|
|
本帖最后由 晨枫 于 2024-5-12 00:20 编辑
7 S$ V' `/ Y& ~% d# G" N6 ?
! a9 i* O: K( c0 a) s% A; C南华早报报道,西工大张东(音译)团队在《航空学报》上发表论文,成功解决了AI的“黑箱难题”。
?+ e" Q1 j: G( G! \2 q' ?5 I- C7 f( A6 [) u
黑箱模型也叫经验模型,指模型结构与物理过程没有外在关系的数学模型,模型结构的选择基于有可用的数学建模和分析工具,并无物理解释。模型行为与物理过程相近,纯粹是比照输入-输出训练数据,对模型中的可调参数“凑参数”的结果。在使用中,使用者“喂入”数据,模型“吐出”计算结果,仅此而已,谈不上理由,谈不上解释。
8 ^- D2 C- g0 k j; e1 D" {. O* K/ e& X* Z, }" J
从高斯发明最小二乘法,这就是数学模型的基本思路。建模方法越来越复杂,模型结构越来越复杂,但思路没有变。
) ~4 N3 P0 x( k+ l1 @; D
6 {2 s. x. [. A* e5 f w8 s; p. \4 V也不能说一点没变。“任意”选一个模型结构,总可以“凑”出参数。模型阶数提高,模型结构复杂化,模型与数据的拟合度提高,但最终拟合度改进越来越小。数学上有一套“适可而止”的办法,帮助确定模型阶数和复杂性在什么程度既保持足够简洁,又达到足够精度。甚至有一定的办法,帮助引向最合适的模型结构。
3 J: Z( M( M+ i6 J! |0 }
! ?$ l3 @- ^/ o- \; H6 p8 \黑箱模型的好处是简便,不需要对物理过程有深入理解。坏处是适用范围很受训练数据的限制。如果训练数据代表了所有可能遇到的情况,黑箱模型其实是不错的。问题是物理过程很复杂,可能经历的情况几乎是无限的,而训练数据只可能针对有限的场景。一旦遇到训练数据之外的场景,黑箱模型就很不可靠,而训练场景之外既可以是数据边界之外,也可以是数据“云团”之间的空隙。
( Z' Q1 H: I8 s, `; C l- L. }- [
更近一步,不再是简单粗暴地从数学上容易入手的多项式、双线性等模型形式入手,而是基于对物理过程的认知,建立具有物理解释的模型构架,用可调参数使得模型行为与现实过程最大程度拟合。这是灰箱模型,也叫半经验模型。5 m. L9 g7 b" Y3 {% H
5 ^8 D, T, B& `/ C) J灰箱模型的结构有一定的物理背景,在结构上就决定了模型行为的基调。如果这个基调定调正确,加上训练数据,就可以建立比较可靠的模型。即使在数据边界之外,或者数据“云团”之间,模型结果也不会太离谱。
9 W' W: u, W: u U9 S8 L0 u0 _9 ~* B8 X4 _$ ~' o! W
理想模型也叫白箱模型,这是根据对物理过程的认知,建立机理模型,再通过实验,确定模型参数。由于这有坚实的物理基础,只需要相对较少的训练数据就可精确确定参数。而且在训练数据的边界之外或者云团之间,精度和可靠性依然有保证。% I" ]- W- T* N2 f6 o
- P- w F4 t* A" C' {% m
白箱模型是可遇而不可得的。真实世界太复杂了,要精确理解和建模对相当简单的过程也是艰难的事,最后得到的模型也可能在数学上非常复杂,使用不变。比如说,水壶烧水是又简单又复杂的问题。如果用黑箱模型,选一个线性律或者平方律,在火力、时间、冷水温度和沸腾时间之间通过实验或许足量数据,然后用最小二乘法,就可以得到一个黑箱模型。在大部分情况下,这模型就够用了。( B, q+ C8 g7 V3 C3 [. m
% b( a1 l4 j: a* z# G用灰箱模型的话,就要用到传热、材质等方面的知识,但模型也更加精确可靠。
* A, I- Y) t5 g1 |$ g# Z5 u, w5 E3 _9 A: ^5 p) ]
但用白箱模型的话,连壶底的热分布、壶体的热传导和散热、壶内的对流循环、水中杂质对沸点的影响等统统要考虑进去。模型更精确,但建模就太复杂了。
7 p a9 f0 r8 x _" r7 {
9 g- s7 w$ [. S9 z在实用中,常常还是黑箱为主,毕竟方便。4 S+ j7 V0 l$ z9 ~
! y/ {' l0 X( V0 ?0 X8 IAI正是黑箱模型,模型结构与物理世界无关。简单黑箱模型多少还能分析一下,对模型行为有一些定型、半定量的理解。AI模型就不行了,尤其是深度学习模型,动辄几十几百层,几万几亿参数,根本不可能进行有意义的分析。
/ _8 |: m8 L6 M7 T. W. t! v5 |7 j8 S. F# t5 G i% k
这就带来巨大的问题,尤其是用AI模型进行决策辅助甚至自动决策的时候:如何确保AI建议或者决策是正确的,至少是无害的?
; o! T8 \- q" M- ?/ o @: r* Y
+ V& f; o9 ]- s* U' @3 T在AlphaGo的时候,就有一些棋路是这样,事后复盘的时候,人类大师也看不懂为什么要这么走,也说不上来这几步对后来的胜负有什么影响。自动决策是个最优化问题。最优化好比爬山,爬到山顶就是达到最优了。但要是山包顶上很平坦,到底那里才是山顶就很不清晰。更糟糕的是奇点,像马鞍一样,从一个角度看是顶点,从另一个角度看是底点,算法就容易犯糊涂。还有“香蕉问题”,在两头翘的区域里,算法可能左冲右突就突不出去,要沿着“香蕉”走一段,才有比较明显峰谷。还有就是局部顶点,在山脚下的平地上有一些小土包,爬上土包,在三十步之内确实是顶点,但真正的山顶在前面,连山脚都还没有到呢。
- y: g) G7 i2 L# s$ E5 J' N; a+ S- k' q& A4 Q
这些数值计算上的问题可能把最优化算法绕糊涂,找到的最优解其实不最优,甚至一点都不优。
; B" n) u) J: ^; i# l8 q4 B
( \: v. b' X. G) f% E人类需要理解AI是如何得到当前的结论的。同时,如果人类对AI的求解不满意,要有容易的办法“纠正错误”。+ a. g. t+ t2 L$ @
. K$ m0 r3 m+ {# m7 r6 \1 _
张东团队正是做到了使得AI“坦白交代”,用数据、自然语言和图表说明决策依据和过程,帮助人类理解AI,并在人类复审有异议的时候,可以反馈回去,纠正AI的决策路径。0 o& @' ^0 r$ c4 C
8 ~7 `5 o# I3 v- t9 W' \
张东团队用这个方法,训练AI空战。在一个实例中,AI用复杂的角度机动试图摆脱追击失败,有经验的飞行员发现,AI不顾能量损失强行机动,最后没有击落对方,自己反而能量丧尽,被对方击落。在后来的人工反馈中,AI“改正错误”,再也没有犯同样的错误,而是用貌似蠢笨但保存能量的简单动作引诱对方上前,然后通过积蓄起来的能量突然反手机动,一举击落对方。
, n9 J; K+ j0 ^7 p1 C* G
$ n2 B, d2 b Y* G/ T6 t% ^团队发现,利用飞行模拟器数据,用无反馈的黑箱模型训练,AI要50000轮才能达到90%的成功率;但用有反馈的逐步训练,20000轮就能达到接近100%的成功率。4 q; ^1 s7 T% r% \! M5 w; y# q
& k5 x+ D# d# Y5 S; z$ Q8 p$ Q这其实好理解。完全基于训练数据的一次性黑箱模型训练好比关起门来死读书,破万卷书后才一知半解;学一点基本知识后,到实践中边学边完善,进步就快多了。+ M# w& }2 g" c$ V+ _6 J8 m9 ?7 {- z+ H
. E* F: @ R: h) }$ L) p# v6 Q+ P
这对空战模型的意义显而易见,但应用还不止于此。在工业自动化、工商决策辅助和其他AI应用中,AI的“黑箱性”是应用铺开的最大障碍。即使人们有理由相信“AI是有道理的”,在不能理解这个道理之前,还是不愿意接纳AI的决策建议,在AI直接行动的时候更是抵触。- S1 @* N, r3 @% {" X% x/ W
& C8 S3 q' T2 Y S
张东团队的成果如果能白菜化、普及开来,功莫大焉。* N2 J1 y6 A G5 c
% L+ D( E0 c3 B) h- s* r- c! I对了,爱坛里@testjhy 是AI权威,给说说我这个理解还靠谱吗? |
评分
-
查看全部评分
|