设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1998|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    4 ?/ w/ u$ ^7 F0 a& Y7 ~/ F6 ~/ o& r$ m2 o( b
    解释的不错
    7 [0 K- |+ g$ T, R) g" S: O3 f  `! G) @
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。  ~: D. `; _7 j- u( r: P
    ( d% j' Y; q8 j" m5 @# x* L
    关键要素8 I( i1 J  w$ i; d6 s+ f
    1. **基线条件(Base Case)**/ c) d$ d( e( b8 \
       - 递归终止的条件,防止无限循环7 N( H, S) w' U! T
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1) H" m; \& Z1 J. A0 v

    , I' W  {3 J& u2. **递归条件(Recursive Case)**
    / }4 i+ H+ z  T0 L5 i# y   - 将原问题分解为更小的子问题
    7 A: i/ R6 H3 N+ U1 p   - 例如:n! = n × (n-1)!
    & m% O; x- ~% m9 P$ \% d3 w2 J" I. ^+ _6 S$ s0 ^9 @3 M
    经典示例:计算阶乘3 B1 I9 @& ]1 z4 n0 b
    python
    9 q9 R1 R; N" p$ W0 L: y5 `! idef factorial(n):* ?) A( w) y" ~  ?# W- b
        if n == 0:        # 基线条件( C7 B( s9 s6 v. _
            return 1
    6 x9 G  }) e3 n. P    else:             # 递归条件
    0 ~5 M8 z/ |* r9 Y  r        return n * factorial(n-1)2 U( t2 A; a* J( H+ t
    执行过程(以计算 3! 为例):
    ( T) W0 v  H/ z% nfactorial(3). x+ K, d6 o, M3 F) y$ A
    3 * factorial(2)- f# I9 G' j6 {: @1 l$ F5 ~
    3 * (2 * factorial(1))
    7 C5 y% U4 ^0 }. K$ X- u3 * (2 * (1 * factorial(0)))
    0 ^2 }8 i( I: Z3 * (2 * (1 * 1)) = 6
    4 M* j2 S% W- E* E' S. e7 m% m
    0 o4 ?: p5 T# o* b$ ]+ s: f$ @) ~; r 递归思维要点
    # t- J4 Q+ [8 W* t) n1. **信任递归**:假设子问题已经解决,专注当前层逻辑) p0 O2 E2 b# n6 _; n3 C  `
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . V0 \' m0 K& b" T1 ~3. **递推过程**:不断向下分解问题(递)
    ( Y. t; q* m7 J  V- {4. **回溯过程**:组合子问题结果返回(归)' V( @) _7 O* u: C
    ; t$ n; |+ Y0 K) z1 x$ j8 l# ^
    注意事项! a1 m- A1 j0 l  q5 o8 z+ P
    必须要有终止条件
    0 c0 S8 o/ }$ j" [6 y4 o$ g% r递归深度过大可能导致栈溢出(Python默认递归深度约1000层): }: d6 y5 q. Q# Q& ]  K; V
    某些问题用递归更直观(如树遍历),但效率可能不如迭代$ S8 U( m' F- m
    尾递归优化可以提升效率(但Python不支持)
    9 Z" r, Y6 \+ C4 G0 l$ _7 ?- x; w9 w! I2 Z# ]. p* S) u& E
    递归 vs 迭代
    - Z" t. U5 a$ I3 \|          | 递归                          | 迭代               |; _6 ~. U6 u7 h( H# ~) c# A
    |----------|-----------------------------|------------------|
    6 q; I- N8 s. u( r( O( E# s| 实现方式    | 函数自调用                        | 循环结构            |
    1 f* w" L+ i1 U$ C| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |" Y5 a* x/ k7 J  w7 J8 }
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" }& P1 T0 d+ ^7 S5 c
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |4 n6 S7 j5 R+ M- B: _  J

    & f/ O  W& H6 D4 k% e 经典递归应用场景+ K* Z7 D3 g/ F. y/ O  C+ H
    1. 文件系统遍历(目录树结构)/ F, N+ M3 y* z( _! T
    2. 快速排序/归并排序算法; P* X/ i+ A8 Q" \4 M; K8 L
    3. 汉诺塔问题5 ~) y# b. m3 G0 \5 V8 y
    4. 二叉树遍历(前序/中序/后序)  Z2 c* w: N* Z
    5. 生成所有可能的组合(回溯算法)
    8 g8 \/ s1 e1 M' w: f( M% i  w2 ~* S7 F
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    4 小时前
  • 签到天数: 3161 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. @" A. j+ L1 j  i. o) U
    我推理机的核心算法应该是二叉树遍历的变种。
    / g/ j9 L% G; [" \3 S! s( u另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' }: }* j4 M  q) `
    Key Idea of Recursion
    / F8 y) ]1 }9 U& V8 h, o6 B
    ( h5 }4 o; H: rA recursive function solves a problem by:" f: ?+ ?* {& T7 L; z( J$ h
    $ Z4 ]' p' z8 |) F1 e
        Breaking the problem into smaller instances of the same problem.
    : i& S& [3 @) S5 e/ Q; V5 ?" N5 ^; k' W0 D! H9 Z' }+ w
        Solving the smallest instance directly (base case).6 t; ~3 Z! {; s2 f2 m

    & v. `; l1 H8 ^6 I7 x* z, ]( C$ ~    Combining the results of smaller instances to solve the larger problem.' i" \" H$ T  b' L) j4 i+ D
    : X( }2 q2 q! U; I4 K
    Components of a Recursive Function) a) H; j- s: s1 _

    * i% J9 y, A. c/ j$ {6 o3 t8 I    Base Case:7 X5 ]% t: |. F. J2 M7 W: t- T
    ( W3 L* l, @. F( x) S9 S
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    7 t* }, m; C) a# |7 ^: @' V1 `- e4 e! r
            It acts as the stopping condition to prevent infinite recursion.
    4 [" D% M; l* L7 I  Z) A3 A! \9 b- A! K/ J
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.# D' E: _5 m& ^

    % X& \3 z& }+ h( y  X8 X4 Q    Recursive Case:
    8 E8 z. t, l! A. q* `1 u$ M8 w; G# N/ j6 Y- h$ ]. G. P3 D
            This is where the function calls itself with a smaller or simpler version of the problem.
    2 M8 G! N3 `# K, S- Y# r6 r* d# P8 ]. T2 F5 Z4 [5 ?: n
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    0 a% u: j3 V3 C$ `# }
    0 b5 c- R3 p' n4 p9 \3 |. YExample: Factorial Calculation
    / w( o! u  A& s% D4 P9 K1 D* l3 G
    , d1 x# W& Q" b+ A% tThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 s. A3 k$ Q+ m8 Q" o+ z
    ( b6 A% X; G% k! o4 G
        Base case: 0! = 1& o, O% C. ~. K. v. L
    , F+ Y( r5 s$ j' x( k" k3 L. k3 P, N
        Recursive case: n! = n * (n-1)!
    * {* ~: N; f( K0 u  x) u
    1 v3 E) R5 f6 Y9 w( f4 yHere’s how it looks in code (Python):/ Q8 l& A. ]) G$ c! b+ X( b
    python
    0 Q! S4 B) ~0 l9 Z" Q  g" V
    % m  g; m! L3 _) E# N! a' ?' g, F# t( [2 {& t! ~
    def factorial(n):) a6 l5 C/ k# T8 T" v0 V+ g5 i* Y8 a
        # Base case8 r6 l1 L: N" O' h5 R
        if n == 0:
    . X4 ?, G2 M' p, V        return 1- p# ^4 k& J) m
        # Recursive case/ c$ o/ t# f* @* B. b6 c% L
        else:& b6 h& l8 r9 ?& R1 h
            return n * factorial(n - 1)- |" O: l, a4 z" K/ ^  W8 o$ H
    ' l+ u/ g9 s2 H7 E. A
    # Example usage' \) f8 S6 y- C( Y: r" e' r
    print(factorial(5))  # Output: 120& _- P7 D7 R1 `+ k& W( j
    9 m  R; i: e/ f
    How Recursion Works
    : g1 X: n2 w1 ^" z) y" g3 r8 t+ q, k5 M% t/ f! W) l. V
        The function keeps calling itself with smaller inputs until it reaches the base case.% g5 u8 r& M9 G  f. \4 U
    1 q1 ]( g' l# D7 g1 S
        Once the base case is reached, the function starts returning values back up the call stack.5 G3 u; y  k0 x, |
    2 T% c  b: d3 H' z4 J. L0 m7 |/ J! i
        These returned values are combined to produce the final result.9 S0 n) K% T) O
    ( @1 a- d4 Z7 {3 m0 k
    For factorial(5):
      q$ }/ z4 B* M: v0 @6 g0 f" r$ ~2 J2 \8 I6 N8 n6 B6 O
    # I' J% h+ \! }) J- N6 q  Y8 i
    factorial(5) = 5 * factorial(4)5 w* M' ?8 \( i9 A* Z
    factorial(4) = 4 * factorial(3)
    , }6 g5 R- ^6 K: f" D* efactorial(3) = 3 * factorial(2). u- a' E# E# V
    factorial(2) = 2 * factorial(1)- U+ k$ D2 h/ L
    factorial(1) = 1 * factorial(0)& V/ C+ [3 A/ u4 f$ ~1 E: t* e  R) }
    factorial(0) = 1  # Base case0 }; u$ s8 C' M- l: ]3 B

    * f/ \2 y+ w* q% ?; wThen, the results are combined:
    8 k; E0 |! [9 p0 v  e) R
      a7 p' R$ F  P9 L
    ( B! @. I9 B0 z% Kfactorial(1) = 1 * 1 = 1
    8 Q4 X* u8 R/ J( r+ vfactorial(2) = 2 * 1 = 2
    9 b/ [% {6 I# d$ ?- Bfactorial(3) = 3 * 2 = 6! Z. C0 W  G- ~% }- I
    factorial(4) = 4 * 6 = 247 Z5 d7 L2 f( T4 }5 O% J$ a
    factorial(5) = 5 * 24 = 1203 e# T  l; i! ]4 \% R
    ) N  Z+ R3 @: m/ C" E
    Advantages of Recursion
    - g( M& S( D' `2 M5 _7 L. {1 b; v" l0 A3 e/ e- Q
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    % t0 @+ U- f& q$ V) R2 {
      D/ D- N3 z2 s/ N. d8 c4 D    Readability: Recursive code can be more readable and concise compared to iterative solutions.! f8 h/ }" ?) F, ]3 C! T4 ]
    3 ~3 e* P: J* o8 d3 y) p$ l
    Disadvantages of Recursion* {9 b  ~7 @, R0 y6 Q" h
    * i. Q, j2 S" o
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    - ?8 w  [7 k4 G+ }
    3 c- _$ t# _0 X8 S    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    - _  S6 @" ]0 X6 B) A, k6 }6 @; `% s0 R
    When to Use Recursion
    : t% J) C( H* ]& |! L( ?1 ]4 t% S# Z7 }( p! S' }* Y/ S* F1 S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).' h! b8 n8 r: X" y

    % H# [" n& r5 D  r6 @+ s    Problems with a clear base case and recursive case.9 c8 N7 v  _( T$ ]- e
      V7 ~$ p- `; E
    Example: Fibonacci Sequence
    . H) M$ x0 ]! [5 R
    5 [, x& M" c- r5 HThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    8 A6 @% P0 G4 w2 T1 q7 V! N' a- y, u% M/ O! `: _; c0 C# u% _
        Base case: fib(0) = 0, fib(1) = 19 O1 W1 O, u# I, M! S
    4 Q2 H0 _6 j8 C7 s2 Q$ ?; R0 L
        Recursive case: fib(n) = fib(n-1) + fib(n-2)! O+ a! T* k& W* k( ~

      G& {. ?8 C0 V5 A8 opython) k3 ~) P! v3 {+ X$ V. f" D
    7 a  a0 R% j) D

    7 z; ~* m: e, sdef fibonacci(n):
    4 D. t4 Y+ C& A# h    # Base cases4 H- Y9 x. Y5 r+ T. _/ l6 z3 m: D) |
        if n == 0:
    : @' x8 p7 n. J# J3 S        return 0  Y* l# A$ v: O/ H1 m, w. H% a
        elif n == 1:9 ?2 S3 Z6 U8 T9 z2 _6 d  }
            return 1
    # U2 ~* y- u& M$ ?    # Recursive case
    1 F1 a( N9 A2 i  ?' o' j+ y, J    else:
    : _+ A; u4 n1 u, l        return fibonacci(n - 1) + fibonacci(n - 2)
    # d" ]7 a; a. P/ \0 S; R  z
    0 f6 L) i! Z$ o# `# Example usage$ g$ W. n7 T$ X4 p# h+ u4 b
    print(fibonacci(6))  # Output: 8
    ; Q- c  h$ a( R0 q' [
    ' {* G7 N, m$ s4 ?  J  Y9 k4 sTail Recursion
    + r- H2 X8 `  N! L/ S" C7 `% F. V/ \5 `6 k! z- e5 d
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).% ^3 V4 k( o' J+ w9 m; K( ~5 V4 V
    * p6 C! s5 e( k8 J1 Z. j) o7 |
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-2 12:23 , Processed in 0.067455 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表