设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1301|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 , w9 |4 s; T8 g7 ]+ G# Z

    9 k: U' c( |5 o( }解释的不错
    0 C$ O: M- Y% \5 B4 P6 U' y; v) c7 z; z) H3 P: h* P
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    % h' o" y) h: y9 \: U- v3 E+ j
    关键要素
    4 w" o% \3 Y- v) ]6 @  I" s4 a1. **基线条件(Base Case)**
    0 ^# E) T2 j9 f4 P/ Y8 X9 z. }& h   - 递归终止的条件,防止无限循环
    0 R7 l' S* [' o1 _   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    # A8 a; }: B- D5 r" J4 M% @) l" P3 v& i
    2. **递归条件(Recursive Case)**
    + m- ]: b1 Y* P( E3 k6 {, p0 `! ]. s2 D8 }   - 将原问题分解为更小的子问题! U, M2 n2 \1 m
       - 例如:n! = n × (n-1)!! I( o$ k7 j( p/ j

    & d5 L" O: b# a5 V0 a 经典示例:计算阶乘
    . w8 y  n! m7 ]) v7 W3 o) W* Spython6 f4 e0 e5 x9 ^: ?) ^8 b' V
    def factorial(n):
    " ~- F+ c# B! W% B) X4 r    if n == 0:        # 基线条件
    + B: ]9 u2 y/ M; w        return 1  V0 J) ^& A/ v0 C
        else:             # 递归条件6 z/ r8 F5 M& b! p( j. J8 J* ^
            return n * factorial(n-1)! a- u+ M/ x: A/ @9 ?
    执行过程(以计算 3! 为例):3 \9 m5 i+ S# ~2 w0 b, ?
    factorial(3)5 L/ Y5 h) f6 ?+ y+ W- u
    3 * factorial(2)' ?! M6 c8 u, T  ~2 d) k- H6 \
    3 * (2 * factorial(1))
    7 `( a# [* j& s" w; G3 * (2 * (1 * factorial(0)))0 @. ~' y, p0 m3 Q+ F+ Q
    3 * (2 * (1 * 1)) = 6
    7 ^& |4 [0 @( Q; t: O" R/ h9 u* h4 o
    递归思维要点+ \: q. {7 S) s- F8 j9 b/ V
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    8 L0 i. G5 y: K$ Z3 t2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  _6 g1 R9 w& n  u9 {2 }
    3. **递推过程**:不断向下分解问题(递)
    : s/ U& q  o5 A/ ~8 H4. **回溯过程**:组合子问题结果返回(归)- g% k7 b/ S4 z# k: w

      H# x( F1 V" I& E% y% \/ a 注意事项- N( _: t3 q6 R; X: G
    必须要有终止条件
    % }. F5 d# l8 M( x+ n0 A# r  G7 B递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) O- Q1 H3 a/ j( X7 [6 u8 J' b' H  q
    某些问题用递归更直观(如树遍历),但效率可能不如迭代& ~6 u# q6 o4 \$ D
    尾递归优化可以提升效率(但Python不支持)# X% b& l1 B* P, W* Z; J

    & _. `# v+ ]$ {% S$ {/ I" ~ 递归 vs 迭代4 o6 v2 l6 p6 U1 u! @7 l5 A3 D
    |          | 递归                          | 迭代               |
    ) ^8 l  j4 h6 R( [|----------|-----------------------------|------------------|/ ^+ s3 }$ N. L' Q3 y
    | 实现方式    | 函数自调用                        | 循环结构            |& W2 C9 m0 D0 j
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    1 z2 g" f# I7 H  X7 C  M" G& @1 || 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |$ v/ X2 Z$ e) _
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * j$ s# U  H) U; @; m% T- S$ n8 B* h& ^7 @
    经典递归应用场景
    / U* Q' y; P; c9 }. D. Y4 L1. 文件系统遍历(目录树结构)- v; b+ [2 Q5 M6 P: X$ j. r- v4 ]
    2. 快速排序/归并排序算法
    ; q4 Y) W" G  N2 ^3. 汉诺塔问题/ K. s7 [9 q8 B1 ^, J8 K3 J
    4. 二叉树遍历(前序/中序/后序)
    : D" t0 S9 p) R, O! B5. 生成所有可能的组合(回溯算法)
    1 L9 {4 P9 M/ X  m6 m8 B! Q6 S- A4 t
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 07:29
  • 签到天数: 3106 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , [: m& `! m3 R! B: F; Q! z) D我推理机的核心算法应该是二叉树遍历的变种。
    7 C2 ^0 a% I  c, l另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    7 R9 D7 ^% |; F+ L4 n9 n) c5 sKey Idea of Recursion, m3 k. t. L9 p6 f

    - q! p0 t: m  ^8 V) o3 P0 I. t+ a+ j8 dA recursive function solves a problem by:7 D- G1 v/ p/ H1 C# Q7 g. r
    % S7 d) {6 A* t
        Breaking the problem into smaller instances of the same problem.
    / e) [" m7 q+ M
    , X+ q- P. w3 b% T" g    Solving the smallest instance directly (base case).
    + }8 N2 q- R0 C! C
    * `# r% R$ Q1 W+ k! ~2 L    Combining the results of smaller instances to solve the larger problem.0 ^2 E) _" V2 \/ M' O

    + S/ t9 z$ E; [" l: fComponents of a Recursive Function( z6 m8 Q2 z8 F: [

    ; X+ y+ O5 B9 A& U' Q. p' q( }% K    Base Case:
    5 M5 O+ R  \2 h/ r  t  `0 [+ z) Q7 E2 G8 B
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 ?% D: t3 b. q1 v) Y
    1 i9 G) S9 C; p1 m8 h        It acts as the stopping condition to prevent infinite recursion.' P" }# a1 a  _& |
    * T/ |$ r- ~! W+ \6 ~# c) ?3 s; b
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: R; Z. q9 E! L( |  j' M
    9 p$ l. s$ p  u8 Q) ?% @  \
        Recursive Case:, o; t/ `  H: R, o( n
    # N5 ]8 a  K% r* G
            This is where the function calls itself with a smaller or simpler version of the problem.# s4 K. z: o8 f4 p+ `0 ]7 O

    , v! j4 {, F' G( O6 P        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 g  V& ]3 q# m( s! k/ P
    7 D# t+ Z+ J  _- n
    Example: Factorial Calculation9 e, h+ s% X4 M

    9 z& k3 @' n; S% |7 a$ a0 B1 {2 J2 mThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    7 T- g) X, {- q; w  e; R6 s
    ' a  b0 ~- F, B0 A8 D    Base case: 0! = 1
    7 K) B9 q8 v5 ~0 g2 V
    # L2 r. k7 j" b. P- x    Recursive case: n! = n * (n-1)!
    7 K) \6 Y8 D/ j1 K7 M+ a- b: ~3 D6 _$ ~. F
    Here’s how it looks in code (Python):
    % i4 Y' w6 N- C$ V) h. }python
    # M6 _/ a6 f3 h% x
    . L1 t4 ^7 l) }. M% Q) X
    0 Y) `3 }  }" }! w, S4 Xdef factorial(n):2 Y4 K7 k- v) W* k6 |
        # Base case" M. b! U( K. P9 k
        if n == 0:7 N7 H5 L( {* i! M) a7 N8 h$ u
            return 1
      x' [" c* w( _: q    # Recursive case% U' I- A, k0 `
        else:3 D" R6 Z. c( s1 O7 O- R
            return n * factorial(n - 1); T6 z' L7 c2 ]4 X

    1 M) P3 a6 e; `" n9 c/ M' e% V# Example usage
    8 P& ^' v& _9 Y/ {( N9 ^$ n7 Mprint(factorial(5))  # Output: 120( D  T  p. o4 U" F

    2 F7 B. w) y0 x3 \How Recursion Works4 y  x6 S# r3 a0 [! t% ]. j: z

    3 V9 d. V. C+ R    The function keeps calling itself with smaller inputs until it reaches the base case.
    8 [. d& u/ X$ h2 U8 A" c7 Q* _8 i. S* B7 C6 d
        Once the base case is reached, the function starts returning values back up the call stack.& b1 J  h  i' i- v& m- A
    8 u; z$ O. ?: Q9 q2 W0 F6 S
        These returned values are combined to produce the final result.3 |! X0 K/ K( W2 \* T# V1 @

    ; s3 y# k0 T& l4 {1 W( a3 l, W1 \For factorial(5):
    5 O6 g3 m1 T  Q$ `: f
    6 Q+ X# C; a6 l7 M! _- L0 D) O2 |; y+ A9 s5 z$ Y( B; S* H
    factorial(5) = 5 * factorial(4)+ a- [2 R, b, h" S
    factorial(4) = 4 * factorial(3)
    / c4 T. ^- R$ P0 S+ I/ Kfactorial(3) = 3 * factorial(2)* z, [" t& I7 \
    factorial(2) = 2 * factorial(1)! i/ L/ u9 @; F( W- ?$ C
    factorial(1) = 1 * factorial(0)
    6 y- y* P1 M! o& H& E9 c9 Nfactorial(0) = 1  # Base case
    9 N2 T* H: N. P0 ]/ F4 ?! m& m! X9 [! v. }
    Then, the results are combined:
    4 @& M$ L. ?3 l2 B/ x0 D& `" ]" ~0 X/ h( ~' ]! c; l, q6 j
    4 z9 F8 [  \3 u- P# H
    factorial(1) = 1 * 1 = 1
    + \  \- |1 V" O" {factorial(2) = 2 * 1 = 29 i8 p1 M# z/ x3 D1 H5 S* S
    factorial(3) = 3 * 2 = 6. ^* G$ ]% g+ e" ?
    factorial(4) = 4 * 6 = 24
    ' {, H* j8 l) I; ]factorial(5) = 5 * 24 = 120
    9 i5 ?9 l4 N# \5 }3 Z
    / N( e3 K; A* ~Advantages of Recursion
    8 M: F+ r* c7 b; t  b7 t) K. @* x+ L6 a& E1 M9 U' l3 h
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) F" i, m! v, v3 X/ b$ ~+ j1 `

    - |( a2 y4 [5 E- m, e1 `    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) r; t" o" r$ S1 i* u& _# N  y3 L, c! {' _. p4 R
    Disadvantages of Recursion
    4 c  m' M9 S) T$ R
    8 Z7 h3 }6 Z" C; S: K! e    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% @3 @; S4 R+ ^9 v4 `9 s
    8 g5 a+ g& h8 I' X2 r$ Q. g
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).! R- }0 \$ |$ M( b2 V0 k
    9 w8 S+ m" l* p+ }
    When to Use Recursion
    ; I% J5 ^4 U* V9 I  T1 B2 E  G# {, n" i0 ?) z- R: J; c6 k
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) J6 B( I2 H2 m6 W2 I; q8 E3 z

    ) u& D  R" j% m* q; U2 E3 m    Problems with a clear base case and recursive case.
    6 K: Z/ e" u; E& w0 v% }% {' \8 k3 u- g0 ?: X) z
    Example: Fibonacci Sequence
    0 x. S: ^* z6 C( N  |2 ^
    . t# B2 i9 y0 D! }9 A) pThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    7 p) N9 P* E9 K. N# m4 M* ~( o7 s6 A% y
        Base case: fib(0) = 0, fib(1) = 16 ~( G$ L$ `3 o% r5 x+ l9 `
    & j" j. e2 A, D+ {
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 ?2 `% r+ H6 F: W. B
    4 F( H8 u3 [: l$ v  z# N* ~python
    - o. ]) H& ?/ x* N$ b5 X
    ' }0 `- k( e7 e& t: }8 ^4 y- o# B# X+ ]5 \* `* \
    def fibonacci(n):9 }" J; w  ^  U1 t% I/ X5 }
        # Base cases$ d% D, p  H3 C! v( e8 j/ j- ^
        if n == 0:
    5 X- E! B; P9 b& e/ C# S        return 0
    * n: X. S2 x0 ~6 Q& `    elif n == 1:
    0 M) d5 w( Y- N( Z5 F        return 17 Q! Q+ Z( W1 m  o
        # Recursive case
    ' f. D  j/ r1 v6 E% D    else:- m( y4 X  F/ m4 Z: o
            return fibonacci(n - 1) + fibonacci(n - 2)
    - Y, a. G0 b8 s+ @3 d0 q
    0 Q( E6 H( u8 X# Example usage, z4 {$ X! K5 e
    print(fibonacci(6))  # Output: 8
    * h. x  d- Y/ z! d' q5 X: ?2 \& j" e* g. @% F0 ]+ K; w$ M
    Tail Recursion/ Z7 c/ }0 E' v8 q+ [
    8 z! [  G* N+ G# e: N
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).  \/ n: d' o; W' b/ j  A* T/ E
    $ i' }  d4 ^: ?9 J" E
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-3 06:30 , Processed in 0.030665 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表