设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1577|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 * b% ]4 c; U2 L4 ]9 _6 i; |) e- E

    4 o) j( T0 n8 g0 A7 `4 g解释的不错
    4 Z9 n, Y# N  u% R6 W2 S7 @# _7 z8 U/ T
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ) K. i4 R9 o+ q  O& X8 f7 ]/ G
    4 X- M/ e+ I9 F; e) f' K: q' v: e0 {# G* A 关键要素
    0 o) }' n$ r5 V1. **基线条件(Base Case)**
    ; V. X& S) M3 ?, ?9 ]  }6 S   - 递归终止的条件,防止无限循环
    6 X$ M5 e* M0 M4 l- q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    + w, \/ k$ w3 O1 n5 p/ A
    . D' {3 \$ G  D% U2. **递归条件(Recursive Case)**
    , ?# r. k/ q7 S9 W. g   - 将原问题分解为更小的子问题
    ( u5 Z4 U/ j4 a   - 例如:n! = n × (n-1)!4 q3 b4 H$ s. ~$ r. B
    ; F" z" k! B6 A* Y
    经典示例:计算阶乘" R6 e- Z) e( D2 o# X: R
    python
    + T8 r/ _$ `8 S% [! n/ V1 ?3 }def factorial(n):5 ~  K0 n1 O5 M
        if n == 0:        # 基线条件2 s2 }. C& y( b# O& @/ T* c' G/ V, c
            return 1
    9 Q' v/ q. b' J6 V- b7 G! i    else:             # 递归条件. d# \! j7 h% s: t) c
            return n * factorial(n-1)2 }3 o$ S8 }& f+ C* l6 ?* H
    执行过程(以计算 3! 为例):1 y( |) I" I) G: }- H" O
    factorial(3)
    ) t: r- P) o1 ^  x: a3 * factorial(2)
    ) ?8 N" U5 ^: L2 ^/ ^3 * (2 * factorial(1))% Q* D& h/ W, ~
    3 * (2 * (1 * factorial(0)))
    , |, ^! f- @( h1 Z5 A* W# z" e9 a3 * (2 * (1 * 1)) = 6$ d; m2 L# {! T) U2 O: s
    5 i, k" T6 T& S0 }2 h( c
    递归思维要点
    ) t! k( v# A& ]1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ R/ k% l) w& u7 m2. **栈结构**:每次调用都会创建新的栈帧(内存空间)7 L3 K$ a* D  L; B
    3. **递推过程**:不断向下分解问题(递)- Q) P- {0 o0 D4 ]& ]% ^+ X
    4. **回溯过程**:组合子问题结果返回(归)
    7 r0 K5 g6 T/ f; C* f7 g7 N
    , p* R7 ]9 \7 u0 o6 J% `' C0 ] 注意事项
    3 m4 `4 \' _( {0 x必须要有终止条件
    7 y9 t% P4 V$ @) _/ ^& d递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    5 U1 W' p" @' I& T9 @  y某些问题用递归更直观(如树遍历),但效率可能不如迭代& g3 |& y5 P- j9 M+ J& s! A
    尾递归优化可以提升效率(但Python不支持)
    3 u% s) P" I. N1 ~) _$ |0 [; l3 L; Z. c0 \: S+ f( a- d6 o7 N( |
    递归 vs 迭代
    % T2 [* r- F  y; L0 q' Y: P|          | 递归                          | 迭代               |
    8 U( x$ K3 s, e2 U, A) \|----------|-----------------------------|------------------|% L0 [! V# Z+ a5 c$ w
    | 实现方式    | 函数自调用                        | 循环结构            |, a( y" `3 I0 ^/ r
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ; a* ^! P  `$ ?3 y| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |9 m* w. b2 `& g; o! w4 x
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    - I8 Y" M+ b! M. x' h  ^1 @; D$ n, @3 Q
    经典递归应用场景# U1 O& |. l. c1 W5 `
    1. 文件系统遍历(目录树结构)7 C' u3 f2 g2 ?. \" v9 P" d8 V
    2. 快速排序/归并排序算法
    " \! T# U; N& R- v  }1 c, ~# A" e4 F3. 汉诺塔问题
    : _- x3 @; v- X3 e4. 二叉树遍历(前序/中序/后序)
    3 d! [, o+ i0 q5. 生成所有可能的组合(回溯算法)
      C$ i3 u' m; `( c8 N/ b* b5 N& P- ]/ _1 \0 F
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    6 小时前
  • 签到天数: 3123 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,# Q  P, L9 Y$ T. i4 R3 J
    我推理机的核心算法应该是二叉树遍历的变种。+ @3 C1 R4 g' ~* m& Y$ ^7 ]3 j; W3 Z. n( [
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    % t. E/ k2 d) W* `( s5 n1 tKey Idea of Recursion
    ' U/ |3 f9 ]( B+ Q( T
    ( T5 z" O) K; t" ]& z4 ?& z9 W! GA recursive function solves a problem by:
    & y: k$ d! ]6 |' i8 e: L
    1 [  k. S5 p; w# Z. b3 `    Breaking the problem into smaller instances of the same problem.
    / {. P" D* j. ?1 `8 G3 P
    3 {' H* V7 a0 [4 u5 x    Solving the smallest instance directly (base case).$ J) E4 [/ a6 X2 z
    4 ?+ @# B) g0 q
        Combining the results of smaller instances to solve the larger problem.
    & [/ B" L2 _% j2 M; x
    ) _. r; B7 `2 _4 u, }Components of a Recursive Function2 S. w0 g' O5 C; }1 c

    # M( R- d/ A' G0 i8 Y9 b4 y    Base Case:
    3 u# d( ?" h/ B4 j8 H; I& k% ~
    : U5 d1 q: E& N        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ! E% P8 k- W2 Q- G
    . m! l% p2 M/ \1 V# }4 x# P* G$ k        It acts as the stopping condition to prevent infinite recursion.
    - A9 o7 l7 ~' Z9 t! d7 x! V
    8 p# _9 \: _* I+ s2 O' g, P. Q2 P/ _        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    9 j: A4 E$ U' ]) v+ `8 @- u6 t9 C; ]1 K. m1 N8 v; Z0 N+ b- N
        Recursive Case:( U. ~4 e# i$ v3 b

    ! K/ x; U" a" h2 C  v        This is where the function calls itself with a smaller or simpler version of the problem.
    8 P9 n+ r( o# B- Y3 o" \
    ! Y9 w) n- w) p        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).& v" t7 Y! l* C5 f
    ; L7 @+ H/ R. b1 y  n9 x* ^6 C+ G
    Example: Factorial Calculation
    ) N- a9 k$ w& m9 T2 m" c
    ' C6 n8 f. k4 cThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:$ B/ x9 n( Y. z) T

    9 `# u8 g# C* u2 ^9 ]) G# I    Base case: 0! = 19 J5 R. \# |' E9 [, b3 p' y
    , D1 Q2 z3 E4 H! B# K1 M, P* J
        Recursive case: n! = n * (n-1)!
    ) `/ ~; r1 u4 @" I1 `  u, m0 E9 F; P
    4 F, g) [6 ?1 \# W( o* H! aHere’s how it looks in code (Python):
    0 w9 i8 b& [  e7 {python
    $ l/ H. z/ ~( \+ ^  |: u6 D; @
    + Y* L7 M& S/ c% N7 Z, J
    " B2 {/ x" `+ _. c) ~def factorial(n):
    . a8 a4 ]6 o: y2 o7 v9 \/ `    # Base case. `- n9 C4 y8 _. M# B
        if n == 0:' G" a6 Q9 F& b, ?! l
            return 1
    # V+ `' J9 s5 }( v$ m    # Recursive case
    & Y/ K8 j2 W% p  j    else:
    " A6 z# T1 e% \: }/ O. F* G$ v        return n * factorial(n - 1)3 C: k  k. J  Y# h7 A, u! A

    " P; a: b7 P1 b# Example usage1 ?6 c# f- j5 v& @7 X6 {; f- O5 `" W
    print(factorial(5))  # Output: 120" M% E! A1 b7 [
    # R  H1 ~# j8 Q' d! g6 X" A# }- Z
    How Recursion Works
    5 U0 t3 J* w0 `) @) e
    ! O% ?2 W0 Y' r3 K    The function keeps calling itself with smaller inputs until it reaches the base case.
    6 X* N: P) e- E: a4 I. }5 D7 M
    ! L+ J. s' u8 o/ b2 l    Once the base case is reached, the function starts returning values back up the call stack.
    , u& B3 |) |" X, R
    6 T7 z* j- i' C) r9 T    These returned values are combined to produce the final result.  t! p- d1 w3 y6 _- }

    + A5 p' r5 Q: _3 {For factorial(5):
    " q: |$ l1 _5 h# F  z9 _! a: u2 n! u; C: G/ `" L
      t* z/ A/ w% Z
    factorial(5) = 5 * factorial(4): S- ]9 E* i, r0 l0 \2 i) c! n
    factorial(4) = 4 * factorial(3)0 V  X& g- t1 B* e) m
    factorial(3) = 3 * factorial(2)# ^, L0 x' `* r2 ^5 v( ]
    factorial(2) = 2 * factorial(1)" l; x! `& D1 s: f* I' I  {
    factorial(1) = 1 * factorial(0)
    ( j* f0 [6 ~9 x. o' W* ~- |factorial(0) = 1  # Base case& W% _4 ]" N: \. x" t

    9 R4 D( u, C$ w1 q- K* iThen, the results are combined:
      y" h) ^, Q: V! \: C. M
    / o3 d" H" m* F& \7 J' E' C
    ( a) L6 a, }9 G& @% B( yfactorial(1) = 1 * 1 = 1
    ' S, t6 [: n! R+ S- }2 o- Ifactorial(2) = 2 * 1 = 2
    ; n( N* V( o8 G( G) tfactorial(3) = 3 * 2 = 67 a% M6 }2 s- x1 i* ]2 O
    factorial(4) = 4 * 6 = 24
    / i/ R" y2 ], C. y. s- gfactorial(5) = 5 * 24 = 120
    ( ^* H/ `( {3 o! }  H; \8 R8 n# u% Q
    Advantages of Recursion
    3 s! \- i& ?$ v, I+ C5 a% q- m0 ^3 M. U, G9 [. G/ S, B; U
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    0 N6 w) r8 q) A4 R. I7 x6 x" e- f4 I1 x( l
        Readability: Recursive code can be more readable and concise compared to iterative solutions.  ^- ^2 m" D8 @2 o+ B
    7 e, B1 a7 \. j) p! I+ ]2 N
    Disadvantages of Recursion+ l1 D; \6 {; X: N2 n) k9 v6 z. m
    ! h4 k1 O/ I! ?# B4 o/ O  ^! d# @: x
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.; _8 K. l8 t( d/ L4 C4 R
    ) T  L0 B6 Z$ X6 ?3 E
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).' t9 j1 c+ H4 n. H1 i% n/ N! R
    - A2 k, S4 n% x1 }: ]
    When to Use Recursion
    ( q! P2 H) J8 y% X- U; ?; \+ z! x. h9 ~  Q
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# y# ^' v: z( h4 E/ ^7 m

    ( ~! W' d1 m5 C5 C5 B2 t* }3 P    Problems with a clear base case and recursive case./ n2 n2 |2 P4 x" V) J
    # u; `5 g; u' r( {' ]
    Example: Fibonacci Sequence
    + g) j$ Y! S) C' a, N4 `5 X- k0 U) m  a. l8 z
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:3 ^0 W0 e) H2 A% Q+ v: l
    4 R0 D$ k  o" p, @/ R- A
        Base case: fib(0) = 0, fib(1) = 1+ m- {) ~: |' @" V' o
    ; L! u1 V* {+ L1 S3 F! z1 D& N
        Recursive case: fib(n) = fib(n-1) + fib(n-2)* p" P4 `1 _7 `' y9 R0 R$ [
    ; e; H5 }' [( B
    python
    - ^/ p" _2 U2 U$ k# s$ Y5 T5 @5 B% x: I1 w+ h, l, B
    1 V7 E! A2 I1 a' N, b& ?3 q
    def fibonacci(n):
    % @8 {4 @! w1 u6 Z- N1 o    # Base cases& b1 }# c, f( G+ J4 p# `
        if n == 0:
    . H) F4 v  |+ X9 c4 A7 p/ g        return 0. w; l. O% a, J, d
        elif n == 1:
    ) M; k# x- E$ P- t        return 1
    ! S! z* ?  C  n7 T+ N3 p0 g7 ^* p  j    # Recursive case  k& ^# L% m* w$ [
        else:
    / M+ J, w4 x: q; D- T$ F1 `        return fibonacci(n - 1) + fibonacci(n - 2)
    7 E+ \$ C* ], `4 o/ g3 D
    " {0 ?& ^7 ]/ x# Example usage
    % ~2 t, U6 y4 W' [& R% R2 c# ^print(fibonacci(6))  # Output: 88 U3 e; s) R+ U" w7 c

    - |# `) d6 t$ {( \: eTail Recursion2 F: F- |; |; _0 r9 P
    3 h, p7 f6 E2 ~* l) d7 N2 Q
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    * Y) V: ~0 a: V8 q0 f
    3 [/ k/ h8 Y8 ~7 f# i0 u( Q, ^In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-20 15:20 , Processed in 0.029781 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表