设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1432|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ( z1 {# Q/ r. `) k. V
    : r+ q, B4 d7 P3 x
    解释的不错
    - W" n& K2 @  K
    ' ^( v8 \. ^' @0 f6 o& w* i2 V" \递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。4 J& N# q1 ?. Q7 W& A1 M0 c

    ( k- ]; w& b! ] 关键要素
    ! n1 ]) u& I  m' s1. **基线条件(Base Case)**
    . T4 C  Q% T5 o+ i( c" m   - 递归终止的条件,防止无限循环. y3 Q4 j; k/ w, M% O/ b0 p
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 o- q6 K1 t& R& ]3 h0 O
    $ C6 u0 i8 ], N& C
    2. **递归条件(Recursive Case)**
    8 D+ x# Q/ a. y" e. a   - 将原问题分解为更小的子问题4 Y* ?& [( t% T9 Z) a) E' f) W
       - 例如:n! = n × (n-1)!: \9 i% I7 W: @" e# i
    " x# b, e" J! G. w, \+ {8 b
    经典示例:计算阶乘
    3 E4 h; t: b+ M8 q$ I% Y& apython
    2 j; }4 |2 C$ f/ ndef factorial(n):; R5 W6 ^' p  }. Q3 Q
        if n == 0:        # 基线条件- V  m- {) j1 y: g% R% K
            return 12 [& T& ?- G  i  e" [
        else:             # 递归条件3 J, g0 s- n! w$ e: A
            return n * factorial(n-1)
    ' @+ g. e5 J1 _' H4 f" A执行过程(以计算 3! 为例):
    3 N1 b7 g6 [" |) G! c# ^factorial(3)
    * `! C8 t$ U9 X3 * factorial(2)* ]$ m: Q% z! S3 c
    3 * (2 * factorial(1))! y/ b5 K8 w) g; J) y# N2 E
    3 * (2 * (1 * factorial(0)))
    3 b9 c# a# g4 E8 y2 _3 * (2 * (1 * 1)) = 6
    * f  H9 L9 f# n& ?* \1 Y* W' n* c9 ^9 K+ M
    递归思维要点2 C5 E# e" ~$ G: b1 e; L* b
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑  n5 |$ W$ v& ~
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)+ a+ v. m% l3 a* Z2 _& h! W  r' v
    3. **递推过程**:不断向下分解问题(递)
    : i. Y- ^7 }9 R8 s) q4 L* u5 i4. **回溯过程**:组合子问题结果返回(归)+ y# S8 k+ c7 W

    9 w0 [5 h' G) y, [6 V0 z0 _& k5 y 注意事项
    ; Z' C+ K0 s3 n4 ^) s/ Z必须要有终止条件
    ; N$ l/ e1 A6 I8 Z0 `# }递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- \8 b3 `, h! W; d
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    4 B- x1 }. m! \% O尾递归优化可以提升效率(但Python不支持)& Y+ ], d4 I! r( U3 ~: r) S1 k

    0 W9 f" e$ M$ R& J+ o 递归 vs 迭代8 e; a+ G. E6 O
    |          | 递归                          | 迭代               |5 c4 l2 o# n) o4 ~
    |----------|-----------------------------|------------------|
    3 C) _/ K+ e3 U7 R, `| 实现方式    | 函数自调用                        | 循环结构            |
    6 \& e% a# d/ `3 g( W! A| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    8 J5 }5 p. p5 z& \  W/ g  P/ X9 O| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 H& Z# M! W, m8 e* w| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |2 t5 [3 T: e' A. g+ u  e! ?2 n
    / C  y6 m5 J) W0 {% r' X  @
    经典递归应用场景
    " s. \# v- ~- r3 Q3 \* V9 h& c7 b1. 文件系统遍历(目录树结构)
    / c! x: s9 u, w4 B1 c% e$ q+ j2. 快速排序/归并排序算法6 [8 y  f; Y0 Z3 r) @
    3. 汉诺塔问题
    ; k1 ]$ X5 x4 n' G3 Z4. 二叉树遍历(前序/中序/后序)3 D$ Z5 h1 D! z% Y
    5. 生成所有可能的组合(回溯算法)6 B9 q3 y8 Z+ F# m1 O8 S

    2 ~) `. C; o% J' K' n试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    12 小时前
  • 签到天数: 3113 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,+ y8 E$ Q2 K3 g- k' Y
    我推理机的核心算法应该是二叉树遍历的变种。
    % U" i/ y7 X$ f) I% D9 K( H另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    9 B0 d  J( p5 _6 c7 F$ e: W6 J8 FKey Idea of Recursion, y8 @" w7 {2 h' O

    ; R! H% [. s. [- g: s+ vA recursive function solves a problem by:
    . G8 n! f# M# b6 F# R8 h! v: S2 N$ @: y; \. O
        Breaking the problem into smaller instances of the same problem.* Z4 y$ ~! j/ e, \9 p8 \1 @6 X

    7 U, H0 F2 P$ K* d& {& Q    Solving the smallest instance directly (base case).
    5 z" ]) N8 a8 K% }2 r4 k
    2 K" o8 k( m/ Q  {% P" q    Combining the results of smaller instances to solve the larger problem.
    ; s" S( m, P# R. B  [9 }8 C7 i# O
    5 Y) ~: H; l0 m' V& Z7 [Components of a Recursive Function9 V6 C1 Z/ t. J# [. `. ?  U7 q
      B: h) n3 z% p& k
        Base Case:3 i4 B! Z5 \0 n( S6 ?2 a" c$ `

    $ h( ?1 v( ]0 e        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.' O& A3 t9 c( c4 L: q$ t& q

    $ @. s. k! B# e" }) d2 H        It acts as the stopping condition to prevent infinite recursion.* h, t0 {% t; S$ f
    0 i& n2 R0 g6 I# w! Y- z/ s( O' [
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.  e& Q) E) i: G& x' U

    2 T; m) W8 ^$ g2 l    Recursive Case:
    & h0 @+ |4 W6 s' Z0 {# X) B9 p, ]; p& `2 l/ u
            This is where the function calls itself with a smaller or simpler version of the problem.
    % b( h5 T0 `  T1 f4 T( ^8 l  I' r# U3 M/ d5 \: A. n" r9 Y
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).! w  k, A! H: a
    , I6 M" Z) H3 ?3 s, g  ^
    Example: Factorial Calculation  |0 V5 M) f3 x7 }4 o0 b6 \

    $ w2 L4 {3 q4 E, N$ P3 y+ yThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    0 W  A5 C$ v( `" d1 ^1 ^9 \0 ?
    ( p9 J; |8 K) p; d    Base case: 0! = 1
    1 \" g  L1 ]) Y; Q1 o  K. q- I1 c- z
      l  J- P' S, j( k, |* O! e    Recursive case: n! = n * (n-1)!5 U% K1 M/ {! S- [6 s! i

    $ F" ?, J7 k8 \7 P  NHere’s how it looks in code (Python):- m7 F9 H! Z9 _
    python
    , }! P- l- o0 A
    $ K4 S0 f/ g: }7 N$ l4 ?' X1 ]" N8 J: G/ X7 k
    def factorial(n):
    ( n" \! l! M+ O, Q) T, H# w+ I& L    # Base case
    % E" _" b  }" ~. n1 D    if n == 0:
    5 t9 p/ K% z4 m+ u# w        return 1
    9 K" c* n; [9 `' T    # Recursive case
    9 y3 o- R2 e/ ?4 `7 b/ W    else:
    / P3 g, U- U7 e9 T+ l1 O* B7 @        return n * factorial(n - 1)
    4 u& s$ |9 R3 e$ e. u; K$ `- r3 T9 v5 \, b
    # Example usage+ B5 R: u! ~6 T' A) S( }/ j/ p$ g
    print(factorial(5))  # Output: 120
    % q1 U* o. H! Q) p$ Q2 G
    . c' K7 \& u2 ]9 F! {% x# LHow Recursion Works6 h7 j' x. z( c+ {$ {; c- r4 x* c
    ' U' i! _' y( i' n  u' Z
        The function keeps calling itself with smaller inputs until it reaches the base case.5 Q! r0 K- n) ]. ~/ I2 J6 D
    . k4 p3 s8 K: }+ K/ U. O
        Once the base case is reached, the function starts returning values back up the call stack.7 d2 l0 t. }# b; [2 |, Y

    9 Q& A& ?- O9 _/ m+ K5 p4 s( b    These returned values are combined to produce the final result.
    ' e) N1 z$ }1 I9 |8 K$ `! U5 u' d3 {1 K, a) g0 j% r4 n
    For factorial(5):# q, R# N$ ~! ^: e- P, Z) C

    ) ?' [7 d! A* [4 e# M  K+ V9 f) ~0 B" H4 u6 A
    factorial(5) = 5 * factorial(4)
    8 H$ D6 P# d9 lfactorial(4) = 4 * factorial(3); l& ~& t1 b, q+ Z
    factorial(3) = 3 * factorial(2)6 \- d' y4 Z' W3 V* s. Z
    factorial(2) = 2 * factorial(1)4 ]% F! v# H: J& H$ Y' r  H3 q, e
    factorial(1) = 1 * factorial(0)/ G! V) s+ K3 b7 h
    factorial(0) = 1  # Base case/ L6 z' }& d; V7 v

    9 O2 ?3 Y* k5 u+ H  kThen, the results are combined:
    1 r# w5 I- V; C! _8 i7 y) C$ d) x5 L& l; n) E

    ) r2 U& P) H+ Z2 ?factorial(1) = 1 * 1 = 1
    : W6 S# \  G% J4 g5 jfactorial(2) = 2 * 1 = 2
    3 j7 O: E* y) m$ W, J7 bfactorial(3) = 3 * 2 = 6& S  L" I" H7 c0 I8 r
    factorial(4) = 4 * 6 = 240 x! }% X2 z1 ?1 s7 O# G
    factorial(5) = 5 * 24 = 120& [$ f  x9 D6 D; k

    & C' s1 ^: `" Z. k* |" [# _* ~Advantages of Recursion6 d/ _5 U1 @3 ~
    + F) Y  v# }0 S* W1 R$ D
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    . R$ n1 z3 V9 _  M7 T: S7 n5 ]* I  k( D8 k: {7 L8 C2 G
        Readability: Recursive code can be more readable and concise compared to iterative solutions.5 ^; O; m8 @0 j/ \. q3 U
    + l3 Z/ p+ p0 @: w) m8 Y$ H
    Disadvantages of Recursion& c$ e3 k$ Y" o' e) d

    , G. I8 Y8 h0 Q9 J3 C1 W  A" q1 k    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    8 `4 Y* V: n6 d" R
    ' ^! G# V; K( g+ M% {7 c: E    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    # Y* w# I1 `* }: Q( V2 B: n2 R0 F0 o0 e( E$ v( C7 C' W
    When to Use Recursion7 g9 v% S! u8 u/ c2 d2 z  G

    * [) ~: {: F/ ]$ o8 n    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% S' a% h- @4 J4 f# B# R
    + Y) ]$ j9 I. J, W
        Problems with a clear base case and recursive case.3 R$ u4 h; o; m" M" Z
    % r$ B1 y! K2 K5 U
    Example: Fibonacci Sequence
    0 `3 V/ V4 U3 s. X( R
    * C' A  l9 M; m8 S& _7 dThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ c" U' |& s% e" r* p

    * ?0 O) d! i9 i; w( B    Base case: fib(0) = 0, fib(1) = 1
    ) x) J( B5 U1 }5 t* G. g: t( G7 f: \0 h, r. Q! z: p+ Z; b+ \
        Recursive case: fib(n) = fib(n-1) + fib(n-2)' m  g6 g- J# U

    % k+ b" F' V6 ~: c, ^& a. Vpython
    % c( c- {4 H# R
    6 `# u- [: t: m0 H) `/ o+ t4 W
    # L0 a. U" ?# b+ x3 v, T: Y7 cdef fibonacci(n):
    0 y, w0 o7 N' f4 j+ {2 }9 T) g9 ~    # Base cases& U! p6 I5 T- o6 T# j5 l9 h6 A
        if n == 0:
    3 c1 c/ U% \# X. e9 ^7 }% X        return 05 U$ d' A$ j, U- [, w2 F6 e
        elif n == 1:
    - n' V( h+ }0 G2 z2 _0 L' j5 o0 r        return 1
    , b7 d0 L" A6 v( l0 b    # Recursive case
    ! Q$ r& B% ^( R/ W- Q% r& @7 y0 y    else:! v+ ~5 f! Q  n$ w* ^/ \
            return fibonacci(n - 1) + fibonacci(n - 2)
    # i2 U. c& }/ l1 @
    7 W3 t8 h, i# \4 P# Example usage/ P% b: I7 N0 [
    print(fibonacci(6))  # Output: 8
    - k1 v+ r. \/ D/ f9 [, z
      l7 H' ^- t5 C( ^+ p% h5 ?Tail Recursion% T" z" Q, {& E
    6 Y# |  t/ ~( `. W* R5 c, J$ S; {+ k( L
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # c6 \' W# K+ ^2 Q& e+ V: D# ?
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-9 20:04 , Processed in 0.030274 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表