|
中国科学院福建物质结构研究所在《中国舰船研究》上发表《自然空化下潜艇感应电磁信号的演化》一文,指出潜艇空泡产生的电磁异常以极长波形式出现,可以在远距离被探测到。这可能成为反潜探测的突破。# t4 C4 k; O6 J8 w& v* X
$ \# X# W; X' ^
在一战和二战中,潜艇绞杀战差点把英国打趴下,但那时的潜艇只是可潜水的鱼雷艇,潜航时间很有限。现在,核潜艇使得无限潜航成为可能,而且不仅速度快,静音也越来越好,几乎达到海洋背景噪声的水平。被动的水声探测越来越困难,主动的水声探测则受到复杂水声环境的影响,还容易打草惊蛇。
' {/ w1 T# a6 @( p$ d
! I4 c8 e: E( E& s `& p在中美对抗的大环境下,潜艇成为美国海军最后的优势领域,航母和大型水面战舰方面已经不占优了。
4 z. Z$ ?4 {, B2 D/ R- t# w9 q* s+ z! t5 |4 n( h) ~- E
反潜首先要搜潜。一旦发现和精确定位,潜艇就死定了,但要发现和精确定位可真是不容易。5 e ~+ O( C8 c% c" j& A
( ?. B) b1 G6 b( S& C雷达无法穿透海水,光也很难穿透海水,只有声波还行。海洋里本来就有各种水流和生物噪声,加上远近船舶噪声,这是比空气中的雷达恶劣得多的探测环境。针对复杂的水声条件,也衍生出多种多样的声纳。
) P( G* _/ w5 D, T3 g( a* c+ g* s9 x6 q$ s$ W/ R: Q/ W. [6 Q
水面战舰是最传统的搜潜平台,舰上空间宽大,便于装载各式大型搜潜装备,口径为王,灵敏度高。问题是舰艇本身的机械和水流噪声较大,海面的波浪噪声也较大,影响声纳工作。主动声纳可以增加信噪比,但水温跃变层有近乎反射镜的作用,使得跃变层下的潜艇难以被探测到。6 p ~( ^6 L" \+ g; K
/ a# y" w, {% J1 i% h9 d8 E& A
航空反潜在二战中发挥巨大作用,但靠的是潜艇潜航时间有限的漏洞,在上浮或者通气管状态下充电时用雷达捕获。在核潜艇时代,这个诀窍不管用了。红外、磁异都有用处,但探测距离和深度都有限,除非直接从潜艇上方飞过,很难可靠捕捉。: [* [( Q2 k( `7 Q
* z7 r! O1 Q+ H. L" z
现代航空反潜一般用空投的声纳浮标搜潜。美国喜欢用被动声纳浮标,苏联喜欢用主动声纳浮标。在理论上,被动声纳浮标不易惊动潜艇,可以抓现行,在对方没有提防的时候就予以猎杀。实际上,投放入水时的“噗通”声可以被潜艇声纳可靠地捕获。要是距离和水声条件使得潜艇听不到声纳浮标入水的“噗通”声,声纳浮标也听不到潜艇的声音。潜艇声纳的口径可比声纳浮标大多了,灵敏度高多了,水声环境也更加安静。
! z0 P8 f0 f- p5 ^6 U% J5 J: l6 ~: w# T# c# V; y' P: u
主动声纳浮标肯定惊动对方潜艇,但探测可靠,也可能使得对方忙中出错,自投罗网。
1 N2 B/ ?! F" O6 k( N* q, K
- C/ K8 Z$ J0 K" @, W1 m" @直升机反潜则以变深声纳为主。到一个点,把声纳像吊篮一样放下,沉入海中一定深度,搜索完毕后收起,直升机再到下一个搜潜点重复这一过程。但声纳的口径受到限制,也需要多点搜索才能完成三角定位,很费时间,容易被潜艇在搜潜点的间隙中溜走。3 d/ Q' V, l" G q
. p0 p$ X1 P3 T6 Z8 F1 ~+ s) A! x
一般认为,潜艇是最好的反潜平台,因为搜索与被搜索的潜艇处于同样的环境,谁都不占优势,但这是“三岔口”式的互相摸索。3 i5 U' e; u- |1 ^+ r9 h- h4 z8 N
9 C ]/ i/ G2 h" }
很多年来,有各种远程搜潜的尝试,最主要的就是SOSUS。
) ]/ v o, S5 k5 Y8 R9 H# r( T
* o; G" F; m9 R, O- `, Z这是在海床上固定布设的被动声纳装置,灵敏度高,可探测几百、上千公里外的潜艇活动。美国在60年代就开始建立,现在遍布北大西洋、北太平洋。中国也在建立,首先在南海。但这也是非常粗略的探测,并不精确,远远达不到可以引导攻击的精度,只是提供远程预警。
) }2 u; f! k/ X4 E: H% D; o, u3 d9 _# `9 d G1 o$ l( C9 S& b: g0 |
卫星据说可以“看到”水下潜艇的航迹,但并不可靠,而且对光线、海况、斜距等要求很高。与其说是有用的探测手段,不如说会偶尔撞上。" b4 ~' R' R: l
7 S; B; c" F- I" e1 g9 R光在本质上是电磁波,水下没有多深就是漆黑一片,这意味着光线穿透海水的能力不强。所以激光搜潜在本质上也是有局限的。
, f+ C6 R5 f7 S- d. r( G- @2 J; D6 R: K) J1 M
但极长波是个例外。极长波和极低频是一回事。极长波可以在水下传播,这是战略核潜艇接收打击命令的基本手段。美苏都有极长波电台,还有专用的带有极长波设备的战略值班飞机。一旦最高统帅部决定启动海基核打击,就通过极长波系统发出预定指令。在水下的潜艇接收到后,要么按照约定上浮接收卫星通信发来的完整打击命令,要么按照对约定目标直接启动打击程序。' }, ^# n4 m: a6 L! r; x
) p. m1 Q1 ~0 z* C1 x. ?1 s
极长波的频率极低,所以数据率极低,只能发送非常简明的命令,一啰嗦就发不过来了。
8 E ^5 F3 d- y* O. V ]# }; S/ q0 x) z" Q2 C0 h7 ^" |. q* Z- O1 c; x
但极长波能穿透海水这个特性,现在被中国人利用来揭示潜艇行踪了。1 y: {+ g! g: b% a M
& U; s/ J( q/ b4 C$ W
高温和低压都能导致水的气化,这是中学物理就知道的。游泳时,手划水,手掌推水形成压力,手背形成涡流,这是负压。负压强到一定程度,海水会局部气化,形成空泡。人手达不到这样的负压,但螺旋桨能。
$ T2 `+ R9 M) p: l' R/ B. K3 v( s' j+ e2 m
螺旋桨在转动时,侧斜的桨叶在旋转中一面搅动水体,一面形成向船尾方向挤压的分量,桨叶背面就形成低压区和空泡。船的螺旋桨即使完全浸入水中,也会打起白沫,就是空泡的原因。潜艇螺旋桨也一样。
& H: X# X; o8 n9 F% [0 K0 C" j. G1 S: C2 k) U( \4 a
空泡形成的尾迹在船开过后很久还能看到,因为空泡比较稳定,要过一段时间才会破裂和被吸收。在水下,空泡破裂是潜艇非机械噪声的主要来源,一般用大侧斜、低转速桨叶来抑制,但不能消除。4 i2 x l: i& \8 L
! ]0 j* E" I l) R空泡产生的湍流导致局部电磁异常,其信号可能比先进磁异探测器的灵敏度强3到6个数量级,完全在现有技术的探测范围内。不过磁异探测器的探测范围有限,如前所述,除非直接飞过潜艇上方或者相距很近,还是很难捕捉到。
1 Q5 O; g# `0 T. r! d$ \$ b L
不过磁异导致的极长波信号就不一样了。这是34-50赫兹之间的极长波信号。但极长波会在电离层反射,在很远的地方也能接收到。这就是天波雷达(OTH雷达)的原理:用电离层反射的电磁波信号探测几千公里以外的目标。" p2 b3 {% F4 ?+ L0 I/ p7 a1 T
" J6 E& h/ A* W2 x
OTH雷达有很多好处:隐身飞机对OTH雷达是现原形的,航母也一样会被抓个正着。OTH雷达有近界,襄樊建造面向太平洋的OTH雷达的话,近界在杭州到赣州一线,更近的看不到了;但远界差不多到关岛一线。5 T6 R0 R: ?9 m$ ~. U/ v& |
) k+ Y7 ?, M7 T- x- xOTH雷达也有很多坏处。首先,天线阵巨大,像一个竖立的足球场,布满奇形怪状的金属框架和笼子。飞机上需要极长的天线才能捕获,极长波通信中继飞机是用几公里长的拖曳天线实现的,少量专用极长波反潜飞机在高空也这么拖一根几公里长的天线还行,一般反潜飞机以低空飞行为主,还要拖这样的天线不大现实。其次,OTH雷达非常不精确,不仅极长波本身就不可能有高分辨率,还有电离层风暴的问题。如果说电离层像海面,这个海面会不时有风暴。太阳黑子活动期间尤其风暴强烈,平静的电离层被搅成一锅沸腾的粥,使得反射路径不确定。OTH雷达的探测精度在几十到上百公里级。# u6 @' q6 E+ I' S; X9 H
! R/ Z. p( Z) T" t* s1 l1 M
在空间气象实时监测高度发达后,或许能全球监测电离层风暴,对OTH的路径实时矫正,但现在还做不到。做到了也不能解决极长波的本质不精确性问题。, [* T2 |) r S( { J2 B
" A4 B6 f! I( o5 I8 U7 |: Z以空泡电磁异常为基础的极长波搜潜也有一样的问题:电离层风暴导致探测的不精确性。
: M3 n: R6 D# t4 k' V
7 x+ E, F; C, A8 t) c海洋里产生空泡的物体很多,快速海流都可能在水下礁石的下游方向形成空泡。但自然空泡的位置要么随机,要么固定,形成规则航迹的不多。鲸鱼游动则是不形成空泡的,其中的仿生原理现在人们还在摹仿中。通过先进数据处理和航迹追踪,应该可以鉴别潜艇空泡和自然空泡。水面舰船航行也形成空泡,但在不同的水压、水温环境下,空泡的电磁异常特征应该和水下空泡不一样,这也是区分的线索。3 P1 p5 W) [9 |
, k& F. @, l) j$ r$ h4 c
但极长波的本质不精确性没法解决。
2 b- n% p. q A# V0 Q7 m9 u1 r( F% b0 o J
好在潜艇的速度相对不快。隐身飞机有几十公里的探测误差的话,用作武器引导,那是一点戏也没有。打航母有几十公里探测误差的话,也需要赶紧派一个补充侦察手段去详查,精确定位,然后才谈得上发射远程导弹。
) l, e' d8 j% i$ Y6 |) @9 ~' r5 N( t: ?
潜艇在理论上可以和航母一样飙30节的航速,但机械和水声噪声都极大增加,SOSUS老远就听到了。要是有就近的舰船、飞机,或者调集舰船、飞机靠拢,什么常规手段都能精确定位,然后潜艇就没有然后了。也就是说,根本不需要极长波探测。
0 |3 |' s! c2 I, ?: g& E6 P; m" a# v( K3 I: v# p: J( d
但以低得多的“安静潜航速度”航行的话,没有引导,舰船和飞机泛泛的水声搜潜就很容易当作海洋自然噪声而漏过。有引导的话,仔细搜索,还是能捕捉到的。这和反隐身飞机一样,即使试图隐藏在环境噪声中,但被抓住蛛丝马脚的话,仔细凝视搜索,就难逃罗网。隐身不是不可见,潜艇也一样。
4 I! j' F% e' w# P' w) d% s# p6 `! V$ D( j% f( H: w
在这里极长波搜潜就是那个引导。而且可以保持相对连贯的监视,引导海上和空中的反潜力量靠拢目标,提高捕获概率。这和卫星的“惊鸿一瞥”不一样,后者可能在下一瞥之前的间隙中被目标溜掉。) Q6 z! G% Y6 u9 l* R
! l$ j. q s1 k" E/ U r8 u
有意思的是,通常被动探测只能侧向,不能测距。但在极长波搜潜方面,由于是基于电离层反射,测向肯定是可以的,还可以测俯仰角。入射角等于反射角,电离层、地球表面的相对关系和形状都已知,电离层反射的延长线与地球表面的相交点正好就是目标测距。当然,距离越远,角度越浅,误差越大。
' u+ O( M( a$ W+ |6 [* u- {; S g" p7 u* Z
在理论上,航速足够低的话,空泡几乎消失,也就是说,极长波也搜不到了。但海洋那么大,核潜艇要是这么慢慢蹭的话,一个太平洋走直线也够蹭个把月的,黄花菜都凉了。+ N* _) B* _9 W9 v/ c
x& S2 E& E- K; k0 l
而且低速潜航的话,核潜艇就丧失对常规潜艇的优势了。常规潜艇潜航时用电池动力,比核潜艇还要安静,但只能低速航行,否则电池电量一下子就用完了。核潜艇的“安静潜航速度”高于常规潜艇的电池巡航速度,可以围着常规潜艇打。潜艇对潜艇的战斗和一般战斗一样,在其他条件相同的时候,相对静止的一方只有挨打。& Y) U6 k5 y; |: R. z; b3 u/ g
3 w4 C/ I! S9 x. y# \6 t
在这样的战斗中,常规潜艇尽管更安静,但核潜艇的声纳口径更大,双方并无太大的探测距离差别,机动和火力优势决定了战斗。常规潜艇要是提高速度,早早用尽电池,被迫上浮,就更是死路一条。/ P5 d8 J1 d+ d! p! W, y
`& l# t' O# d& p$ C
但要是只能低速潜航,核潜艇的手脚就捆住了,对常规潜艇也没有优势了。要是敢提高速度,形成空泡,敌人就不只是常规潜艇,还有被引导过来参加围殴的舰艇和飞机。
6 T5 k: f0 ?( |1 l+ W5 P/ ?
/ x; Y* k3 y+ d对于中美对抗的大设定而言,中国海军能在第一岛链以东建立反潜线,就是很大的战场优势。与中国航母、055、轰炸机、反舰弹道导弹、反舰高超音速导弹在一起,这也是可靠的反航母线。
# q4 S# O& g9 t7 ]" @0 @2 E2 }3 }2 c
有了这样的战场态势,台海战争就是完全不同的打法了。台海战争胜负落定的话,中美之争在军事层面上就大势已定了。
- {1 f0 E, V% c. ~$ \4 I1 R( k
" Q0 O4 _2 t% y6 i! ], A当然,现在发表的只是理论研究,离实用化还有距离。不过制造业超级大国的优势就在于产品化速度也超级。理论上的路走通了,实用化还会远吗?, O6 L; T4 W4 \* I! }! f
|
评分
-
查看全部评分
|