设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 344|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' k; m- o: ?; E9 O& j% t0 z  ^- ~8 B) O- e4 X
    解释的不错7 v# K5 b" b- M6 B3 ?% V3 e
    * k' ^5 {' d; p
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。+ Q. U& N9 s% E2 P' b9 j1 Z
    ( l( D6 H1 U# @( Q
    关键要素  w. T  t0 ]4 K- }
    1. **基线条件(Base Case)**
    * O: ^+ }4 V8 ?6 @   - 递归终止的条件,防止无限循环  ]1 Z0 e- ~7 _3 V- o9 f
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1/ ~+ U/ D4 r) h+ @. L. {  _0 Z
    ' e  P8 X- |) c( X
    2. **递归条件(Recursive Case)**
    . R+ O3 ~% X+ g   - 将原问题分解为更小的子问题: V0 s6 e2 e; R& Q
       - 例如:n! = n × (n-1)!5 L" b( g1 V4 S4 p/ y( v1 }5 [
    ' D0 H; @2 O7 m
    经典示例:计算阶乘
    : b. O2 z1 d8 Dpython
    - L# I7 p1 ]: b* ]) Xdef factorial(n):
    9 b& t& ^, U% ~; f# {+ M: v( F    if n == 0:        # 基线条件% G! l5 y" y7 S+ |. o
            return 1* X3 u+ m6 n; K4 T: H
        else:             # 递归条件% R* x- R5 I% Y8 z! \
            return n * factorial(n-1)$ F, Y* ]4 f- A) F! U
    执行过程(以计算 3! 为例):
    4 o  i$ D' {; `6 _5 mfactorial(3)5 t$ [: l; Q, _; e) H
    3 * factorial(2)
    + r& _5 `) q/ `: y' x- E0 E6 e4 m3 * (2 * factorial(1))- K- V. a1 o* L$ s# a- t
    3 * (2 * (1 * factorial(0)))
    ; h0 X" ]9 I% N) l3 * (2 * (1 * 1)) = 6' t) \7 P& \  q; G

    & x4 P$ F0 c0 Y- Z, W! q 递归思维要点
    + x/ n! r( }  p8 g) Z/ L$ v1. **信任递归**:假设子问题已经解决,专注当前层逻辑9 H0 Y% d& I, h2 a+ {$ A
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)/ ]/ Q$ B3 F# u
    3. **递推过程**:不断向下分解问题(递)
    ' ?# a1 ^0 T+ l" B4. **回溯过程**:组合子问题结果返回(归)) N: w5 c% y4 T4 V( @
    & _% u3 W( b! _, U: }
    注意事项
    % `* t  N; V1 |% i5 ^; P必须要有终止条件
    5 J7 c8 D* J& q# Y! U+ g递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    - W; U- k: F4 ^某些问题用递归更直观(如树遍历),但效率可能不如迭代
    : Y& j8 z" @, U8 D9 j尾递归优化可以提升效率(但Python不支持)
      z" h8 \6 U6 u1 V0 e! L
    : H3 O4 e* a; J8 J 递归 vs 迭代
    3 j3 z" h5 `: u: _# Z8 A4 F( {|          | 递归                          | 迭代               |
    7 H# O! ]( @0 V- W|----------|-----------------------------|------------------|1 O4 J: o2 y2 T4 K( [
    | 实现方式    | 函数自调用                        | 循环结构            |9 u* y. o& m# ?$ a' G) n8 ^, N: h
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |& L5 i8 e. A& V
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    - s6 p, X7 Z, ~( @3 r; w7 @| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    7 l  k4 t9 H# I( Q) I; V4 h+ h" L; E2 {- y2 p* P
    经典递归应用场景6 O4 t1 \! v! P6 T( _
    1. 文件系统遍历(目录树结构)
    * C, E2 H/ M; E' C/ ^2. 快速排序/归并排序算法: z% C. K4 A: w6 G3 ^8 r' d
    3. 汉诺塔问题
    2 s, A6 z3 c, s  Q# r& W" o4. 二叉树遍历(前序/中序/后序)
    $ F+ H/ M9 w( n* g+ \* S- o5. 生成所有可能的组合(回溯算法)5 b* g: M, [1 M

    $ ?% [: k* R1 W! m8 O$ V. k" y5 i试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    3 小时前
  • 签到天数: 2845 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,1 |  D. G9 b3 E/ r* ?
    我推理机的核心算法应该是二叉树遍历的变种。
    # }3 a6 m) A( [/ v) v另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    # O4 O- s9 D# e* e: _Key Idea of Recursion
    % E+ k" n/ b% n; x$ ^- v8 |7 Y) ~7 x9 \$ X. \
    A recursive function solves a problem by:9 Q, v+ Y9 k% Y7 ?) m+ a; q
    9 f( L' r; z: U& x; {2 |
        Breaking the problem into smaller instances of the same problem.
    + S# e0 U" D* t, e
    . l9 F/ ~/ @5 T! G- x4 g+ u' l8 S    Solving the smallest instance directly (base case).4 g9 l& |4 N& f3 J* P! f. U% k

    % s! M$ d9 Z# {6 [# y" d) r9 [3 @    Combining the results of smaller instances to solve the larger problem.9 y1 y$ F5 v6 y$ {8 @, l! D& t
    # |% J) n; v/ I( U7 Q+ W5 \$ P5 ]
    Components of a Recursive Function2 k# i: g8 V& v6 j9 j+ P* Z2 Z

    # j2 s4 k$ x! K' s. T    Base Case:4 j+ }" R9 x) w  X- `
    0 _# l  A0 R9 L: |% n( a* U  e6 r
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.4 X" I! @) s8 j8 m8 \* [  x( P9 X/ w6 Z

    3 z2 d5 N7 z1 r4 b) d        It acts as the stopping condition to prevent infinite recursion.+ ^3 Q' r" `+ g  `
    : ^  Z: C" v5 T8 ^5 {" h
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.7 r4 i4 h4 }& K1 C0 F; S$ b, c) u

    ) v# l; S( X; a! K    Recursive Case:
    3 M) o' ~' h, u& e2 K' j- ^- j( Z- x2 c& w
            This is where the function calls itself with a smaller or simpler version of the problem.7 M# R; z' r2 Y; l2 C
    0 p9 _" _) x7 Q
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    * {! h  L' v" q' ?: y4 X1 Q; r. X0 _/ N# E
    Example: Factorial Calculation" K# Q( e/ X- r% N( w
    , f: Q$ _# U( H4 z' O( {* Z
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& q  f- m+ {" u3 }' F3 T. u' N" N

    4 R4 F1 D* `1 j* n' b    Base case: 0! = 1
    9 R2 H: Q/ C% d# w9 B- o: J' ?  a7 Z
        Recursive case: n! = n * (n-1)!  A; E) k5 b& @8 _! }, `& d

    % R" S, e! j  IHere’s how it looks in code (Python):9 ]/ R4 V. G8 m. R
    python# J0 z. F/ _5 S; s) n: D. l: F) X: K& O% F

    : P: B4 }! o% R  N
    8 O' U5 [& c$ W* u; a$ L) Zdef factorial(n):/ O% p5 p; a1 m. `; ]- R
        # Base case
    % S8 }8 Y/ v: i3 d" `    if n == 0:/ R1 W) t6 b* k) ~9 A
            return 1
    7 I  X' p$ ]  p- f    # Recursive case
    . Y$ X0 ?: e! p+ z/ U    else:
    * i% ~4 h- R6 M4 |        return n * factorial(n - 1)
    8 ^* M/ x" ]% w* f  V% m
    $ g3 ?  ], I7 {# Example usage6 w3 z( v! F! A1 f4 y" \
    print(factorial(5))  # Output: 120
    - m$ H) i3 v. Y. j8 q# k9 G6 \+ v6 H  B
    How Recursion Works4 q* |) \6 {+ ?- S3 I. W& z

    + G4 ]. E: E) D! Q. c, |; \, u( Q    The function keeps calling itself with smaller inputs until it reaches the base case.9 f6 a. d" s+ I) \$ A

    - d  `% C) W+ B8 a' m6 i    Once the base case is reached, the function starts returning values back up the call stack.! ^1 \" p) z4 ~1 H

      G5 w( v  W; q' b9 S2 A. B    These returned values are combined to produce the final result.3 q9 M  t/ C5 a6 f
    9 Q, }# v3 ]7 X; k
    For factorial(5):
    8 ?) v& }# Y; {/ \( c$ I* O  h# I5 Q$ D5 D; ]6 E* u

    . q" w8 \/ s' B  f! sfactorial(5) = 5 * factorial(4)
    : L  h9 R  P" w- ~; [4 ~2 W  Y1 ?. sfactorial(4) = 4 * factorial(3)  J( U/ Y+ x7 v) ~$ k7 R# B2 Z
    factorial(3) = 3 * factorial(2)
    & D$ r2 I$ N# }8 T% v3 \$ ^4 Ffactorial(2) = 2 * factorial(1)
    7 n5 m; K% }5 Z. h5 [) f. jfactorial(1) = 1 * factorial(0)4 }& d- b, v+ t# Q
    factorial(0) = 1  # Base case9 }% }4 h8 b. K6 R2 J
    , b8 z, T9 \% j2 C% e  T' [
    Then, the results are combined:  W' Z; F! m8 Q3 W

    6 E% q, w/ V! T6 y' R5 o8 r$ G/ R+ ~; Q8 ~
    factorial(1) = 1 * 1 = 1
    ' M6 L% `/ b/ p- r) gfactorial(2) = 2 * 1 = 2
    ! k  D$ b! M+ Wfactorial(3) = 3 * 2 = 6
    5 d' v, m! H1 I3 @* d5 L5 ?; l% o  ffactorial(4) = 4 * 6 = 24
    7 ], Y5 M& j4 E( e0 mfactorial(5) = 5 * 24 = 120
    4 H( {  a5 b0 h! n$ x6 `4 F" I; |4 b- d2 H' c; e/ X3 j! L0 U
    Advantages of Recursion: ]$ n1 a  z% x& F* _, O

    8 M) |- I4 f7 H  V    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    4 c4 g3 p1 V' Q% v3 J  K2 V. C; C) P) v" ~! I
        Readability: Recursive code can be more readable and concise compared to iterative solutions.( p0 _% [" `6 f% u2 r; Z
    * t4 H0 f, J+ x
    Disadvantages of Recursion- N. Y% C% L2 m! `
    9 V' x4 D  s* M" x
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    & A1 y, j; ?$ Y9 b) J5 [; t  O/ f% B+ h8 C# y* Q
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    # d7 ^) Q  [$ W9 o5 a3 k& G+ z  a" \. m
    When to Use Recursion
    8 }. t. H1 @* x6 r/ x
    , \5 f" ?2 J9 N6 O- K  R    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)., x' \5 g7 E' D2 |: P$ E7 y
    % M: h' @9 t0 v$ a' {
        Problems with a clear base case and recursive case.6 |3 P# {6 r4 h# g; I+ L5 y
    2 D* V$ r3 g5 a( t
    Example: Fibonacci Sequence* I8 p9 D6 H% d% r1 H8 e7 \) N. Q% X
    6 Z' s6 V. p$ c( Q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:. j/ |$ L* k6 o! K, ~" r* i

    9 c, s8 P9 R# i    Base case: fib(0) = 0, fib(1) = 1" c, k% ~! M7 `# }5 B, S
    $ v: |$ n4 Q8 B" n$ P/ L" O- n
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 q% H( q4 B2 a6 k5 e/ h4 U% D- {9 `4 `3 ~
    python
    % \2 ^# Z+ }/ z; _$ A
    0 S- G* E4 @/ ^0 p
    3 n! @: `% {. h+ P/ ]def fibonacci(n):
    ' v1 G9 C" }7 Z0 K% L) s) J- `    # Base cases! X/ W7 j7 Q6 j7 P  O4 _) R
        if n == 0:
    / [- @' l1 I! }( c3 {        return 0
    8 Q* B( d* O  T: O& ^, J  x( Q5 I    elif n == 1:
    ( A9 {$ e; P- s8 M- d$ H        return 1* J7 L2 _' A2 `' x7 q3 w
        # Recursive case; M  a9 v- f6 V# `3 k
        else:
    ( M* S, U3 x' e, B        return fibonacci(n - 1) + fibonacci(n - 2)
    " z* O/ z, t6 G, z
    6 e3 t7 C. c; [0 m. x( J# Example usage
    7 m3 v: M- q+ hprint(fibonacci(6))  # Output: 8
    ) U0 S- u) o0 _; ?% W8 [8 y2 {) F7 j/ x8 A( V
    Tail Recursion, T9 r" l3 _  d' q% O9 ]  r

    + V$ V) \; V$ y# s2 ?( Z8 i- {Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # R7 Q6 |* U6 X  u% c' j9 X. I. \. i) `0 J( Y
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-2-27 09:11 , Processed in 0.035782 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表