设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1943|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 . Y0 q- W' c/ ]3 c9 ^$ a

    * k  k: U. H. V+ s+ O) K解释的不错2 ^% S7 |: ?: h' O$ l# K

    6 A4 W8 K3 x3 j) M- t5 w递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# V( k- ?3 l; h0 e

    1 F# \5 O' E+ `6 A5 z) E% t: x* @ 关键要素
    3 o& v) q" r! e# L+ z" R. k3 y1. **基线条件(Base Case)*** `! N0 Z2 @; Z2 y( h. L
       - 递归终止的条件,防止无限循环
    * d' o/ B# ~5 z8 R$ I# k7 D   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , N0 y5 p! B7 n) Y/ v7 z- f1 [2 [) O/ N" N0 Z
    2. **递归条件(Recursive Case)**. O# k4 Z' b8 i9 n  o
       - 将原问题分解为更小的子问题& x% I  F: _4 D
       - 例如:n! = n × (n-1)!; c9 E# z' R$ G1 [6 e

    * _5 b( `9 m3 G 经典示例:计算阶乘
    0 b- [. w4 k9 ^0 M* T/ }9 dpython
    7 }$ E  M! T5 ^" X4 Bdef factorial(n):
    2 X) v: p! R/ [1 K% K# H    if n == 0:        # 基线条件% P) H  D/ D( B* D, ^
            return 1
    ; }2 n, |* b5 X9 [0 r0 m, h6 P    else:             # 递归条件
    6 x. v0 b. n  r* s        return n * factorial(n-1)8 F: }- J' {6 w# o  ]' ^5 r
    执行过程(以计算 3! 为例):$ p) a! }. i' i% e
    factorial(3)# b8 o7 _: l, p1 u
    3 * factorial(2)4 I. ]7 _* ~# ~
    3 * (2 * factorial(1))1 [# @" A  |- j% g, N" u1 t6 k, z
    3 * (2 * (1 * factorial(0)))
    3 D# J  b3 ~# W* X. f3 * (2 * (1 * 1)) = 6
    7 [8 D* S' x& _% k; n  K
    5 i0 t4 @8 [9 q# P- @0 g/ P8 S 递归思维要点$ X, c3 t, y  ?
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    # ^% X1 ^1 _' Y2. **栈结构**:每次调用都会创建新的栈帧(内存空间). G3 ?  ~+ ?6 F+ K1 O  k
    3. **递推过程**:不断向下分解问题(递), T! X$ f# P$ G4 `8 i& X: m  V4 I
    4. **回溯过程**:组合子问题结果返回(归)) V7 x5 A* x$ n
    ' c# h  r- s" A: K
    注意事项+ t3 X- ]6 x9 H# y; z1 A# r
    必须要有终止条件
    ) k0 L5 Q& k' I% i/ a* t递归深度过大可能导致栈溢出(Python默认递归深度约1000层)& h: h8 T6 n( j/ ]( r. Y2 [
    某些问题用递归更直观(如树遍历),但效率可能不如迭代" D* m, N% s3 ?& u
    尾递归优化可以提升效率(但Python不支持)- M# A9 Q1 i6 u

    7 `, g# ~4 H' a2 L. c 递归 vs 迭代7 Q- S2 J  s- Z: \6 f- N
    |          | 递归                          | 迭代               |
    ! s6 ]( x/ a- O! h|----------|-----------------------------|------------------|# G( u" `7 n" U/ l5 A
    | 实现方式    | 函数自调用                        | 循环结构            |# q8 M5 {' f2 r( d
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ g& X& Y! Y8 D+ v  p0 u
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    0 x( |2 _. k* {$ k| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    2 i& _; s1 m4 q& `$ m( B! W$ C
    ' C; r1 P! ~4 e+ P, d2 _- E 经典递归应用场景/ Y. V* V: q+ J5 _, {& u1 ?
    1. 文件系统遍历(目录树结构)) @. o0 {. {' T) g# Y$ c  W
    2. 快速排序/归并排序算法
    / j7 i6 \  V: G, K5 N, ?3. 汉诺塔问题
    6 B7 A6 A7 y; j6 Z( v$ l- H4. 二叉树遍历(前序/中序/后序)- `3 U1 k+ y2 T$ M$ d
    5. 生成所有可能的组合(回溯算法)* c* P2 U% j/ K( [% c8 o4 g( _  ~$ M% p
    4 V/ T2 M" w7 x& B' T5 v0 L0 i
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    12 小时前
  • 签到天数: 3153 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    6 Q( h! I$ \8 o, K' {我推理机的核心算法应该是二叉树遍历的变种。
    / C- t* F9 C% Y9 E* i2 p6 _- N另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 E9 y8 q, f+ m) J! cKey Idea of Recursion! e/ z" p- `( v1 X' {

    $ G* V' ^0 S, ~3 h0 OA recursive function solves a problem by:
    2 Q: s1 L- G  m9 F
    ) U2 J/ R+ }7 y  X, x    Breaking the problem into smaller instances of the same problem.0 k. E) q0 R+ j! A/ z

    9 z: R+ i9 a. u' A7 q    Solving the smallest instance directly (base case).
    6 ]! \0 G! {. K. F$ I2 Z. V/ d8 K& X3 y) A$ K( X+ ?
        Combining the results of smaller instances to solve the larger problem.7 q2 `" V$ _7 P# I; Q

    9 d6 g: B# S$ ]9 QComponents of a Recursive Function5 o  \8 l  [% P; [: Q

    ! M. P  u8 ]& l- I    Base Case:
      e5 D1 ]3 Z& L% ~' G3 v$ D3 Z% j$ Z( k' f) C
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
      q8 ]! j- A3 Z$ }5 _- ^+ B2 N+ V  Q- ]2 s$ a% ?/ R
            It acts as the stopping condition to prevent infinite recursion.* a* C. [* t; i0 o, T" L7 _8 L; a% O( I
      l+ E3 r9 R' X3 x
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & M$ y; n- |- |: M% N$ H& Q6 Q6 ~. o3 p* p" o
        Recursive Case:/ m  W6 v4 Y. S% ?3 F/ |, s; |
    * S% Z+ Q3 e& T! W, g& \6 w
            This is where the function calls itself with a smaller or simpler version of the problem.
    8 S" e9 ^9 [2 Q0 V7 [0 w. f% ~( j' `6 P
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ' p: U+ p1 Y. |" d5 e; Q! L
    : ^" |9 \' ]4 [, FExample: Factorial Calculation$ N7 I3 d* V5 r
    6 }- b+ J! k0 j% H
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    , Z+ W, e1 _( V; B+ j6 y4 H# Q) F2 W% K5 l# Z7 S
        Base case: 0! = 1
    5 D; C7 q9 T! L+ F: I& j0 G
    + V. l2 `7 \$ f  T/ z  e  {1 q4 m$ B    Recursive case: n! = n * (n-1)!
    ' G0 G; J% d3 \  ?- M8 \- u+ o6 U" K+ ?  }
    Here’s how it looks in code (Python):% u+ i7 D  c# n& w: M- n  Q: O( w
    python
    0 t0 o* z5 L6 h4 C1 ~* T: A  A6 b& N) F
    3 f! Y! T1 G3 f3 U8 `
    def factorial(n):
    6 ?0 }6 n- y3 T7 T    # Base case
    , M7 b  @: C$ B9 i+ S4 S% F; ?    if n == 0:* f( F4 A$ K& B, c5 D6 \
            return 1
    / s; H! S) B6 F* l    # Recursive case
    + L. A9 L$ _0 ^6 }  r) t; }    else:
    2 @7 X+ B7 D" D8 S8 n- n3 X        return n * factorial(n - 1)
    : K, d: B# K. \2 {7 J, g7 a, S- d
    : l) K# @; b* w6 S# Example usage" [7 a' y+ Y+ G! ^; e/ t2 X
    print(factorial(5))  # Output: 120
    + B) J* B' i9 q8 i9 @5 }$ V! V% G% }" @2 ^, l$ m0 Q
    How Recursion Works
    8 z& H3 X/ y7 Z6 T  P  y
      W/ B5 ]' }. M+ C  k  l( A    The function keeps calling itself with smaller inputs until it reaches the base case.
    4 j$ F: J9 F# |. Y
    2 [) s4 c0 v8 r# ]/ D( v" p    Once the base case is reached, the function starts returning values back up the call stack.
    , Y" @% F4 R5 x* b, z: r
    9 ?3 c: m, B4 i1 g; U$ B    These returned values are combined to produce the final result.
    5 V$ t9 a4 ~5 b+ j. ?- Y9 w6 I6 X/ p* P0 ^( g" M9 G4 t" j) A
    For factorial(5):
    ; S! Q7 G. o# H) f/ W
    & U+ I% P5 j7 ~
    5 H. P' t' e# S! K( j; s  P2 xfactorial(5) = 5 * factorial(4)8 a  ^0 n7 b2 k4 Y
    factorial(4) = 4 * factorial(3)
    ! H% h  [% `% t8 o& h; [9 I- r' Efactorial(3) = 3 * factorial(2)
    . x9 U. D6 `. G7 z' v$ Ofactorial(2) = 2 * factorial(1)- s2 c0 m- M2 ^  p% D. S7 g
    factorial(1) = 1 * factorial(0)) c% B! N# @4 [8 g( e! F
    factorial(0) = 1  # Base case
    4 B  K2 R) v) `1 x0 l" ~* d+ A! W0 T, \: ?) h, \/ Q% P
    Then, the results are combined:3 F7 d1 S5 U' N9 E# F, i- w; ?

    / r# S- N% k" x; n1 h8 s8 \4 j: ^  v( F4 ^3 h. Z  }
    factorial(1) = 1 * 1 = 1
    8 M# z6 _0 F! S2 l8 G5 y: N) Rfactorial(2) = 2 * 1 = 2
    + U  M* Z' f: _. {# ^' s2 t  E' ofactorial(3) = 3 * 2 = 6
    7 E' }* b3 Z3 s/ D( gfactorial(4) = 4 * 6 = 24
    * T9 S# f& J! N5 n0 _8 n( R/ Q  tfactorial(5) = 5 * 24 = 1200 F6 c7 L4 s: y4 X; i% i/ v) S
    ! \5 n" L. J0 M% |. l, V
    Advantages of Recursion7 n4 {. P2 t. \0 v1 A4 g- Y% z! c
    6 }0 b: t& R# r2 r; ~2 U0 p
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ' Q4 c* c% m9 X: w: H+ h0 e  j! Z
    0 h# S5 ?; A3 u! ~" N# v2 @    Readability: Recursive code can be more readable and concise compared to iterative solutions.) b4 {1 c& l* D3 r
    6 x# J7 A% z0 g+ Q8 J  |
    Disadvantages of Recursion
    % ?! r/ r% q9 I7 c, y3 x8 I" w* o2 q  x( I* k$ B( N" }( C/ W
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! Q7 G$ Y3 w; N3 ^
    3 [$ `& @/ M: N1 ?& e# }. y$ T9 `
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 c) V; s. i# h) o0 |4 i$ c; p
    7 t$ T, a/ s8 t- W5 b2 v, HWhen to Use Recursion* c  {/ x2 C! H+ q/ p1 u

    5 o  f2 a$ D3 D! K0 K- I( T    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).+ V$ T5 m0 ?, T; ~# U# G

    4 W; @& t& ]: m* |( |    Problems with a clear base case and recursive case.+ B3 q9 k/ x" f; M: L

    , J5 G% X0 X7 A2 J5 tExample: Fibonacci Sequence$ X/ m) U$ _- l9 z
    0 i! T4 N/ H* H( t
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:4 ?7 v8 Q3 m+ c1 A( K0 W
    : e1 g3 U  M* r% @) b, U9 j
        Base case: fib(0) = 0, fib(1) = 1/ C( W' w, D2 z" [1 [

    7 A% ]* |( L! W$ N    Recursive case: fib(n) = fib(n-1) + fib(n-2)6 K# G, c0 }$ U- \4 R
    ) L1 B: r/ Q3 y- x6 H* S
    python
    5 |- P  S# ?- ^. Z* q0 I8 G) T/ u( Q4 u8 j0 v# [

    6 n! v& S& x" c4 cdef fibonacci(n):2 J6 t3 y1 I: |( }+ \+ Q
        # Base cases
    7 L3 K# e& O9 D. U/ H7 q* F    if n == 0:
    . i0 Z* M/ x* N: M6 U; ]        return 0( e; j9 L6 n: r. i
        elif n == 1:  w5 Y$ Q9 r0 p3 p; Q
            return 1
    ) ]5 b: F; b' o) W' A( S    # Recursive case
    3 a* X- s6 u4 r, Y$ h, V# s    else:! j) d9 Q2 I4 \% V1 S- u  Z
            return fibonacci(n - 1) + fibonacci(n - 2)
    9 e7 G& J1 q  K0 G, |& ?
    0 V" {6 ^* L! C7 A( j# Example usage
    / T1 ?& ?7 C- n- E4 k$ i4 N: Dprint(fibonacci(6))  # Output: 86 u0 c/ G3 I; q
    1 N: b2 O/ [% K9 B( O/ a
    Tail Recursion
    5 H3 a) x9 u* P2 a& ^, R4 `3 `) Z0 P8 I, h3 _' q, n
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    + s% O& x; P5 y
    , L" W. J3 s, f8 D4 `' t) \In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-24 20:02 , Processed in 0.062364 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表