设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1495|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    4 y$ c* @$ S, \8 i4 j: m+ n! n- Z. a: S& h& L6 ^
    解释的不错& {! p+ }6 v* ]+ L3 D

    ; |  |+ y1 v( h2 g递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    2 X6 j1 F2 U/ T5 p* e) d) o% [5 d( l5 n7 F4 _$ `
    关键要素$ t  G3 N1 M/ m- x6 o
    1. **基线条件(Base Case)**5 Z5 F/ b) v7 P+ S5 R, b9 u& E
       - 递归终止的条件,防止无限循环% {  g# ^$ _9 U4 w, e$ t2 o9 Q$ x
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& n& @% w9 p/ e2 l  r$ M; l% V
    0 C& W2 z9 n3 b2 j" L# w1 c; Z9 N
    2. **递归条件(Recursive Case)**
    - z1 B' {2 K* i5 T6 V   - 将原问题分解为更小的子问题
    7 M0 R6 n! [9 k4 z   - 例如:n! = n × (n-1)!; ?( J: X8 A+ U; H6 a& _, q

    # ?* G. \5 I- s8 w+ r 经典示例:计算阶乘+ c" ^" M/ Q( g* U# {
    python/ N7 Y- p  b# h+ i/ B* g
    def factorial(n):7 s# |7 G/ y; i" q; t
        if n == 0:        # 基线条件2 u/ f  s. p. n
            return 1. o6 Q# R1 h. V) ?# L& \8 S3 P  O
        else:             # 递归条件- b* d7 G# G9 J* G2 Y5 z
            return n * factorial(n-1)
    6 K; {% b$ U$ ^  y8 n$ ^执行过程(以计算 3! 为例):
    6 \1 b* K2 I+ v  D) Zfactorial(3)( j! ]9 K# u+ g# L5 o- j- \
    3 * factorial(2)$ x6 p% p5 r5 y
    3 * (2 * factorial(1))9 k6 {" d8 n! E; B+ \
    3 * (2 * (1 * factorial(0)))
    9 }* Y( z- S8 a5 m, v& n3 * (2 * (1 * 1)) = 6
    . D1 f/ @$ X, w" F' E  b+ A' N; C( d% L% K
    递归思维要点% e# K. u* H/ E
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    1 H5 k8 k. y6 J7 w2. **栈结构**:每次调用都会创建新的栈帧(内存空间)8 N" e- v2 {3 Y) `( s7 d
    3. **递推过程**:不断向下分解问题(递)5 R$ P! Z) J4 d3 ~8 v
    4. **回溯过程**:组合子问题结果返回(归)
    # C. a7 G$ l8 }8 `' e8 E  C" J! c9 s$ `7 w
    注意事项  E1 z  d* c0 q
    必须要有终止条件
      r; u" K9 V: K: @5 F: V递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ |6 T+ m7 }& P5 ^+ F5 ^( l+ u% w
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
      E2 J, @4 {+ P. Y/ Y尾递归优化可以提升效率(但Python不支持)
    9 ^. d/ _5 ~' _" i" |: e/ a9 m% g! |) `
    递归 vs 迭代
    9 j3 r& |/ n& S0 f) a6 ^" n|          | 递归                          | 迭代               |9 _* A4 ^7 }$ G$ H
    |----------|-----------------------------|------------------|4 h# j3 t7 {: K: C7 T  G
    | 实现方式    | 函数自调用                        | 循环结构            |
    ( h0 P) }# v8 x$ ^6 y& {| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; Z0 I' c1 U9 C1 u
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    4 x+ ^! a: R- J" w3 g% U$ B| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |/ N! [" p# l8 T5 U4 f4 }# h
    ; A0 o3 a- o) j1 v
    经典递归应用场景% Y1 `1 s8 U" e5 r
    1. 文件系统遍历(目录树结构)
    & o( v* m. k; J( u6 |5 ~+ Q2. 快速排序/归并排序算法2 v( n7 s! t/ ^7 T) i
    3. 汉诺塔问题
    $ {8 T! Z* o7 ]; Y+ B' d4. 二叉树遍历(前序/中序/后序)
    9 t/ J9 K. I6 k5. 生成所有可能的组合(回溯算法)5 _* f$ Z! N- n( e
    8 n' e# K5 x) D/ Z8 W2 h9 c
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    1 小时前
  • 签到天数: 3116 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) p6 @, C; ~  n& N% R+ t4 ?' u我推理机的核心算法应该是二叉树遍历的变种。
    . D0 \% x: N8 t; {4 k另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:: `0 P" p: Y( R% w) S7 |
    Key Idea of Recursion; U1 o' n" [% ?7 z

      w9 x! L, o  V# r8 yA recursive function solves a problem by:5 l, ?  @. y! V/ R9 }: j; X1 w6 f
    ! ^7 P! m' e/ E2 @8 w
        Breaking the problem into smaller instances of the same problem.
    # u+ x. [) p. V
    # ~& D3 }' Y+ I. p0 K    Solving the smallest instance directly (base case).
    ) t) X! c% f9 V( d. G3 _) R/ h; }
        Combining the results of smaller instances to solve the larger problem.
    " E& W! f; _& o6 M
    * Q3 l9 G+ W) X* Z( j( iComponents of a Recursive Function
    9 Z  I1 X/ o5 _9 }3 Y3 k8 w
    + m7 k$ [: {) z: w: H& {    Base Case:
    9 y6 J9 T% i4 j  d1 P& n5 Q4 S% U- }- B+ t5 m- X& u& H1 X
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.9 R3 P7 H- @) ]# o. ~7 C9 Q

    + ~% u5 s* B* \' X/ `7 N, _        It acts as the stopping condition to prevent infinite recursion.- C) }9 [: L( K6 l8 M. n5 ~

    / H7 o+ n5 @; O* ]        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , T5 b* }$ I7 X% G0 L% l; E, }8 W" i* ?* U& z
        Recursive Case:+ m1 I3 }6 P) L1 E% u$ V

    ! m/ l5 q2 a5 K6 d) ^& P        This is where the function calls itself with a smaller or simpler version of the problem.
    4 B! \" w: y. f# C: K- ?4 k( E( k) f* {! L% O2 Q- e  h  L/ T2 J5 Z
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ! ?0 f* M+ w, \: n0 P* Z8 h0 d
    , {! |+ x$ Y7 LExample: Factorial Calculation0 W4 R& I! t: z2 Z2 ^$ e+ l& C
    ! t- Y* r& [6 f+ I& ?4 E/ Y8 w
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    " z$ q; I" i4 l/ Q( J- J. ]* h$ P9 s2 g& m. v* l
        Base case: 0! = 1
    " H, \( a5 V, ]2 z2 J9 V4 O. S% [4 [; @: G: }
        Recursive case: n! = n * (n-1)!9 y# C. f( j6 M# C5 S

    # j  a( I  S' O7 V" r3 jHere’s how it looks in code (Python):& _7 N# \. C6 K( B( K
    python
    9 e8 q4 T9 Q5 H" n& D, l$ ~
    ( t- b  W5 t+ f( e! v: {7 R" D/ p( V
    def factorial(n):4 Z4 e; W" x3 j
        # Base case/ e+ R: A9 |5 V; M5 m& q  p* y
        if n == 0:* R( ]2 V; I& l. N$ K5 p& [
            return 19 e! `( M( F+ ?+ z0 F" h; I6 p
        # Recursive case* `( J, l4 N/ d, J; F
        else:) Z) p# A2 L6 o( j4 Z6 J
            return n * factorial(n - 1)
    , K; s  F5 T$ u) n# T1 X" l2 g' Y  }! u7 e/ x5 A0 Q
    # Example usage' I" [; K9 y' J  A8 g
    print(factorial(5))  # Output: 120
    1 o' r) l% c% C7 \: e9 X
    3 L1 o" X+ C* Y- I: F0 G& RHow Recursion Works
    / ^. j: O( l# [2 z- \/ D+ ?1 }& `# [4 f
        The function keeps calling itself with smaller inputs until it reaches the base case.  D+ s  P2 |% U* X, Y

    # I( P- }9 S2 b2 A" J( Y7 [' D    Once the base case is reached, the function starts returning values back up the call stack.. T- V- I0 C2 T* j7 K
    / a5 p6 w) l  R* g
        These returned values are combined to produce the final result.
    9 t+ {  t, D3 m, f4 U) S8 t! W6 w6 I, D/ ]5 T. }
    For factorial(5):
    . U3 a& p+ {; E. K2 _/ e& |- V' _0 q1 s: V  M4 b  p
    " d* Y! F2 N+ k4 Q
    factorial(5) = 5 * factorial(4)
    8 W- U& [, M' C& |factorial(4) = 4 * factorial(3)0 o9 M4 z: P: C" G0 J
    factorial(3) = 3 * factorial(2)% P4 K% e- \  C2 ^
    factorial(2) = 2 * factorial(1)
      d2 X4 A0 y$ h# D# z- afactorial(1) = 1 * factorial(0)+ q- O1 a3 t& w% R
    factorial(0) = 1  # Base case
    - N9 r# z; M+ R2 s
    ) x" W/ F2 m9 O, m1 kThen, the results are combined:! @2 D. E6 t% Z9 P% ^
      ?3 v9 m4 H# a7 M* ?
    6 Z5 p3 c. s. H
    factorial(1) = 1 * 1 = 1+ `6 S9 h5 o" d0 k) {7 S" k* ]9 H7 g
    factorial(2) = 2 * 1 = 2
    4 P$ g$ M! |, a: Rfactorial(3) = 3 * 2 = 6: k" B/ j- N' `  x- l+ B) ~+ W
    factorial(4) = 4 * 6 = 24
    6 n) V# G# W8 ~+ b+ g- Ufactorial(5) = 5 * 24 = 1204 j7 z+ m# E7 o  n. t$ z

    6 A# \6 s- j7 \2 ]  @7 w  {Advantages of Recursion5 f# Y' T0 S4 q; G5 ], k3 d/ x3 p1 M

    ) p! b/ V. P4 T$ l' U( {. y    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 V7 }+ K& {3 q$ c0 H. T

    # o( O/ E- x3 E1 h, k6 \    Readability: Recursive code can be more readable and concise compared to iterative solutions.  A5 i4 f. z3 u# ?

    % |1 u- P( q1 k7 N' xDisadvantages of Recursion
    : h1 |* R. l" s; C4 j3 e* z+ @# B1 j0 o# x
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.3 J7 ^6 U. z5 e, y1 M6 c* v! X! W2 v

    ! e' w: a/ u9 {5 i+ l    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    - W/ R* P5 M; `6 ^7 L3 s1 g4 m& h# I* k5 A
    When to Use Recursion
    0 x9 ~1 G" Y$ s0 p* R/ f. x2 p8 G2 t- T2 `& x
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% D9 [' t; X% L1 z* f) d
    6 ~8 J. g6 A. u/ `, \1 W
        Problems with a clear base case and recursive case.
    7 K5 ~8 t) B) y. f2 g
    7 ]1 Q5 h& S; N9 lExample: Fibonacci Sequence
    % {9 }2 D; Q: `+ A9 f! Y/ P  K7 ^1 Z: G( W* N
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    8 a( U2 R* v& W7 _& |  h
    ) G: i# `8 R% z& N; I    Base case: fib(0) = 0, fib(1) = 1
    $ H2 h$ ~" b* G; \: Q( a+ ?" w1 y7 {9 x! f' N4 u
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) |$ U4 |+ A  K0 ~. {) W+ ~1 W% j) M# \. f" U
    python
    ; T% O' q' m- v- F0 k* o" o0 p: o

    / T! M' S( A# p' |def fibonacci(n):
    " @8 j  N( e. _, j7 e    # Base cases
    1 n* K' m5 V/ s8 g+ }    if n == 0:; C! E" O9 C) y# c8 a8 p5 S8 [; Y
            return 0) x" o, k. n* e) R& C; p$ X0 k
        elif n == 1:9 J3 f6 ^. `" q
            return 1, w: s, _) h$ n( A7 R8 `
        # Recursive case
    ) }0 p' z2 X( r9 l    else:- [: a& Q# f& g! z7 V! q
            return fibonacci(n - 1) + fibonacci(n - 2)
    & \  \. q  `* m0 i, I: p/ E- E+ ~: X" C6 g
    # Example usage$ ]5 k6 j" V$ U6 L) O3 U  A
    print(fibonacci(6))  # Output: 86 o/ A6 `9 i3 P0 U- V

    / g: Z) O% m4 i/ H, o' RTail Recursion
    2 S5 |# r, x- t4 f2 P
    $ n. Q5 W1 t( M! h3 P" l1 h* q* zTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., V# `' j1 b) r9 q

    ) @2 i' `/ @. ^* y& BIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-13 15:01 , Processed in 0.031377 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表