设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1008|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ) ?$ j: p6 T0 r+ y0 i! W
    ) _$ l, U& {2 Q# p( |* O1 M解释的不错/ |7 k2 n& W& m7 m; r/ N, H

    9 x5 Q% @1 \) E1 A* B递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。8 f0 I/ ~' v& X* l$ W' \

    1 V/ B" P, A2 I# D 关键要素, [# ~8 K# h! {% s) ?+ y
    1. **基线条件(Base Case)**
    " k! r+ A2 q: ~* w/ b   - 递归终止的条件,防止无限循环
    0 t) S" t4 h0 W' b   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    0 g# H4 F0 d6 n9 j: Y0 E1 {; Y7 d* l! a# i% c$ U; Z3 j
    2. **递归条件(Recursive Case)**
    ; a1 l5 z# J6 ]: a5 L  P   - 将原问题分解为更小的子问题
    ; R2 Y, r+ U" e$ k   - 例如:n! = n × (n-1)!
    ( j, O( C* `2 @1 A  x$ W8 f; d- H$ f" w6 _
    经典示例:计算阶乘
    9 Y0 `" C" W' [- ]/ a8 }) k/ Q7 upython, _: c8 {8 d6 W/ z1 _/ l: O
    def factorial(n):
    7 C) N8 I# \4 l, A    if n == 0:        # 基线条件+ u# E# l, R9 |7 u) w. C2 o
            return 1& Y4 i! Z! o; i( k* D
        else:             # 递归条件
    ; O6 q& U: z5 q  }6 f) t  _        return n * factorial(n-1)7 S& B9 z, p. `. j0 E, q! }
    执行过程(以计算 3! 为例):( G! t9 D3 C. d2 A0 S  N
    factorial(3)1 I% f. a( b, v# z7 L
    3 * factorial(2); _: x( g  b3 x
    3 * (2 * factorial(1))
    ( j8 m# n6 V) g1 h1 v3 * (2 * (1 * factorial(0)))1 I* J9 _+ J& B
    3 * (2 * (1 * 1)) = 6
    & K' \. J/ w& C. ]; u
    " B  E5 P0 C1 D& n+ l" G1 ? 递归思维要点
    5 P& m0 p* `2 v: p+ P+ F1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    6 J! k5 B3 y3 q9 ^$ t2. **栈结构**:每次调用都会创建新的栈帧(内存空间)3 e! I1 i. W9 G3 C& V, B
    3. **递推过程**:不断向下分解问题(递)
    ! ^5 }. J2 B; v. y4. **回溯过程**:组合子问题结果返回(归), N% j: E( x5 r# r$ Q5 Z

    4 I0 D9 f  K& F) p) L: ?8 V. M' ~ 注意事项: x6 L: E2 _( A
    必须要有终止条件2 n$ b2 c2 }+ R
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    : V5 R% v* t1 {$ ?# `3 T某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ) }4 R5 t! A: R7 o3 f7 Q尾递归优化可以提升效率(但Python不支持)
    ) N) L/ y9 K/ q! M$ t( F+ R8 j/ p3 a& g, K
    递归 vs 迭代" S' {1 E. ^4 ?- Y  w4 ^
    |          | 递归                          | 迭代               |/ A" K5 V1 K$ s  E
    |----------|-----------------------------|------------------|% C* Z2 ^$ |" k" f
    | 实现方式    | 函数自调用                        | 循环结构            |2 w4 J+ k+ m9 U8 f8 @
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ' i3 \4 L# e1 u5 f| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |, F( {- c+ K8 w; O! t3 X7 i
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |- ?% q* o* O+ _4 r2 S. m% P

    ! t9 d7 b. `$ U/ \7 P$ o 经典递归应用场景
    4 L% \# x' N* {1. 文件系统遍历(目录树结构)
    8 k8 z; U  S% D6 @2. 快速排序/归并排序算法
    4 M* ]% ?& V% n% T3 d8 n: t' k3. 汉诺塔问题
    ( O/ o5 N8 D! d5 c7 Q+ v* R% G; y4. 二叉树遍历(前序/中序/后序)( u+ q: ~+ [& Z3 h* ~5 N" m
    5. 生成所有可能的组合(回溯算法)
    + ^: c' {& U' n* ^7 x# q6 F0 L- E& {9 M# I, I/ F
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:43
  • 签到天数: 3067 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,- M- h2 T( D1 K& |/ v& @6 Z! e- u
    我推理机的核心算法应该是二叉树遍历的变种。
    3 ]/ D, P. g' R% l% B- e& Q另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. Y+ J/ z0 \& y8 y0 Y
    Key Idea of Recursion" H, c/ h% r3 {% e# D

    # ~8 E! Z- U( h' J9 b# y9 EA recursive function solves a problem by:6 M4 G- a, r9 c5 g9 W% J
    , i' j$ f' V& ]0 s) Z
        Breaking the problem into smaller instances of the same problem.* c5 i; @; i  _6 [& L
    & W( \' I6 P8 A
        Solving the smallest instance directly (base case).
    8 m) l6 ?3 i# j7 `# n) H$ U! d8 C; `$ m* {/ A0 K- _
        Combining the results of smaller instances to solve the larger problem.! t. b# x; C0 N: \/ R
    $ y4 }# @0 Q- q! `( n
    Components of a Recursive Function
    % H2 h% N3 |" S( k" H- f0 B3 j. l& T* v) a( f; q' o8 B- b8 o# W
        Base Case:. s# w9 F" v7 G. G

    1 N- F# r; R% w3 }4 e6 J% l" y% {        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    & b  `, d+ i, H; [
    4 X0 t8 I1 O' M6 U2 f: G5 N        It acts as the stopping condition to prevent infinite recursion.
    * K8 w# ?0 M: V
    9 {& H6 Q: u( f' R        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    1 G1 d6 c2 z. n) {
    8 n$ S' ?4 n  K* F# O% c3 T    Recursive Case:1 {2 D7 @: C: `3 L, ~! E
    * Z4 d- `+ `2 U7 C8 M
            This is where the function calls itself with a smaller or simpler version of the problem.
    5 M/ a$ W; M' I( l% l( H7 D- c* G4 R+ f
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    7 G8 {! _! l: X5 C" N- k3 z$ X7 B8 a( y4 q3 t# S! K+ d
    Example: Factorial Calculation3 ^5 s' d% e8 L8 t
    1 T7 ]: W! F; i# d4 C+ l$ B, F
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:3 p8 q8 H% p1 `6 {7 K
    2 v  r3 t' |1 d& n! Z0 M
        Base case: 0! = 1
    " J  }5 {- D* k, A3 v* T. C2 y, S
    ! ~9 R% U/ z7 B. v9 P3 u    Recursive case: n! = n * (n-1)!9 S) O/ Z$ T! \& M5 F

    # o, j7 l- y6 K0 @$ |' L& b% FHere’s how it looks in code (Python):
    0 w) b& z- u6 I& t6 Ipython" @4 i1 f2 g$ [
    " j$ a) |- }/ n. O+ q# g
    9 V# N- z! a- L. A& J$ I' a
    def factorial(n):4 ?3 H+ q) x/ M. r8 T  P
        # Base case
    6 Y1 g9 d6 T1 U2 g1 C0 p" x    if n == 0:
    9 `7 O& o1 m' _0 G& L3 x* s6 y        return 1
    3 [; i' J+ M5 F. X% p, X+ c1 Q+ q" f    # Recursive case% z* T) Y& {5 J3 ]
        else:
    . R3 R# m) w  J5 X; s        return n * factorial(n - 1)
    7 |" Q( x, t2 y9 }* l
    ! F- l2 P4 y6 D0 C; X# f# Example usage# @& p, }  }! u- p4 @) e$ j# `9 {
    print(factorial(5))  # Output: 120
    & w) o4 O/ n- o0 T
    ! E$ d2 Z" B, b# e6 n9 e$ ]+ AHow Recursion Works
    & n! ^( @7 d- {) k' y* n1 ~0 z5 `
        The function keeps calling itself with smaller inputs until it reaches the base case.
    # @( p9 h, y6 s# v8 ~* w" G* J7 J6 J
    ( c6 \$ T9 Z) i: r8 G: ~6 W    Once the base case is reached, the function starts returning values back up the call stack.! x6 x# N" J+ d3 h5 }
    - v( `( n6 h, \# r. E% O( B7 L
        These returned values are combined to produce the final result.2 `$ B7 S" G4 |0 Q% \/ `7 ?$ o% a

    5 a3 Y- p, @' q0 m$ z5 O- BFor factorial(5):
    / k2 A2 W* T. ]; B  l4 P
      |' A& b% a; ~% {% V. h7 f# w: |2 L% w( Q
    factorial(5) = 5 * factorial(4)
    . n% J$ x2 h1 c: c# Jfactorial(4) = 4 * factorial(3)/ [7 z/ v1 l- q- ?
    factorial(3) = 3 * factorial(2)
    4 d  w# ~  k. t3 l7 x4 F! vfactorial(2) = 2 * factorial(1)
    2 H9 s2 }8 M8 \  Q' G, r- Wfactorial(1) = 1 * factorial(0)/ A) e8 j( P) p4 v
    factorial(0) = 1  # Base case
    ! M$ I% _. @! j" K' ?7 V
    9 E1 @8 s; V. QThen, the results are combined:
    - N3 V2 p) ?+ w0 d* R; E
    5 }8 X: t5 G4 _+ |9 j% \
    5 N3 j% m& \: f/ k  k0 r3 Dfactorial(1) = 1 * 1 = 1: l8 {1 h% K$ t1 V# O
    factorial(2) = 2 * 1 = 2
    9 ~5 a$ v; ~; |+ k( B) h+ T0 t& Rfactorial(3) = 3 * 2 = 6
    & w" q' {4 r) ~6 i- o! ^; Ufactorial(4) = 4 * 6 = 24
    & a) M# ~/ M* d; J( T( S6 Rfactorial(5) = 5 * 24 = 120
    " F- y3 c9 j0 Z4 f' N$ S, m5 H8 T, s( z& z) u
    Advantages of Recursion7 K8 P: {) j, G! l$ G; g0 E

    ! x+ K  H* K' b6 M3 k    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).- C1 ]) `4 j- C$ y  \

    4 w6 k% Q& W  t1 D    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    5 ]( R+ h9 e9 [" o5 i$ u7 o5 z" ~2 b/ C. H* V9 Q3 u2 t
    Disadvantages of Recursion' o6 R7 w; }5 z
    * ]9 [, S% F! V* ?, F
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    # `7 U5 D! Q1 V  B+ J; V% @( D5 G2 A) b
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).1 d# L  X, D+ ~) S. T5 U, l

    + U  `" Z7 z6 y' m# UWhen to Use Recursion
    : _9 E4 Q- z' n0 x5 O
    # M* O) D0 Y+ k2 m5 t    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).8 ~: R* h1 m4 F( w7 [
    6 J2 A) v4 p. u5 i
        Problems with a clear base case and recursive case.2 x/ \. V$ A1 C+ e4 P; d

    " d% }0 @5 x! j% g$ yExample: Fibonacci Sequence
    9 M$ n$ [4 s3 \" r9 N% v
    1 I6 d: [! T4 K3 L! q% }7 xThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ G) d0 z' Y- |5 J- A
    2 d2 U; U( S8 C- X. ?, V  L3 i
        Base case: fib(0) = 0, fib(1) = 1/ Q0 Y) H) l: ?# {# @) K

    2 q. R; m+ g' Z8 ?: }    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    . O# V8 r9 E  v* @! _. m) A# A  d* A5 W& }, ?- ~
    python
    ( s! s# ^4 O5 v+ K8 I$ P$ l# N
    9 Y) C) e; f7 n; W
    1 l; }* ^3 g. s2 {def fibonacci(n):* p. ~1 i8 \8 n8 u& y
        # Base cases+ U' L% V! H' r4 W: A
        if n == 0:
    . j. D5 ]2 }- c        return 0; D- c4 T; f. ~: v
        elif n == 1:
    0 l1 B( U: w5 j, _9 ]        return 17 L* O! i* c+ q
        # Recursive case/ f& a) S) s4 Q8 r7 g3 ^* [' u
        else:1 k$ f1 V3 G/ ]
            return fibonacci(n - 1) + fibonacci(n - 2)
    4 m! R$ _3 X6 H
    " w/ [$ i' F8 j& ]) l4 _- k- k# Example usage
    % j7 [, a: F$ i6 Kprint(fibonacci(6))  # Output: 8) |; _& V8 C5 M

    6 I$ d: j% K1 Z# @Tail Recursion* a6 m% r) F# w, q+ q# |4 |0 J

    , j( ?( T* ~) wTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    , {' A( W1 g/ g; V( X+ h* @' D; {3 }! J: P
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-10-16 06:18 , Processed in 0.034972 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表