 n6 I9 V! u4 c: b
    9 j- I( c; S9 @  @! L2 }/ B
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).4 a. d3 [2 x) w2 y

    ' g9 b) U3 x, f: F, x: T/ f! [6 U7 WIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-28 03:05 , Processed in 0.041916 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表