设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1744|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . ?* p& E  o$ o& u% y5 i) v6 P  x% `/ m2 Q/ r" d, G; j
    解释的不错& f* A. I2 C* e  a9 f

    & P" \. G5 J) l" b/ ^8 i* i递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    1 w% H! }6 y8 O5 T2 u( E6 k
    / ~# V( \/ J1 u- ^ 关键要素# j# i% E6 i0 k* S4 _- m: p/ e
    1. **基线条件(Base Case)**
    . \7 O/ R6 n+ ~/ h# r7 m3 r   - 递归终止的条件,防止无限循环
      l$ h/ a. ^8 T9 w5 `6 ~   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    2 q9 O1 h6 I6 }  b/ A  U. S: ^
      \$ H1 o7 e: P2. **递归条件(Recursive Case)**; w0 {5 G" i  t  |! }( b$ h
       - 将原问题分解为更小的子问题. a& }( E# T3 a6 ~5 }
       - 例如:n! = n × (n-1)!
    9 k9 y0 a$ g( W( i3 W4 t( a  p& ^8 D0 |
    经典示例:计算阶乘
    & i) O& M7 w1 Z6 H$ I& epython9 C! V$ [2 Q2 u# Z- }& R' J
    def factorial(n):
    0 I: B- M( c. W9 g$ w    if n == 0:        # 基线条件
    8 b; L* B" R) v) `3 @% J        return 1
    6 M, `6 v; I3 o    else:             # 递归条件
    1 X3 I( u4 k: ~  {  k' V0 o        return n * factorial(n-1)
    , S+ K  Z3 A: h2 J( r执行过程(以计算 3! 为例):8 t( n2 x9 j3 D1 s% ?
    factorial(3)
    8 o: y6 N8 Z  }3 * factorial(2)% t; x$ ?8 \5 ^6 U$ S* Y0 D
    3 * (2 * factorial(1))
    * K9 {; l. ^  ?. h3 * (2 * (1 * factorial(0)))
    4 p4 }/ ]9 Z5 z% e3 A% j' @, Y3 * (2 * (1 * 1)) = 6
    & ?2 {  m/ x0 ?
    & N7 A6 j1 z- `' J. P" ]9 M6 u 递归思维要点  G) o1 [5 D$ H3 M" _* z
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑- v7 d: ?7 O9 x, n; N  [
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    4 m/ p3 \* A4 ^8 h3. **递推过程**:不断向下分解问题(递)
    % @* U& B5 w: e& L2 M* }/ h4. **回溯过程**:组合子问题结果返回(归)4 h$ @- H# I8 ?6 s: T* I  O+ K" E0 L
    % Z3 }4 Y3 h% u0 B0 c
    注意事项' ?" x: G; x1 Z' C( v( ?5 a+ K7 j
    必须要有终止条件, c6 w/ ?- U, R* {* g
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ! P+ D2 J5 X& y# W5 \% A5 K1 x+ @& F某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 o0 D" Z# G$ o2 k( y" u# W6 z6 B尾递归优化可以提升效率(但Python不支持)& w* v1 t* V# ^

    0 s- U. l' i  U6 g 递归 vs 迭代
    9 Y4 B6 [) z$ K0 S|          | 递归                          | 迭代               |- }( e( B6 B/ a$ R
    |----------|-----------------------------|------------------|2 V# I& H" F, h, f7 x8 D
    | 实现方式    | 函数自调用                        | 循环结构            |/ v. T* N8 Y, X3 e! D
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |2 @2 _  J8 Z0 q5 [5 F6 ?
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 r+ F3 G: b0 a: ]6 f9 X
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |3 q8 t% A  N) v

    + h- u3 P2 o# ]! [ 经典递归应用场景
    4 l, W8 m8 B- G1 A! m& c2 g1. 文件系统遍历(目录树结构)0 P7 P3 R4 k" U) d4 h3 l6 X
    2. 快速排序/归并排序算法
    + G% R- p# u1 o1 |3. 汉诺塔问题
    0 _3 A# h" l# h4. 二叉树遍历(前序/中序/后序)
    - ^! ~* F: D6 [' {5. 生成所有可能的组合(回溯算法)6 r; X' ?% F3 k9 P+ ~+ U- V

    , O! U' U0 j7 p- c试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    11 小时前
  • 签到天数: 3138 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,  z% d% Z7 o: ?: W1 Q, R
    我推理机的核心算法应该是二叉树遍历的变种。
    1 b6 g9 k0 A' `7 U另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:2 ~' P; E7 d) U8 h  {
    Key Idea of Recursion
    5 d+ l5 ^0 `- h; f/ ?9 N
    ) a# [: R2 y# O+ [9 u* Z. n' b# ~A recursive function solves a problem by:
      E* ?- T9 I; c9 B# N% M/ x6 h, @& _6 Y
        Breaking the problem into smaller instances of the same problem.
    ) K8 @3 W3 e+ _& T7 ]
    ! M5 S( b3 A5 u( ^    Solving the smallest instance directly (base case).
    % l. g0 A# g( o) H* R
    4 z7 X9 |/ p2 R8 w7 z/ Q/ O( a; E    Combining the results of smaller instances to solve the larger problem.
    4 h* }4 `& X  g  e5 Y* b, d! ~6 ]7 f. X: R& S% G
    Components of a Recursive Function$ O  i/ G; V1 }

    * \, z1 u$ T" W( o. \- m1 ^    Base Case:7 j( v1 V6 S6 w+ r/ S
    ' C1 v( v# D# v2 h3 h
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    - G+ }% Z# P6 g
    ! R, |  A* q- G        It acts as the stopping condition to prevent infinite recursion.
    " A+ V2 R0 h/ v  J* u* X5 c* ^8 \1 e/ T/ i7 Q( G, d% ~
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.  W0 F/ Y" S6 v$ M) j  i

      n( z, P  A% \% I4 k    Recursive Case:! R; _  j; C* [( g

    7 I9 r' p) ~+ n% q3 ?! @+ `; P3 a        This is where the function calls itself with a smaller or simpler version of the problem.
    # j. I4 s2 `* g( O! V2 D1 H
    / N6 N' G! j/ R7 N0 v/ [& ^9 q        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    9 j1 P) J% E+ M' X
    1 d! F: S8 \: i/ U' A! u" VExample: Factorial Calculation
    $ Y( _4 u3 m/ x3 }( x. @$ i2 e% J5 D" E) p2 o9 }" y: S
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:- b/ X) y2 ^7 f1 C0 k9 c/ X2 @

    - X1 V% H# ~) o- ]    Base case: 0! = 10 c( g* ~0 a( i4 K
    ; x$ v5 g& u. c" R+ p! J
        Recursive case: n! = n * (n-1)!9 I* J0 L* c* V, V$ W

    1 R2 S3 L- W7 i- M1 BHere’s how it looks in code (Python):
    , A! i. `6 s$ G1 Qpython
    8 n7 X0 c1 ?, G* @( o9 a
    & T5 [# f) F6 P8 ^6 s: k: K" y1 `- ^+ d3 H7 u. S4 ?4 g9 A
    def factorial(n):9 `& j6 W2 c7 n% J% P! U
        # Base case) Q+ @; M3 O% _0 o8 m6 @; @
        if n == 0:6 p/ Q5 H' T) W& e% c2 w" J0 S
            return 1/ `) v! D3 u. Y) k$ o
        # Recursive case/ \4 G+ }3 N$ }+ P' ?+ c' N
        else:  R% G; d4 B3 O' x# ]) U
            return n * factorial(n - 1)
    & i- k. T9 Z6 M4 j9 F) Y$ S
    $ d* G% L2 c  o9 h1 ]# Example usage
    / ]  p8 H. n  M9 @$ M. S4 Mprint(factorial(5))  # Output: 120( J+ l4 I& @$ x; @' ^/ x) A0 j
    " ~  Z: ~3 T- I. j" A/ Q- n1 G7 A: c
    How Recursion Works3 ?. \9 i2 R" |* _7 B
    # E) Z8 _( ~. L9 C
        The function keeps calling itself with smaller inputs until it reaches the base case.
    $ ~5 m  O1 g3 ?3 B
    # d( w2 c+ J0 @- R0 Y2 W9 Z' Q    Once the base case is reached, the function starts returning values back up the call stack.
    * z7 y: R  T$ F/ w+ l/ S7 n3 w- _# L$ B& K6 E4 ~6 p" _8 e
        These returned values are combined to produce the final result.5 g6 F5 V0 o) b
    * c( A" C# M* V7 n
    For factorial(5):0 h0 O5 J* N) w' g
    3 W4 d) Z) T8 ~& @9 M$ n+ _4 q2 g

    " M# X1 k+ A- Q, afactorial(5) = 5 * factorial(4)% o/ R; B) x8 h# O' K0 M$ Q
    factorial(4) = 4 * factorial(3)
    , h6 P+ p. J% H1 Sfactorial(3) = 3 * factorial(2)3 h8 F3 M. B8 }: ~. r; p" w
    factorial(2) = 2 * factorial(1). G2 Z/ W0 D9 z$ B4 V
    factorial(1) = 1 * factorial(0)' j, h# K3 q) @+ v1 |! J
    factorial(0) = 1  # Base case2 ]5 V5 I9 K5 t  _1 _

    % m) e) U8 H  B% i" bThen, the results are combined:4 C- {; s* S. W5 [: W0 A' V1 c

    9 d8 O8 k% c( H
    ' q  K2 J% @0 J1 w3 M; Efactorial(1) = 1 * 1 = 1
    + V. U$ K% q" c9 \. I9 ?factorial(2) = 2 * 1 = 21 l3 n: D; J  B) C6 p
    factorial(3) = 3 * 2 = 65 f) B4 x) s; v1 c; L
    factorial(4) = 4 * 6 = 243 A0 ^: z# o) Q
    factorial(5) = 5 * 24 = 120% y' `3 z8 v( D/ F

    ( j/ ^3 l; x$ @- n7 {% h7 i& v1 FAdvantages of Recursion
    % ]5 c8 b2 G% _, \3 f+ w! b5 R. R+ w
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).' {) k1 c) i  ?9 B: g" p1 @/ m

    2 `, R' M" V3 y0 Z* u. j    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    & Q4 d/ _4 U) z3 Y
    3 f/ |- l$ _& Y, x) vDisadvantages of Recursion
    ' ~5 x: c# V3 K6 w& q. R) @0 o1 }! A# x
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    4 c1 A4 l0 X& ?% k8 C) a' i9 X4 F$ @" e- U8 B0 C) S
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! J; k  T0 F1 P- p
    - s  o- L8 {, {4 q) i9 x4 \When to Use Recursion
      o! j, m2 K7 _% l( e
    % E8 Z/ p5 O) w0 U. s5 w. z5 k    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).. H( N! @6 o0 M7 z+ {: L4 @
    6 d# t# L7 N: h
        Problems with a clear base case and recursive case.
    ; T+ k  ~" @- H7 o$ A
    6 b9 O, X$ W3 `" @Example: Fibonacci Sequence
    ' Q) Y2 V. w6 J( V' b6 Z+ G# a, b# a, j, c( C
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ' x2 k4 g( I( c% C# C: A4 N
    % O2 s7 n, M9 X2 {# M    Base case: fib(0) = 0, fib(1) = 1
    7 Q7 V2 A$ d4 ~1 y. z
    4 ~3 [. b+ ?. e; n" h5 n+ y    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    % b; v* n, d6 l, a6 _8 s! N. u  ^8 Q  V1 _, h" B
    python8 ?% p* v- z6 N' G7 i: x

    . a: Y, Z( [0 F% I8 d8 x& h- N/ H" ]' R+ C  n# _
    def fibonacci(n):
    & F6 h" C% |- U  X: ^+ C# j    # Base cases/ u8 q+ }5 R  r! Q) e
        if n == 0:
    ! I1 t7 z4 b; G3 \: o        return 06 L+ K: }: H* q% i% j, [# z0 y
        elif n == 1:. s, K% [, y; f7 K1 r9 M  b2 M
            return 1
      }5 X  D& {: e: X& N    # Recursive case
    $ ~8 R8 k, w" Y  e* P) C& V" \    else:
    7 E& B+ P( A! \* ]/ Q. Z/ L& l        return fibonacci(n - 1) + fibonacci(n - 2), v3 }2 [: }+ s& v0 _& v

    - ]" n& l2 o3 F1 m9 ?, u# Example usage0 J- U  ]! X) s$ d  S4 Y- T
    print(fibonacci(6))  # Output: 8
    ' s3 U' R( g$ m1 Q
      S# s! L1 U; }1 D: {: iTail Recursion
    # x4 G9 o! |( v
    1 ]( P7 O' y7 e" w' bTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., ?( A& ?  [) [# }
    5 V4 H( J: g2 J# X4 G
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-6 17:33 , Processed in 0.040632 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表