设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1589|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 * R/ f( F0 o) X' k( V7 _) R
    1 I% S1 I' n9 Q7 G/ H) H6 E
    解释的不错0 V' a* w# N( N6 U( ~1 T( [

    5 ?2 |5 u1 y. c, `4 \4 G0 b1 _+ S递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; o. ]8 R  |: D. y; [

    4 u+ L2 Z- A* O2 c' D 关键要素
    8 M1 }- [7 q/ @! c( P+ U1 E3 X1. **基线条件(Base Case)*** N! K8 t  \& P. C+ f$ O. ?
       - 递归终止的条件,防止无限循环. f5 `: r! l3 O* h2 T
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 10 }# `; G# I7 a" [3 J
    - I) t% U: F% e, g7 }% |" k5 I
    2. **递归条件(Recursive Case)**
    7 c+ e# ]( B9 [2 L! F; e   - 将原问题分解为更小的子问题  S/ V9 E( A4 b, U% b
       - 例如:n! = n × (n-1)!% F2 ~% H5 H( J; M% m4 U5 W
    8 W" I) A. ?4 [
    经典示例:计算阶乘+ o( r. u6 k# h+ }* @3 B  l
    python
    0 J% ?# A+ Y* B- Y. j- S8 _( vdef factorial(n):* n, C3 z) U. x
        if n == 0:        # 基线条件; w+ ^$ }  f4 b9 M, E9 I8 x
            return 1
    ) J& m! J3 H! T    else:             # 递归条件
    & L0 P) x$ M3 B  E; i        return n * factorial(n-1)
    $ F- g) \3 l+ P% e执行过程(以计算 3! 为例):
    ! C  Z" l- p2 l# X5 _* y& X. d- `factorial(3)
    ) C. Q$ p$ l+ P7 p7 q3 * factorial(2)6 K0 _& e3 }% n" f3 |
    3 * (2 * factorial(1))$ P. ?2 G! K& ]0 l  P
    3 * (2 * (1 * factorial(0)))5 {1 c& K( {* y( D
    3 * (2 * (1 * 1)) = 6& d( C- t. u3 w! {  p

    - W8 z" g5 X) G" |8 | 递归思维要点
    . ?; I5 [) d3 }- B" q1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    0 J! a2 g4 G6 {! b* O. [; S1 `" c2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    9 ^+ K& x6 ?1 P1 R! ^) M) {3. **递推过程**:不断向下分解问题(递)
    - R9 x) m5 c- q+ B$ j4. **回溯过程**:组合子问题结果返回(归)
    2 W6 E& \2 a' w- S- G
    % I6 l4 ~0 y5 ~: y6 e% j* k5 O 注意事项
    2 b9 u3 f! F9 H& U: \必须要有终止条件! Q2 U. `+ K; m: O/ A" D6 {
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)0 z7 B3 m2 H! ]9 `
    某些问题用递归更直观(如树遍历),但效率可能不如迭代: |8 T: i# B1 m3 |7 K9 P( }
    尾递归优化可以提升效率(但Python不支持)
    ! f; |1 e% J9 h; l: Y# ~% ~
    . |) p! X, j# ~ 递归 vs 迭代
    # {& F0 g6 k# V& h; q+ Y4 O|          | 递归                          | 迭代               |9 ?/ z+ M: g6 G( Z+ D' m; g" b/ \
    |----------|-----------------------------|------------------|9 a/ ~$ R  h, I0 x  T
    | 实现方式    | 函数自调用                        | 循环结构            |1 D/ }3 U' a7 ^0 g. N4 b. r
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 K# p5 Y$ p3 ?1 p* h% Z+ d| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" {) q8 S5 ?: Y0 W5 g
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |/ j5 t" c7 R0 W1 \# c# M$ }' Z
    ' G) q+ {( Z1 n, L/ K/ v- Y
    经典递归应用场景. n* v4 |: m6 n6 ?8 E, j, `
    1. 文件系统遍历(目录树结构); @7 n9 q% f: M! ?) X
    2. 快速排序/归并排序算法' ?( W+ l: D2 |) u
    3. 汉诺塔问题
    : R/ z: L2 _+ n2 y4. 二叉树遍历(前序/中序/后序)  f. t9 u2 ]0 }" C0 `0 v$ h
    5. 生成所有可能的组合(回溯算法)
    3 B5 y* b. G6 |& T2 d% m- c; x& Y  @& M) [) Y
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 08:28
  • 签到天数: 3123 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ( x( W4 R8 y" n! b2 n: \我推理机的核心算法应该是二叉树遍历的变种。
    / R: {+ X4 k! K1 w: p- o7 u$ l另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    8 h' s5 E( w, g$ \/ N; a: UKey Idea of Recursion
    8 w: a. I; G( D! z2 a* K" _
    6 q* q( K, Q# q! B4 r6 |5 jA recursive function solves a problem by:
    2 \5 y  ~0 S/ i2 I# N0 f5 w( D
    / \& P( F6 m' A' J    Breaking the problem into smaller instances of the same problem.9 i' Y% u$ d! u9 x$ P- q
    ! n% F2 D3 X0 Z0 ^! B
        Solving the smallest instance directly (base case).  {9 W0 Y3 [( z9 O

    7 Z9 }& I' }" E2 ]: Z    Combining the results of smaller instances to solve the larger problem.3 l% H% a7 ~0 |! ?9 ]: i* r
    2 V( d5 z7 \; E0 ]( k8 h9 M
    Components of a Recursive Function4 Q" @* [) m  @  n1 R6 a
    0 a: e  F$ t! |9 r
        Base Case:) [/ ^( h5 I* O2 M0 D

      Z1 p2 r2 c: [0 l* o        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.: [7 y. _: W1 S$ R5 _' e

    0 k% o0 V: t" E* F3 T+ h% B        It acts as the stopping condition to prevent infinite recursion.7 e0 P( i# K: _, }
      s4 F4 G* p6 I5 q& v  d5 d' F5 L
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & w6 \5 X5 n0 H. M7 S
    6 u1 `# ~% @7 ]    Recursive Case:
    ; E7 t% g8 c% r, M
    2 x. \2 D( W8 X/ p        This is where the function calls itself with a smaller or simpler version of the problem.: G1 D6 Y) O! s, c4 v# d$ B. D4 `

    2 W: F7 x. M- Z* |) P        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    3 a# X, a0 f/ H/ T9 b4 t5 E2 t* p8 J4 Q% d
    Example: Factorial Calculation1 Q1 l2 t3 M. t4 ]1 f( \$ R

    . P( e: Q2 p, r8 J& TThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  P4 ]% D  m# ~. _" ?
    7 b0 ~& W2 b  _* F9 g( F6 D
        Base case: 0! = 1
    ' W( k4 K9 ^" C& a1 f0 C( z, e. S7 D6 j- E
        Recursive case: n! = n * (n-1)!* D# _" a1 ~. \! ]8 p! R( m" l2 E& O

    & N/ f! [2 o2 u8 HHere’s how it looks in code (Python):/ K7 R2 }, E( O
    python
    : X9 q. g" }1 }7 A+ a! [; n& t" t: M

    2 m; v4 o7 p1 p/ `def factorial(n):% }( F5 Y1 g: N; m6 G1 y# y) L, B
        # Base case
    , |- O, L6 }2 u    if n == 0:( F. F7 S( Z- @# O# L+ q6 Y
            return 1) s4 C4 k4 K9 o5 O3 `0 Y7 g7 l4 `
        # Recursive case9 Y' X% O  x; X* q( v, G
        else:7 [. z; P( U# D# u  C6 I% H2 f' F
            return n * factorial(n - 1)
    ; k5 M' z' Z  P" u/ m! s+ h
    ) b7 D' J: P5 i# L# Example usage
    2 j' }. m$ e* j9 K) H* i6 x, @print(factorial(5))  # Output: 120
    : X5 e& \- U; a. D7 m
    9 M: @3 z& M1 E) s+ rHow Recursion Works
    8 P) f. B1 G4 z
    * X1 B6 {" K( a    The function keeps calling itself with smaller inputs until it reaches the base case.5 b5 C- h  h7 `9 V* ~

    ! B8 [  L: Q  X) V    Once the base case is reached, the function starts returning values back up the call stack.
    4 |. [8 c3 b; A% ?/ h6 E& D; W9 ]" u3 I' g2 v3 t! `
        These returned values are combined to produce the final result.+ T+ F) q$ l4 z% Y- H

    , j0 S+ a2 K' FFor factorial(5):
    , V6 s  ?0 D9 N7 N  G5 N2 o8 i5 r  K  m6 F

    5 i6 A* A- m8 {* O) z: a* H* g3 t- _factorial(5) = 5 * factorial(4)
    ; C; R2 @& Z- M# [- E. Wfactorial(4) = 4 * factorial(3)
    9 X8 M/ J7 P& `8 b. j' h% cfactorial(3) = 3 * factorial(2)
    # ?2 S& m7 q! j7 a1 a8 hfactorial(2) = 2 * factorial(1)
    0 @8 C1 G* f/ R6 @7 `* f8 X5 ifactorial(1) = 1 * factorial(0)
    ! J0 K( O- f( a( Y' m3 Q0 B7 i2 Jfactorial(0) = 1  # Base case
    , C. {, {# M+ \! z$ B  s, F, y3 ?
    Then, the results are combined:
    0 K' d; Y" Q5 i& u0 i- M3 ?" L* o- K8 J, T# ~6 C  x
    2 S) z- i$ E; y+ n6 M
    factorial(1) = 1 * 1 = 1% k& S' K, j; C  ^# _. j. F, g
    factorial(2) = 2 * 1 = 2
    7 r7 ]) U6 }8 L; ^( xfactorial(3) = 3 * 2 = 6
    4 }1 D( n: W& @6 l' \7 ]! W. Z6 xfactorial(4) = 4 * 6 = 24# ]: p5 T2 \; S# a# @4 U4 M$ S
    factorial(5) = 5 * 24 = 120
    2 P. {+ h! \$ p4 B: }$ {7 X& o8 K! K! v+ w8 Q
    Advantages of Recursion
    5 g8 f6 i, M9 N$ H$ t2 H: B3 d: o* H# o& H% o3 y# M; C7 M/ b
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    8 Y/ }( H2 I! V) Z5 ]9 T
    & m& h" s: b# E- c7 c    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 @) l/ N$ |$ P" r7 |2 H& {/ K( R8 X6 e, D& N( T
    Disadvantages of Recursion/ E6 t) m- T3 M8 K- G

    ' D4 D7 W! W' k; n0 y- ^4 e    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ' z' x9 J; {/ g+ T/ }3 b1 j! Q! y+ R2 }" R9 ]
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)./ M7 A+ G; i, b  \6 o+ L8 b: t

    ' X3 }; F& O9 CWhen to Use Recursion
    2 M" g) L9 y; r( C
    ! \3 h& ?- S) \! P( k4 V    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).1 _& T; d; p; x

    ; A0 n9 Z% Z7 ?/ b5 B4 m    Problems with a clear base case and recursive case.
    9 }) r% p* V3 n4 Q5 p9 @0 C) k. I# @+ B  p2 m2 p  n
    Example: Fibonacci Sequence5 b7 I9 e7 C% E$ V

    ) f  t* ^) }; E8 oThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " _8 b6 e4 h& T. a# D0 S3 B* A, L& l* L0 V6 F- B9 T: H4 X$ F* r2 w) I
        Base case: fib(0) = 0, fib(1) = 1
    - R( o0 B3 |/ K* |
    " V1 Q+ J6 }5 f) K    Recursive case: fib(n) = fib(n-1) + fib(n-2)
      Q+ N, c- Z+ a' [2 v3 l$ S% x) g6 a  y6 S# e
    python
    & A0 v" `/ v% R; u: a2 I9 P$ B5 ^
    ! i# c$ U; Z" R) u% U
    def fibonacci(n):( Z( [4 c% f2 A# \) v6 \
        # Base cases
    ) ^3 `1 N6 Q) e& e    if n == 0:
    - Q. i, p6 s1 G5 Z        return 0" N7 @) ^$ [. ?* A" D" `) G
        elif n == 1:! M4 m0 K$ E3 D/ m6 a2 Q
            return 1
    # W$ L/ H2 @8 M, ~9 I    # Recursive case
    3 K( J2 P& K. X    else:
    ' T; Q* t" S. \        return fibonacci(n - 1) + fibonacci(n - 2)& v, ^$ Q( ~4 x" P& T! T: Q

    ( B; a6 z  W/ d' q; G* j* W) B) T3 ~# Example usage# _' E+ c* O) K8 Q+ Q+ b5 @
    print(fibonacci(6))  # Output: 8
    1 S. g; v0 A+ V; a: ^
    ; _* B+ M* e: B% CTail Recursion
    % e4 _* P( ?/ a7 X: e9 m
    * L! S/ z7 ?5 A7 pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 k6 e1 F) d+ k$ {

    . ]7 \3 {5 h( F' Q# Q, _In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-21 14:40 , Processed in 0.035343 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表