设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1510|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 " Q: C. _0 }7 x8 Q* V- a2 Y
    ) u+ D# g- q! y" D
    解释的不错
    4 `1 V2 S5 Y6 f( A% H3 J
    2 N) x4 q! m- J, g. V1 s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。! [. z# U9 Z! }
    , D  T+ O2 D* U; L
    关键要素9 v; W1 ^# C  n( y$ I
    1. **基线条件(Base Case)**: @* n8 j/ H: ~4 U1 k
       - 递归终止的条件,防止无限循环: {" E# Z# \0 [9 e. L9 A- B9 p
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1; w2 X" e% V9 w5 k1 H1 n0 r- ~" B

    1 u6 a. h$ E% V! }, A2. **递归条件(Recursive Case)**. P9 e* n/ V, Y+ S
       - 将原问题分解为更小的子问题8 h9 G& ^" y5 ~9 X- k. h% b* C
       - 例如:n! = n × (n-1)!
    " A$ Q+ W& e. h- o9 b# c
      E( P0 f: d6 g9 X* u 经典示例:计算阶乘3 D# i1 u8 j9 Z, \; j, I3 U& g
    python
    ( m8 l$ o  O& h* c& g& Hdef factorial(n):
    0 v5 x  R9 K" d: ]! N    if n == 0:        # 基线条件' s! A5 V9 x0 J; m
            return 1
    , w) O3 o$ O. F+ I; d    else:             # 递归条件3 R- u: R% c4 T! N- _
            return n * factorial(n-1)* l. x0 V' u7 h6 z, e
    执行过程(以计算 3! 为例):7 X$ M4 S3 l, m. P4 C
    factorial(3)
    & w& K8 c2 I% J9 l6 P9 I3 * factorial(2)7 [) e/ g; k+ }
    3 * (2 * factorial(1))( A; B2 P  g" w6 c% N% D
    3 * (2 * (1 * factorial(0)))% F" L1 x0 r' j
    3 * (2 * (1 * 1)) = 6
    # q' o; @% p! p: C# u
    ( M6 s, ^5 R" j! r* K 递归思维要点
    5 [7 L3 t2 ]* Y/ X4 t* B% A1. **信任递归**:假设子问题已经解决,专注当前层逻辑, }- L9 i9 v% h  E" p
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; m4 K, p; q( e3 _; D9 }5 ~- ~3. **递推过程**:不断向下分解问题(递)
    ' _- s) O5 S3 ~# k* |/ I4. **回溯过程**:组合子问题结果返回(归)
    0 L9 {! |6 c1 e# |. M+ U& T( b+ f2 o( E1 X% b* o, I" t& {( V
    注意事项0 s/ [0 G' c8 \; _2 \! y
    必须要有终止条件+ l# D! w+ b: X' K9 G1 W" U
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # A4 H( H0 P$ O; B某些问题用递归更直观(如树遍历),但效率可能不如迭代3 L+ W. n9 D1 z0 @, w4 y
    尾递归优化可以提升效率(但Python不支持)
    . U; n% T' ]  [" M! t+ e  ~- K5 c9 R: z3 w0 I
    递归 vs 迭代
    + B  C2 v5 c. m. G|          | 递归                          | 迭代               |( ]* C: y8 T# Y$ ?7 ^
    |----------|-----------------------------|------------------|
    0 ?5 v' w) z) B# \0 {| 实现方式    | 函数自调用                        | 循环结构            |
    & a) p  d$ k: E2 {9 {* i+ f| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |" g' |( z* l6 f) u0 [) W7 m0 n
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |6 a2 a" ~: |2 ]3 A0 c
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    8 C0 K5 Y2 {7 z  v
    ) f% p4 B2 z5 D$ S 经典递归应用场景
    - a3 ?$ R1 i7 i4 i  h# i' }8 ~1. 文件系统遍历(目录树结构)
    4 q# m9 A/ L: G" `  X. `2. 快速排序/归并排序算法' X: U- ?+ J$ H9 v6 ]
    3. 汉诺塔问题6 R& r# p! T5 I) C, u
    4. 二叉树遍历(前序/中序/后序)
    3 T# l: m2 O, S! \- O9 ?# X9 i5. 生成所有可能的组合(回溯算法)
      [* d; W9 ]7 ~3 i+ U  k7 G' ?; K- ], f
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    10 小时前
  • 签到天数: 3117 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    . m2 a7 K. W8 o# E( X; i' l我推理机的核心算法应该是二叉树遍历的变种。
    0 g: K$ W0 }, z' @! H  K另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    7 [& A) l1 h) X, \7 e5 bKey Idea of Recursion
    ! F% a& {  X( y1 S$ M8 t: f$ C' p" `# C" B: H- R4 z
    A recursive function solves a problem by:
    6 Y: i( O' H' F, C6 l) s( M
    # E" S1 l8 `7 d1 D+ v6 P    Breaking the problem into smaller instances of the same problem.
      u( h: c: ^0 y* e$ ^* s2 z0 Z6 e7 J6 Y1 }' }5 S. g% ]
        Solving the smallest instance directly (base case).3 U1 h& ~- n2 O7 M9 c

    7 j2 d5 A, f& k  A) S) q    Combining the results of smaller instances to solve the larger problem.
    7 ]9 o0 k( F8 e' M- L3 o* V6 k' z
    % b( k1 ^; n& ?% _0 U9 c% D8 j1 kComponents of a Recursive Function' z1 g6 ~6 e9 |6 j* `- u
    + @0 f$ Z/ l1 h, o; E) Y
        Base Case:
    : |& h3 ^# U3 h1 R' `; J4 e9 z- d; s- p4 M4 p* X. A* u8 l
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 T5 ^% ]/ o4 F" ?5 j* L. D  G. n* N
            It acts as the stopping condition to prevent infinite recursion.5 }5 W) \9 r# w0 {5 h5 \
    $ x& w9 m8 G: @
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.4 v- a) w- j4 h% N; e0 `4 H

    , T9 T# j" p4 X3 h3 B4 e    Recursive Case:3 L) v6 Q- F, N$ K
    . O- x% x6 V% [8 Q' n# N( U
            This is where the function calls itself with a smaller or simpler version of the problem.. d9 K3 ~4 m7 O

    - S+ d, M' ]) z( [4 n; j' g        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' w3 x. V, h- _! o3 c5 b

    3 V6 Q5 b: F, IExample: Factorial Calculation- O: k: w! a% a$ U" Z) t) e  M

    7 f1 r2 h1 _" n% kThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& X/ x" u, {3 t* e
    4 y5 t9 x" z5 j" t4 a
        Base case: 0! = 1" J" ^& V3 M' S. K/ I

    / f, W1 J+ P  N+ A4 K) N/ o    Recursive case: n! = n * (n-1)!1 C" ]  @! S' C' l# [' E5 c
    6 t& u# \( z* n
    Here’s how it looks in code (Python):
    0 s8 S- K7 l  |python  r+ r* t+ F# m+ E
    - G+ G: t( ~) a/ G! {7 `* l  v6 w

    4 r8 o4 I( X, m2 Rdef factorial(n):
    % X4 ]/ y- e2 X& z: Q    # Base case
    / {3 G* I: v6 `    if n == 0:! r& I- k* t7 M% Z
            return 1( y/ v8 n: z! L0 z" M# r
        # Recursive case% [; n" B# `0 G
        else:- l* d8 p8 [% Z1 a
            return n * factorial(n - 1)6 Q; @- T# i3 F. ]% `& f/ ?/ r9 A- w

    % J+ _' M' A' H) V- W3 j# Example usage
    1 A  Y) n0 X6 w% Yprint(factorial(5))  # Output: 120
    2 r7 `5 s1 w2 m3 K7 _* g1 E8 X$ ]  _
    How Recursion Works
    3 ~+ w6 ^5 V0 S  \# }) f3 H0 o/ x6 s2 T
        The function keeps calling itself with smaller inputs until it reaches the base case.8 {2 O* F# ^) z' I) K9 j
    8 w8 y1 S- U8 F( e2 R$ A% }6 V
        Once the base case is reached, the function starts returning values back up the call stack.7 a( E$ D8 P9 I+ L+ |

    " W6 L1 p2 r0 z8 [    These returned values are combined to produce the final result.
    6 k. y, ?* H. v4 t0 u9 S5 W
    ' `# K0 [, Y2 {/ q8 zFor factorial(5):
    % T/ @4 k! g) e) _% ^. `6 P4 v2 ?2 S' ^/ P. x' V3 s

    5 i  F3 ?. W) N6 pfactorial(5) = 5 * factorial(4)
    2 L3 S& P- e8 F0 l/ Hfactorial(4) = 4 * factorial(3)3 I$ O) z2 H. U- d
    factorial(3) = 3 * factorial(2)' I. ~* D& [. X' u/ m2 b: i* D
    factorial(2) = 2 * factorial(1)2 V9 Y7 _: E3 m6 K( q8 t
    factorial(1) = 1 * factorial(0)
    ! R6 O8 Z7 ~" j- W' ^( u; o9 afactorial(0) = 1  # Base case
    8 t2 s. R7 \& l% B# d/ d
    & R) V) \( R( b) RThen, the results are combined:7 B! @$ _7 K, M4 D: [5 k

    $ m8 K# {! t5 B& ]7 Z
    ) s( @( r6 F8 O: g1 T7 ^1 efactorial(1) = 1 * 1 = 1
    % q8 \$ m: N7 O  P" S1 a6 ufactorial(2) = 2 * 1 = 26 b4 w2 T% e. {* X1 e0 \7 ]0 h4 R
    factorial(3) = 3 * 2 = 6
    * q4 p# h7 z- U1 i; a: ?factorial(4) = 4 * 6 = 24
    # t  i% W( N% P7 a2 ]factorial(5) = 5 * 24 = 120
    9 _9 R# o7 n, S- `# o9 N4 K' j, v1 q- N! \
    Advantages of Recursion# _$ _7 q) q, ~! b: g) W; h

    . n2 O4 k' S" z" d# [4 a% O2 x    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).- n5 ~+ ], m5 {. ?2 s; ^# g( o
    5 W1 K) h0 b6 N8 S9 }
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ! ]8 x' g0 i* u+ }' X$ ^( r7 p  H+ n# ~0 N3 g& b7 _$ v) W& q
    Disadvantages of Recursion
    : S# f/ |0 W: c
    ; }1 K/ x' C: \0 j$ _    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    0 S" s3 q+ K+ u- [2 R0 g0 a* ?7 f& o
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    $ _! P( K' p. M+ o% t( ~
    - Z0 f* V' {' S0 a6 g" X. m5 rWhen to Use Recursion
    4 Y. F: v0 l" Z1 G, Z! {* ?& L3 W1 ~% K; |
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ; j) ?" i0 |" K- i) b' u, S3 J7 Q: D' _. x: a; {
        Problems with a clear base case and recursive case.
    ( t' {7 J8 Q! b, l5 _- _- h: e8 I& @' v7 t+ n6 ~
    Example: Fibonacci Sequence4 f9 R2 ^# I7 B4 T0 }

    , T6 l) u4 c2 s1 ?* h. a: N8 QThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
      p% f' H7 m9 U5 V% E! h7 h( p2 c/ J
        Base case: fib(0) = 0, fib(1) = 1, Q. @6 @* |, {+ K8 L+ s

    0 J/ B, T& |: L* \! E7 |    Recursive case: fib(n) = fib(n-1) + fib(n-2)8 q6 R$ o1 k+ l" o9 q8 z

    ' j0 T- X/ ]0 j8 V0 O, apython
    3 E+ T" Y1 A" Z) q4 ?' i0 Q
      q& U8 F' b6 U. A. y/ H3 [! o0 }7 z: {. ?- P! q* C0 W& T
    def fibonacci(n):8 {3 i; [+ ?! ]' H4 _) m  V
        # Base cases
    0 T) W: o, i; q* u    if n == 0:0 c* U. \* X) O6 r
            return 08 ]3 r8 ~' R- u; B6 g/ h
        elif n == 1:
    4 i: J* _; w" v) s- u( r        return 1
    5 H, i  L4 m$ K) Y$ |1 O    # Recursive case
    1 S0 C! G7 P, q; W    else:
    # g! X3 n  x4 w6 ^4 S        return fibonacci(n - 1) + fibonacci(n - 2)
    3 u  I& m0 k- `1 [/ o
    - N7 C& T1 i1 G# Example usage9 i& d+ z& A4 b+ R9 @- q) D1 }9 s2 j
    print(fibonacci(6))  # Output: 82 x: G5 h  _+ n& t
    ; C9 E+ m$ ]* Y+ z" W3 ]
    Tail Recursion
    0 g& m& R: y, T
    ; v9 q* X3 n. wTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    7 T5 K( N' q% _$ h7 W+ _8 ^7 d  s
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-14 18:24 , Processed in 0.030934 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表