设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1155|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 $ O: \" \) o& P" L, R/ {* y0 [

      f5 d0 E, F% A解释的不错
    3 f0 f' \0 I8 f/ C+ I' s, Z) R# m2 u! I
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。3 D3 X8 t9 D$ c& A& S  L( I
    " G! i2 s' o; @! u/ Y, M3 p  r
    关键要素4 r/ b1 X5 Y+ a
    1. **基线条件(Base Case)**1 \* i  L# f, z' [: C* l1 [
       - 递归终止的条件,防止无限循环. _- F$ G2 Y* `4 \+ i3 t: f
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ) w3 z7 X- u9 v1 H6 p
    5 [, E8 E: T$ x9 D2 z2 [- c. {% [1 S2. **递归条件(Recursive Case)**
    4 f, o, f/ f& k. _   - 将原问题分解为更小的子问题1 K7 t; u4 e* w7 C9 [7 I9 Q/ P
       - 例如:n! = n × (n-1)!) }9 f2 t" C- N$ t- }0 N

    + H8 M" N% J6 h; W; y7 M3 {' B 经典示例:计算阶乘
    - a! \$ h6 Y+ G0 A8 ~8 y8 Kpython& f1 I+ E  F  W9 w2 p; L! e
    def factorial(n):0 |/ u" x' ?/ i% F) p5 q; Q! j
        if n == 0:        # 基线条件' d/ q2 L* I  O
            return 1- k4 @: t) ?" X& C$ G; Z
        else:             # 递归条件" D9 d8 L4 l# w+ @, w6 I
            return n * factorial(n-1)
    - l+ }  n& a( E6 X! _执行过程(以计算 3! 为例):
    / r4 Y4 J2 g" u" m; w0 ~( T0 ?factorial(3)
    " U8 E4 i1 J/ I' y) M3 * factorial(2)
    / J" l5 |2 U& M4 U  S5 Q; }3 * (2 * factorial(1))) b& ^: f6 N. M; ?: F& ~# l" r
    3 * (2 * (1 * factorial(0)))
    5 j) ?+ W4 D% W  y; `6 y3 K3 * (2 * (1 * 1)) = 6
    1 ^( h0 {* ?. E( B( [& u# S6 F0 M: n0 \$ h1 n& j9 @4 x3 k
    递归思维要点: ~2 k& U1 C, Y9 n. D! ?
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    0 H& z7 i2 a8 g% k2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    4 Z2 ]6 e6 C* U; q/ p3. **递推过程**:不断向下分解问题(递)
    8 m% D/ ~5 z0 D7 h1 n1 w5 E0 U4. **回溯过程**:组合子问题结果返回(归), h1 T! g, B# `: d' S+ v* Z

    * [, d2 Q- C5 ` 注意事项
    ' X; D( S/ R* H  v* _% T' }( @必须要有终止条件
    : z3 p! R8 ~# v8 I% L9 k递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
      S7 m# J: F9 b. \4 P某些问题用递归更直观(如树遍历),但效率可能不如迭代* R4 F; f' o( Y, {6 P
    尾递归优化可以提升效率(但Python不支持)
    : k7 S6 T2 |1 b& _8 W6 s7 i4 t
    ' p4 R1 c( n' g: ~ 递归 vs 迭代- J9 T6 x& a( i$ N0 W
    |          | 递归                          | 迭代               |: w7 _: u; D( o; v0 \; N$ {
    |----------|-----------------------------|------------------|1 m# C- X4 s* Z( u! M
    | 实现方式    | 函数自调用                        | 循环结构            |  ~. U! }8 O! P1 W' t- _; c2 Y
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    % n1 c) N  M* `% L: a4 L+ X" a| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    # h/ c1 Y1 H$ h# T7 z' W| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! g$ P; W" e5 d2 x% t5 B3 P
    1 L& |/ J( S3 D3 l
    经典递归应用场景, E  R9 x) J3 z1 e, e! w. p
    1. 文件系统遍历(目录树结构)
    5 p$ v8 _$ o$ P; C# G8 G& s2. 快速排序/归并排序算法' |7 T1 y1 Z5 ^( S8 R& G! b% X
    3. 汉诺塔问题9 E0 O3 E  [; x, Y  ]1 O, k
    4. 二叉树遍历(前序/中序/后序)
    5 V* i0 i7 ~+ R; O3 a' s5. 生成所有可能的组合(回溯算法)0 |0 O+ ^. H* X) F3 O0 ~
    5 Y0 o7 p" Y+ m/ W9 ]  _3 x
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 06:43
  • 签到天数: 3101 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    0 Z5 R1 _* W4 z! N" y7 ?& w; U2 U, v我推理机的核心算法应该是二叉树遍历的变种。
    , [9 U, p5 s0 E& M# ^7 Z2 i另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:  P) z9 I" ?3 Z) M
    Key Idea of Recursion* Y5 u, e. Y; V' B& s6 [/ [: V
    . e& b% Q# X% b( ]! L
    A recursive function solves a problem by:+ q0 O% h' `2 V. r9 m$ @. m

    : ^2 B7 K; K. e: t0 R% F% w1 Z7 f    Breaking the problem into smaller instances of the same problem., i! {8 q( ]2 S) n! ^+ _& _
    0 O6 Z) N1 f  {+ f1 D* D
        Solving the smallest instance directly (base case).6 w: R4 \0 Z& s% v0 v- Z( Z

    + u3 w3 E* p( _& j1 `1 _7 _; e8 a    Combining the results of smaller instances to solve the larger problem.2 k- c/ Z' t' a8 Z3 d: E+ ]

    : g: @9 r5 }3 ?$ NComponents of a Recursive Function) M$ v$ Q2 ?% f8 I) p

    7 v& Q% t- u7 B# q# n    Base Case:3 @. n* T* |) V4 w! C

    0 g. q5 Y, F* _) T! U        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.5 e5 p" F) M8 D; p* w
    ) q2 F$ `% \( W* F
            It acts as the stopping condition to prevent infinite recursion.1 O; d+ d  @1 |/ }' u
    . e, v( m4 e0 a% j1 H8 F3 i
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & f8 K8 Z& h* H8 m7 H
    * }1 {4 A! _8 c    Recursive Case:
    8 J2 W2 L- e+ @, _1 O3 E4 s, z
    0 }: G6 K: R, x$ U: t# I        This is where the function calls itself with a smaller or simpler version of the problem.
    ; B' \( O4 k  C0 v0 `8 b: b- s
    ) |; G- T9 ^7 I4 ], }" O        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).1 V. L& k3 Z9 s' v( g

    # @" u3 q8 B1 T" u, }Example: Factorial Calculation
    ) K6 X& w6 ]& W. z# N5 Y9 J7 {
    8 r; M. v* N0 e2 \9 Y7 sThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    . y$ H# t* L4 K; Y( D- B) v7 L& a- I6 `; A
        Base case: 0! = 19 D) t( v/ c8 l# p+ _  _) k
    / f# j! x9 }  m0 d( W1 G$ C
        Recursive case: n! = n * (n-1)!
    5 Y0 d7 Z& g% H* q+ p/ X4 K6 I" A8 }1 B# F6 [, o8 G
    Here’s how it looks in code (Python):
    # N5 J# `1 C: n. |! R' Cpython! G/ [' g+ A$ K- ]& Z

    # V3 T3 Q  T& A3 s% ~- J* H8 S& {; o/ E7 H. y
    def factorial(n):# E8 H9 p7 K3 R+ I
        # Base case
    . o' b2 [& h2 _" ^2 \# p# s+ ?    if n == 0:
    2 Y- v: _& ?7 {3 M8 y1 a& J        return 14 k& f  t/ o% v9 e) S
        # Recursive case
    / c$ f2 P: m# P: c5 r% N    else:
    $ f, M2 r7 `: W        return n * factorial(n - 1): ?9 y1 R6 j- B2 Q; \

    1 U6 p! c8 F% I& p' _. t# Example usage4 |( F' y' z9 V% u5 t9 U( z3 ?' v
    print(factorial(5))  # Output: 120# c3 h& A' w9 r+ V: F/ C" r8 ~
    % p& A6 A3 W% G' q
    How Recursion Works
    9 U. s  T5 Y' l1 }+ g9 z* u! |2 ~" P. t6 H# _: c
        The function keeps calling itself with smaller inputs until it reaches the base case.) H7 J5 A' X' L( h0 M, J3 r* u7 P

    8 f2 b  E" A- w! s) S& u    Once the base case is reached, the function starts returning values back up the call stack.
    7 V3 {) B- S- k8 o7 o/ P& p7 m. z
    7 O3 t3 v" ]) w& p8 D) d) _    These returned values are combined to produce the final result.
    0 B: W; Q0 Z  H6 c! `
    - r5 |. T% R. B1 s5 O, X3 CFor factorial(5):
    & G! x2 p2 o8 n" O5 G3 ~7 r( S) W1 V7 |' V3 l. B3 r/ _+ X+ J
    ; U7 H4 E' W$ s) J. @  |' W4 I
    factorial(5) = 5 * factorial(4)
    5 t( ~* \* B$ m* K7 _$ P9 V5 `factorial(4) = 4 * factorial(3)
    / Z) B: ?( W) w' d3 ifactorial(3) = 3 * factorial(2)1 ]# B3 u$ ^+ |, Z% t
    factorial(2) = 2 * factorial(1)3 f# U, B$ g+ Y; I- l( U  _
    factorial(1) = 1 * factorial(0)/ K0 S5 ^9 H3 E
    factorial(0) = 1  # Base case
    2 h% R" A  D9 j5 X0 x: d' i
      G, N( U* V2 ^( q/ XThen, the results are combined:% E3 F: g: m' Y+ U; J: ^+ ~
    0 C* q4 z& n% E8 D, p5 o

    0 K, P+ G9 G6 e' U0 ^factorial(1) = 1 * 1 = 1
    2 z' f( ^# \4 N$ v3 `$ {9 Afactorial(2) = 2 * 1 = 2
    ( q$ @1 f. v4 A9 u3 }factorial(3) = 3 * 2 = 6" d6 k1 r" y, E: l: [- v
    factorial(4) = 4 * 6 = 24/ u% G8 t# |5 o, u0 n, m) b
    factorial(5) = 5 * 24 = 120( ?5 X& A5 @, R& c
    . Q* I- C$ a, U% z
    Advantages of Recursion5 K. v2 K: P' e- ?. @7 ~+ X9 d
      O+ B$ B0 a. h6 @
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) h; s. B; V4 T, u* W( s0 D

    ! _* H" d( w9 v    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    9 n5 P* y7 Y7 d4 ^7 l* Y
    - M  Z9 {. c8 m! j: ?Disadvantages of Recursion
    $ j2 r2 h# x: A; d. F1 s0 g
    $ G8 C$ [: j& z4 g    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 `7 i1 B$ J+ T# _8 V7 y
    % n" X. p' D0 X7 l7 U
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    # p4 P6 Z8 f  b
    ) p) n" J& v  o( YWhen to Use Recursion+ H2 c. c: a; \" t

    : _( M& J" G7 R  q2 c    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    8 e0 ]) _/ k: l+ a9 M% l) W/ {% [& G' W2 i3 V9 g: y0 }7 [
        Problems with a clear base case and recursive case.
    % J7 C! C& V' E: R7 S
    " h7 ^6 T- U* _8 a3 S: ~# |$ vExample: Fibonacci Sequence" u& ]2 K2 N2 D0 a" E+ c

    , Q0 o5 ]5 P. r9 C* W" vThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    # y& P& i3 s1 M$ V& F" C) V/ K$ _) L
    % ^% `1 v- o6 X    Base case: fib(0) = 0, fib(1) = 18 y! g, x7 ^0 C  F% H

    ' F$ W) l, K: J' X4 ?0 G    Recursive case: fib(n) = fib(n-1) + fib(n-2). L" L" b/ G# Z* E! Z" L7 |
    $ d( k' w# Q$ K5 h) h2 h
    python
    # ~, U- {1 ~. b+ X( F4 z1 h6 i3 A8 x9 M

    ; J9 b4 R5 A" d) u% b" {def fibonacci(n):1 ^* ]4 N+ P# a0 ?; T( E
        # Base cases
    : Y; `- D6 z  k5 l) Y    if n == 0:
      n! w& I: }5 L. ~: Z        return 0
    # s: Y) T) C; V: R; {8 }    elif n == 1:
    + K+ U1 A3 Y! _, l$ p' r8 U        return 1: k, D8 w- v  K% X- N- z, g) s
        # Recursive case+ R$ V3 L5 I% {% \) |4 F+ y
        else:! M( c1 P* n$ \
            return fibonacci(n - 1) + fibonacci(n - 2)
    & |# a1 a+ C4 W& T0 x; \1 ]8 h% I4 `3 Q% C1 {
    # Example usage
    $ _5 C- o) @7 T- o( P7 Uprint(fibonacci(6))  # Output: 8& ]0 e* c% K) s- R

    " K$ e; _  v+ o- C) I- h, tTail Recursion
    7 ^8 N0 b; ^' M4 r& U; i+ {8 w
    4 G, Z& G. x* z" a8 M: TTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).% O/ G. U+ Y, @- u( b5 V8 Q9 ]
    ' K* @$ p# Y5 r  \4 t
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-25 04:49 , Processed in 0.031228 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表