设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1293|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    , v  c0 u$ ~' E" R. ~8 b
    1 s9 E$ T% f' _" |解释的不错
    " E) t9 [8 B. r6 z! {6 N! Q3 F, i- I/ v" F
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。1 p& Q0 c  A  b

    4 d# ]$ D% a6 V) D; x% M' r. T 关键要素
      N8 h( I" X' ~5 x6 ]) R1. **基线条件(Base Case)**, n+ P6 A/ k* ^. i# L0 ^% C' S
       - 递归终止的条件,防止无限循环6 A8 b' ?( [8 _6 n( X) @1 W
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 12 Q0 [6 Q: o5 }) z
    % j* j' f. P/ t2 a. q/ Y, q$ ?
    2. **递归条件(Recursive Case)**4 N' d8 L/ _+ o6 u* E6 R% E& L
       - 将原问题分解为更小的子问题' K9 j5 B9 S3 ~( t  A! N
       - 例如:n! = n × (n-1)!: d! V( C, N/ N$ N

    % K; ?' H9 _- m 经典示例:计算阶乘1 Y$ Q, Z+ R; ~2 B$ o# l" A# ]. E
    python
    * ~. s3 h) i- N9 {) C/ a; b2 Rdef factorial(n):$ v3 A4 E! i( y( L
        if n == 0:        # 基线条件9 M, J* \% [7 v
            return 10 j; \0 ?$ ?  p2 \
        else:             # 递归条件
    7 A% E) y- k3 B' m4 Y        return n * factorial(n-1)/ K" Q8 ^( F0 R5 E: q" H6 `& C2 y* [; l
    执行过程(以计算 3! 为例):
    ' c, w0 L3 Q6 Q/ L5 ?4 }) D- I- x& ~factorial(3)
    ; _* I' g% S3 z9 M3 * factorial(2)) }) k1 Q3 T2 ?
    3 * (2 * factorial(1))' y7 ?4 v. r! {  @8 H: n
    3 * (2 * (1 * factorial(0)))/ O8 S* l! W3 B* g9 _' n" ^
    3 * (2 * (1 * 1)) = 6# n1 L' u3 x1 o

      ]" F: a- C7 d! n5 f/ o 递归思维要点1 E+ l: [; ~, Z
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑4 o/ H" P* @0 Y+ V
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ( b* Y3 r  l7 I; a- {" e3. **递推过程**:不断向下分解问题(递)- c2 b" }% P7 k' u( k$ W6 p
    4. **回溯过程**:组合子问题结果返回(归)
    / s9 z; ?! V) j; b  ?0 G; [; a; C/ G* P0 w9 P- [& m) ^- K/ N6 }
    注意事项
    * m, a+ u; E8 b, @必须要有终止条件
    - g  _+ Q2 D7 m1 b9 L3 U递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # r' X- \5 {0 q% N/ y某些问题用递归更直观(如树遍历),但效率可能不如迭代7 }! M( C4 l7 s/ s7 r& w# k5 v
    尾递归优化可以提升效率(但Python不支持)
    : Q3 u/ M* ?( O+ o! m
    / ^, A) @/ j0 R 递归 vs 迭代
    $ A& u  l1 g: v9 a( u( I7 l|          | 递归                          | 迭代               |) [4 t' R% ?& E. I3 B
    |----------|-----------------------------|------------------|4 ^$ w) Y% A" o9 f. v) k, w' W  H
    | 实现方式    | 函数自调用                        | 循环结构            |6 ]7 ~$ X! q" v5 N* L' E
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    % H' o: Z" r) u1 ]  l( e| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    7 z3 Y9 o* ^1 L* @| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |# l; d; x% c, m) h. h$ Z- g4 X
    9 h8 b& a7 A/ Q$ o! c
    经典递归应用场景
    5 x" h9 Y1 H7 k% D; {( b; t" Y1. 文件系统遍历(目录树结构)
    ' \# F9 _. i! L/ l2. 快速排序/归并排序算法0 N" G$ `6 Q# }% k8 i0 x, w
    3. 汉诺塔问题
    9 j2 F$ L' ?) e+ Q  \4. 二叉树遍历(前序/中序/后序)
    1 y( J9 W" f* _/ J/ l% O5. 生成所有可能的组合(回溯算法): ], A& x1 Z6 i) z! N0 g" w2 h

    / t8 L7 o' I! Q4 C8 g试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    13 小时前
  • 签到天数: 3106 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
      d$ e' B! l7 n' O  s& V我推理机的核心算法应该是二叉树遍历的变种。
    " k! t$ D& \; I8 W" [; s) x. q另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:" H# K" E" E; p3 t  z
    Key Idea of Recursion9 K5 ?2 k/ t/ ]' W1 ]4 y3 R- N
    : I7 L6 f0 T9 W
    A recursive function solves a problem by:
    ! X8 m) T- j+ @' _$ N) w/ A% o. Y+ W) B* P# m' s4 L- [' {9 D
        Breaking the problem into smaller instances of the same problem.
    ! ?! B( p9 Y# }; E* h
    7 F* C( P% F' v; O2 Q5 \* P. ]. K    Solving the smallest instance directly (base case).2 a/ K9 ]7 o& r, |4 l4 v8 [
    ( V2 V( _- j2 y
        Combining the results of smaller instances to solve the larger problem.
    8 S) v1 i( j$ `' M5 ]& h
    6 D9 P* S: J7 d0 ~! \' y, \Components of a Recursive Function8 e; B/ N7 f9 T& R, n
    9 [  E: q2 x- r! i; E" i. Z
        Base Case:+ n. o( ~& k* r( C8 m1 K
    8 [2 p" O, i# p3 ], i: M, g" [
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.7 b9 G8 v9 Q" l. ^& L
    ) q) Q% U  |  B7 g, [
            It acts as the stopping condition to prevent infinite recursion.
    0 o1 R; ~( y9 x: t9 R9 Y3 l( O. u9 r0 E
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.8 ]0 s, q( w. O( Q6 D

      {% g. B5 W. i- N- g( }' r    Recursive Case:
    3 W) Q3 q) S  J( P; D1 x0 Q% g/ G# {. }; q
            This is where the function calls itself with a smaller or simpler version of the problem.; E, W- n4 }- T; M: }
    ' A/ Q# W1 A: n* O& Z( G
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ( b) e! S/ c% I2 J" x
    ! v" z1 w# m- Z9 N# c* u2 |& EExample: Factorial Calculation# h5 w+ z. N4 u( U( Z$ l  O) R$ a0 v

    + l; x- I  c+ c6 MThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    # M/ o9 G$ @# b  B7 D! d
    5 P2 i. C' ?' r, j9 h    Base case: 0! = 1
    " C1 W2 b& Q5 W' N* C+ Z8 i
    4 W9 ^* y# }( p$ O3 H    Recursive case: n! = n * (n-1)!- }! l/ a3 A  `7 X( D) T0 f

      g# [( S. v; f' l. W- iHere’s how it looks in code (Python):3 L' c  `/ @: A$ q
    python
    & |" P: B" e! \5 F* e: O0 @) V/ e9 J- @

    * {7 ]! r  Z& _( Y3 q& \( Mdef factorial(n):
    % E+ [+ f# c0 b  D    # Base case
    ! R7 D- B1 }7 h' P2 ?5 m    if n == 0:7 k! z3 g( A  U8 n
            return 1
    6 Z! L& H2 [8 E% L; h    # Recursive case; z' ]+ T. X5 J3 g* I% O% j, |" f
        else:
    3 w) y* S% J# H' X, ]7 L$ _        return n * factorial(n - 1)
    ' B6 v, I0 ~* j; ]8 B! }8 r
    * u5 {, E( P# k3 o- E5 V2 Z0 s) G# Example usage
    / R$ f3 I/ q9 W; k# }  O+ W) R- p$ cprint(factorial(5))  # Output: 120& |. i$ K3 D' P6 f4 w, d
    6 d4 A6 @& u! h4 b, C# ^- G
    How Recursion Works
    5 s' J* p: k" d' ]3 z2 f
    " m3 K0 q7 w4 n  J& U' |    The function keeps calling itself with smaller inputs until it reaches the base case./ o% y7 ]( H( |6 {# g& m" i

    . w% F4 H! W& _& d) d. T    Once the base case is reached, the function starts returning values back up the call stack.3 U  ?6 o5 _) _
    $ M% k& J/ x" ~$ q' y7 ~* [8 D3 b
        These returned values are combined to produce the final result.
    * L  B! f8 x2 t6 B- j" S0 G; l- G9 b7 O% ^
    For factorial(5):- b0 a! j! U$ Y6 _
    6 ]& J  v4 ~1 [* A9 y1 K& k
    2 e7 x2 A. ?/ D6 ~8 C5 t1 \! m
    factorial(5) = 5 * factorial(4)
    . {" D: K/ k9 |% X4 \& v2 Zfactorial(4) = 4 * factorial(3)
    4 w6 m! }0 N$ K. R8 Rfactorial(3) = 3 * factorial(2)% w' {  r* _) B4 G( |. I: D  ^
    factorial(2) = 2 * factorial(1)9 v1 c8 J8 u  I$ q0 A1 C
    factorial(1) = 1 * factorial(0)
    1 e! t  f& S; e* y2 nfactorial(0) = 1  # Base case
    4 J; y; m7 J9 S2 N- H6 u" U# G4 |) @; x+ J5 t5 q, \# g$ Q2 U# T
    Then, the results are combined:
    / M: E/ ^! ?; H; ]6 e+ @2 a  M
    / S, B" _: c1 ]. ^5 ]5 l
    * J" x/ p. B9 J" v& O$ s- lfactorial(1) = 1 * 1 = 1
    : g1 W0 Q8 h8 v- P: c/ P2 s2 i4 k4 ffactorial(2) = 2 * 1 = 2; {% c& c7 s; }$ b, U
    factorial(3) = 3 * 2 = 6
    0 m4 q, U0 o9 Z( O* Wfactorial(4) = 4 * 6 = 24
    . Y+ }' Y2 ?3 r' K; ?6 w3 lfactorial(5) = 5 * 24 = 120
    + E: z) w4 p, E2 c/ ?. K* x3 F6 h4 F7 [
    Advantages of Recursion
    % F* m. ^- [2 U+ |- R* J2 N6 B" E# f' S; l" c
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 e/ C( @( D; |( _2 U) L

    , Z' {  C& j3 f    Readability: Recursive code can be more readable and concise compared to iterative solutions.: z. j$ J4 W+ d8 N6 j3 S

    0 ], t* J9 e0 \4 Q0 DDisadvantages of Recursion1 x& H1 O- ~6 F

    8 m% Z4 H" e3 J3 b, h. m2 n    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    6 [6 S9 z7 M0 Y: T' i' |' b  F! B( E& K1 _3 \) G3 T1 w+ }
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: n1 O1 w5 w* y1 H

    ' I/ U3 j- ?' B( x3 nWhen to Use Recursion( K2 d- A( Y: {8 k% U  }

    ( V( q" _$ _& l8 y5 `9 T. _    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)., B$ T/ L4 V  w6 v# C3 |% c
    % r4 b0 @( z- {/ P4 y+ R6 C: J! _# B
        Problems with a clear base case and recursive case.: @! O5 H+ d! r

    5 ^7 W* D& A( c1 J7 z. tExample: Fibonacci Sequence) ]: ^- P  P, w. ~
    . z- s( z+ K- e+ u/ f. S, M
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ i; X- o, a' L
    . I, ?9 N% w- b9 T- {! s6 x! B! S
        Base case: fib(0) = 0, fib(1) = 1
    , R' F% B$ G0 q
    2 G9 T4 ~; }% E6 G; r$ b    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    4 Z8 I1 C! N: @- K+ s' [: |
    4 Q' V2 m: f) }6 e3 T  x. i* ?1 npython1 a" c" N0 u5 p% {+ k& ^8 J/ O

    3 M! d: r8 R) j- U' i: u& Y5 C7 B( b. x" c! ]# I3 W5 |% t' p
    def fibonacci(n):
    + [$ Z! p% e- y$ B. T& p# a    # Base cases9 e' }9 K& ~8 J1 W, C! Z: h
        if n == 0:
    " {; X$ ^5 Q$ f( s6 |, \7 P        return 0
    ! B0 J6 a  [4 s, K6 {% \3 n    elif n == 1:6 x& M; j8 f6 q  U+ C; T- S
            return 1
    " F, _, B, l2 I; @: T    # Recursive case( A) R0 E* s* S$ b
        else:5 B6 m- d! B  @7 ?0 H$ m+ \( j% h
            return fibonacci(n - 1) + fibonacci(n - 2)
    # r9 n/ r4 O$ W  T' J2 B, {' _' K; x# h# r( O
    # Example usage$ a- H& X% f" `3 j# U
    print(fibonacci(6))  # Output: 8' F4 J8 [/ N  h( @
    ! a8 Q) i: S3 v/ f& k
    Tail Recursion  ?( x9 B0 F: g* {! |0 b

    ) F2 _" f1 _: D3 O- D! BTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).- ?/ f$ @4 T$ z4 w" `  H

    : ]5 a) R$ w3 }, cIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-2 20:57 , Processed in 0.032392 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表