设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1109|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    0 v' d) E- f2 h7 F' @
    - _' H' V; J# q5 A9 M7 L. ^( I解释的不错& {: b7 A7 n5 H/ L$ j# o! j

    2 [* F# e% {- h3 y8 J2 ^递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。  Q6 Q8 Y& P; @$ L
    7 R3 C% e8 ~5 _) x# j$ w' Q
    关键要素/ s. I  x; T9 a4 G
    1. **基线条件(Base Case)**; K" \3 g& H. L/ Z! ]7 \, G4 D
       - 递归终止的条件,防止无限循环! J5 v) P+ d( }* n' D- `" K' |( E
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    2 B- Y; a9 }3 U0 u3 r* k
    ' M! i, [- D/ d, l- v2. **递归条件(Recursive Case)**
    / @7 i7 E' K4 Z  w3 Z% x9 L9 @0 @8 e3 ?   - 将原问题分解为更小的子问题
      x7 W0 `" k! F! g% V. O+ u. H   - 例如:n! = n × (n-1)!8 m7 l6 ]) H9 \' J1 p

    & P6 R1 \: Q7 a4 n  R3 X 经典示例:计算阶乘
    ; j. J7 m6 l# npython
    1 z6 l( p* i" N6 ?4 K  w. e1 Wdef factorial(n):
    + s. m8 I& d5 \( R+ p    if n == 0:        # 基线条件  e2 \( x7 @. X1 U- j1 }) A
            return 1% {% y- h2 |7 k! i
        else:             # 递归条件
    , @. I. H1 `5 [- a        return n * factorial(n-1)$ T1 A! L+ H& b: X- J
    执行过程(以计算 3! 为例):
    7 i! i. h, K& C% cfactorial(3)
    2 H* O% U: \8 m! R' r: P3 * factorial(2)
    2 ?% K6 C; z, k3 |8 ^3 * (2 * factorial(1))
    + O& l& X/ |9 c0 x( i% e3 * (2 * (1 * factorial(0)))
    0 m* O( }) y' D  H1 t% e( u3 * (2 * (1 * 1)) = 6
    9 N6 P) P6 V3 _5 `- E/ @8 ~  E
    * x6 c# P5 D1 Z$ u4 g/ C8 Z1 \ 递归思维要点
    $ X5 F' R) |" N1 ^5 {( K1. **信任递归**:假设子问题已经解决,专注当前层逻辑, _" F, Q7 Y: c( ~! }
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ( c( _8 l( B; g# Q3. **递推过程**:不断向下分解问题(递)5 R( o: y! G( L9 z$ B2 y
    4. **回溯过程**:组合子问题结果返回(归)% p4 X, t9 P: H. C9 U
      |4 i% m8 I, j2 z$ _* ?
    注意事项
    / ]: G8 E$ w5 O, k8 O8 E+ j; D必须要有终止条件7 v  I+ |* B; O2 |. _( U% q
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) m( D4 ]9 ?- s6 ~4 K0 Y2 _
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    6 D0 L1 i0 G: {- U( Y- G尾递归优化可以提升效率(但Python不支持)* V3 x  t/ k: J7 Y: h& E5 ~0 z
    ; o* {+ G. j# U" e
    递归 vs 迭代
      v) f/ J, {1 l, {/ k; G" N|          | 递归                          | 迭代               |
    4 U0 R; U( Y" q|----------|-----------------------------|------------------|) U7 g! P9 e: m3 j
    | 实现方式    | 函数自调用                        | 循环结构            |& C! T  }2 _9 v% w
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ( P/ T! Y8 n# B( }; J| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    1 j$ q3 n& d1 l7 X+ u' A| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 }9 y5 e; _! C

    " b% @9 G$ Q' Z& a 经典递归应用场景
    - |  y# ?# ^/ i& D. \1. 文件系统遍历(目录树结构)
    2 W4 |( Z$ R' F8 `( b/ h2. 快速排序/归并排序算法
    - g( o! t# y8 q3. 汉诺塔问题
    & L. {0 U, g6 m3 M- |# ?0 a4. 二叉树遍历(前序/中序/后序): f# O1 `1 W" X4 V7 i- R! w
    5. 生成所有可能的组合(回溯算法)% k( t* W* l) p0 O5 Y+ h

    # A( H$ O- m7 {. ^1 g: `+ [; \/ w试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    2 小时前
  • 签到天数: 3098 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) ?+ I- l# N9 _/ T我推理机的核心算法应该是二叉树遍历的变种。) L4 x, d: F- @- [" B
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:% S3 e  b. J5 s- K
    Key Idea of Recursion
    ( h, {# |  u+ T7 e( m
    . N6 U9 K! Q: UA recursive function solves a problem by:
    7 r( ~: Y4 R$ u* R4 Y; K+ N; ]# d% g7 Z4 h5 @
        Breaking the problem into smaller instances of the same problem.! u/ E$ o0 L) E' [: Q/ R7 }
    6 X; `7 [$ u: m6 J7 s
        Solving the smallest instance directly (base case).( f: N# A& S+ k6 b9 U
    " m3 K& X1 F- N! N; @
        Combining the results of smaller instances to solve the larger problem.% a9 {7 r$ e2 @/ d* E" P

    . \) I; ^( G9 o( F% P& w- ^Components of a Recursive Function
    ' |! |& b5 U$ L
    8 p/ ~. p: B5 a0 @7 ^9 _    Base Case:! n- T# u7 k; ]+ T( X& j. g
    ; z8 |0 D* ]' R3 m/ B! Z, d
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion." N7 |4 `) x. B& i

    8 O" \. w3 b7 Q5 l. X        It acts as the stopping condition to prevent infinite recursion.- X7 g" G$ f. Q+ Z' y1 x
    4 Q8 E  d* o: K9 u8 V7 e. {5 `$ }
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    8 o  _2 x6 V  B0 [! Z% s9 H5 o4 d, @$ O8 ^* v* O9 ^" ?
        Recursive Case:
    ( A" ?' C: [0 I" p) j! r
    * `5 V* s8 i/ @! l1 c        This is where the function calls itself with a smaller or simpler version of the problem.8 A5 B) x) ]# l0 J4 B4 c! j
    4 \$ V8 P$ N& ]3 a  Q
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ H' U# k( H4 L, E( ]+ ~

    ) r5 v" @& b/ P8 L/ h. L2 I1 uExample: Factorial Calculation
    4 w" Q  }2 A& {# {; A& ?2 H8 \' I3 v$ ~
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:0 j/ h- I, @0 }  O$ s

    - e8 Z; Z$ p2 M2 X7 p7 q- u+ ]7 v    Base case: 0! = 1
    " g" i/ X9 c5 c0 l) W( l
    * L" f: s( q% m# e" j) Q  q    Recursive case: n! = n * (n-1)!
    ( ^+ y! B3 r: K' }3 R+ c
    ( S  T9 W- m$ v; EHere’s how it looks in code (Python):" D. I) X* \# `
    python
    * W; P  g5 o6 [$ F: K# {+ O9 s
    & ]& p$ D- U# y2 c
    ! N  ^4 x- q. bdef factorial(n):
    + @& A+ W7 j8 T    # Base case8 g7 M- A; B7 C: e) d/ j
        if n == 0:
    : l" N( o4 W4 B0 ?* [' F; q        return 1* T0 i; d% Y+ ^; N1 a# l5 I
        # Recursive case
    ' Z6 _4 l/ k5 T; H& G. `/ r$ M, D2 A    else:0 }3 {. _% m* P2 R4 g
            return n * factorial(n - 1)
    + L2 [# t& w2 z( v
    1 n9 t3 f5 H* ~& n( k# Example usage9 x% D6 K( N# l3 }& j9 y
    print(factorial(5))  # Output: 120
    - F5 ]4 B! E, T% d' m0 Z% D& t4 o9 S8 I( g: u7 a
    How Recursion Works. M6 v8 T2 [1 Q/ h4 S' ^

    % j0 A# Y6 E. _    The function keeps calling itself with smaller inputs until it reaches the base case.
    8 ?7 R+ ^2 J7 G* P
    6 D+ @: f  T9 p( s5 s    Once the base case is reached, the function starts returning values back up the call stack.
    - O+ g4 S1 [4 ?2 P% F0 ?7 A( E6 o" Y8 W0 f. B
        These returned values are combined to produce the final result.
    ' P4 r1 l9 N* i4 m7 r. f% F/ X6 O" @9 b+ h" a% U
    For factorial(5):, t# l4 `5 ~. d1 Z1 ]
    ) z3 {- P1 J  d) g: {9 z( p
    ! A, @# E" z+ ?) R  |, G) Q
    factorial(5) = 5 * factorial(4)0 G. p3 _9 d& f2 c
    factorial(4) = 4 * factorial(3). L( w, c! C. S9 }( n
    factorial(3) = 3 * factorial(2)4 H3 s! A. K: o5 D
    factorial(2) = 2 * factorial(1)
    ! M' o/ u& C$ ~0 _( [factorial(1) = 1 * factorial(0)
    4 v5 l7 k4 D" A+ X: Efactorial(0) = 1  # Base case
    , j. U$ v; r- I# s& L
    0 L2 O" w4 A1 uThen, the results are combined:
    + S/ }* a$ {  c
    9 p4 a" |4 L# i3 l, |
    1 J9 W. W6 I  L, B( Ufactorial(1) = 1 * 1 = 1" u  F- D0 y6 Q6 P4 {* O8 J
    factorial(2) = 2 * 1 = 2/ t2 ~) ?1 r3 E8 C9 f  b
    factorial(3) = 3 * 2 = 6
    8 r# E2 w! b$ C& G2 n+ ~- x4 M( Z) g/ nfactorial(4) = 4 * 6 = 24- q0 e+ M' b9 B
    factorial(5) = 5 * 24 = 120! F( v9 S6 p7 n$ I! i

    - P( A+ {/ d0 w4 M* b0 TAdvantages of Recursion
    3 k+ F. z# N* m5 ?: q+ B. i2 l# E3 G  x8 ?+ i
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)., W! F7 n  d) y# A) @, K' Z  @

    5 l2 S* ]- c8 ~! X3 h9 I    Readability: Recursive code can be more readable and concise compared to iterative solutions.( |/ ?# A! h" p$ R3 o0 W

    5 R& S1 J" d7 H( DDisadvantages of Recursion7 U5 v# w3 v6 K* v$ Y

    6 \, F0 m, O$ l" p) n$ \    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    8 ^6 I" H4 N" |5 H$ w/ D; A  h0 ?# `9 I" L4 y1 F. @# S
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    3 U7 L: ~4 J! j* w. Y9 S# Z/ _5 p4 V: e) D  X& o0 L
    When to Use Recursion
    3 m) f- v& M! y/ q& q- G  P- w1 x2 c: @1 a4 H; }
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) A5 x$ Y1 y* `" t7 p0 Q* A6 K) K
    ' \0 X5 r! r8 s; `
        Problems with a clear base case and recursive case.
    ( _# t2 [" ~8 s) B4 A3 F
    6 V! p$ i; O# L  p" q+ b( LExample: Fibonacci Sequence
    # [6 U4 D; G! ^  r2 _9 N1 E6 h! y( U6 l
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) E  F# I5 g1 C0 M
    " O& `3 i) G  w& @8 x" a$ [* H
        Base case: fib(0) = 0, fib(1) = 1  R2 [  _% W$ O1 d

    4 R( a* g9 U! H) R# g+ r    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ( o/ o  N2 S$ x
    & G0 T+ Q4 A8 O  e/ g' f4 G3 M9 L. J; opython! y' c4 i6 I2 Z/ r6 E. ~+ O  @

    ! r8 I) W8 i. v# P1 \' P) h& T' f4 e! P3 v6 z
    def fibonacci(n):0 E  Q1 n+ k+ C: L
        # Base cases6 f- y" ~! y2 s# Q( D" i
        if n == 0:; R  H. F9 S4 ]. s: k' m( l$ u, X
            return 0
    $ A4 c# \4 P2 H0 ]% \' t* ^    elif n == 1:
    8 ~' G8 ^" D! {0 p. C: O* v" G- r        return 1
    " T" s/ T. M4 |9 ~  B: f    # Recursive case- ?' [8 A" Y! C, X5 B- l0 E
        else:
    * g& ~* ]( G; k: Y        return fibonacci(n - 1) + fibonacci(n - 2)
    $ Q2 H5 ]( |2 ?3 g& K  c8 a* Z0 L7 G- N/ [8 o: [  d
    # Example usage  O3 A! Y0 ~5 z' d# R" W( U6 M
    print(fibonacci(6))  # Output: 8
    5 w5 R3 d; d4 f- p2 V/ Q
    ) t' d8 r1 x% Y& M. UTail Recursion! P  j9 i% ?, _$ U: r
    4 u; S! Q4 f* [% k
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).$ d2 G2 U( z( w8 s) i
    : ~' [$ }9 @- v. U4 H; R, P
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-21 07:53 , Processed in 0.037585 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表