设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1573|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # F$ p- _7 F$ Y( j3 i: f% a3 x' \8 V( k9 U  g1 T- p/ M
    解释的不错
    # T. Z) D4 V3 ?4 S$ f
    6 s2 N* I! ^8 G/ {2 Y8 f) _递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。9 \* M: ~2 @: Y: G1 y
    3 ^: q  Z& U6 A$ T! ^( W' {
    关键要素0 V2 a1 x/ j- r! v
    1. **基线条件(Base Case)**
    & A" \! Q9 d) w* i/ n1 A5 [   - 递归终止的条件,防止无限循环4 y2 P: u0 f- J2 i7 R* A
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    * K  [* }. K. q' a& T
    ( \% d4 f' d# I! y- }) j2. **递归条件(Recursive Case)**: E0 [2 f& N" w$ E/ W
       - 将原问题分解为更小的子问题
    2 T) A4 Z! \6 @* x. \; d2 b, I   - 例如:n! = n × (n-1)!; S- k8 b! o/ s# u: u6 ^* {
    5 U5 Y5 \5 J7 J# s; R) I5 I3 @
    经典示例:计算阶乘
    9 p9 o6 E7 e" q* q. H) I# H% ?python
    + [" B  y" `# |* g$ \def factorial(n):8 N. `* c+ Q1 @4 }& A. V
        if n == 0:        # 基线条件7 `1 ]! r! B; u4 }
            return 1
    3 s! Y/ J' Z1 ]; p    else:             # 递归条件
    - U8 y# |) X# J& \        return n * factorial(n-1)
    & g; @  N9 T) e" a* e: ~9 u" \. N5 F执行过程(以计算 3! 为例):
    0 J' `- w) T! i& [factorial(3)5 V. J8 ?0 B. K" v* y4 [
    3 * factorial(2)
    9 t3 [6 c5 w4 C, f0 X$ J3 * (2 * factorial(1))1 p7 D) J9 v" o! z  y) B$ p! k
    3 * (2 * (1 * factorial(0)))
    , M  R5 @. a6 K/ l' R$ d( y3 * (2 * (1 * 1)) = 65 j% g  y& j) \0 Z+ w
    # u7 W! M( M6 Y( A  y2 k' y- R+ ]
    递归思维要点3 ]1 Z% Y! e$ d, \( M; D
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
      C8 Z8 X4 Z5 ^* Z1 K( ^% G2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    * X/ d9 x. u" j: K3. **递推过程**:不断向下分解问题(递)# m0 [0 p5 s1 f) Z$ u  T: ?
    4. **回溯过程**:组合子问题结果返回(归)5 s4 J9 @+ \" _! i7 ^3 j
    + V- l7 D: f2 `( I
    注意事项& b* O& O0 K/ i% a( t
    必须要有终止条件1 E0 {$ W( M1 h
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    2 {3 T4 A" f, ~1 c, ~6 c  `( N7 x5 ~某些问题用递归更直观(如树遍历),但效率可能不如迭代
    6 P/ D; v2 {* q5 {3 z尾递归优化可以提升效率(但Python不支持)( g' G% r+ C, h" x9 F3 h
    4 Q9 {9 ?4 q1 m- n( R- @
    递归 vs 迭代9 |/ g1 O( }2 ~1 |0 o" x% e" ^
    |          | 递归                          | 迭代               |8 C3 j; e1 t! `
    |----------|-----------------------------|------------------|1 g3 A  U/ Z) P+ O6 c& l
    | 实现方式    | 函数自调用                        | 循环结构            |
    0 ~) I- l# A7 @$ \" }| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
      {3 A5 \5 z# I5 c# _5 p| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |2 k, s' c6 C( [, O& w2 a# V
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |; S& w0 P- p  U. p
    % n: i4 ], q" a, `$ H- Y. A) `' _
    经典递归应用场景# y# {2 N/ Q7 O. ?6 H+ l) x8 X4 i
    1. 文件系统遍历(目录树结构)
    ( u+ Y& v7 u; d! s% U2. 快速排序/归并排序算法
    % }% A7 L( K2 j0 ~" C+ B9 N3. 汉诺塔问题
    $ u0 S1 X( m8 [) M$ e3 X1 J# a4. 二叉树遍历(前序/中序/后序); z0 h9 h1 \  g# N! h- h9 O
    5. 生成所有可能的组合(回溯算法), k! `1 @2 Y9 X% u
    9 @' I2 @8 m) @) A
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 21:01
  • 签到天数: 3122 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) H8 u  B$ V, a( K
    我推理机的核心算法应该是二叉树遍历的变种。
    4 [" K& _# G* U5 N# s2 |另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
      t0 |- E9 s' s( _% o/ yKey Idea of Recursion
    4 x, f6 j: i+ g
    . b/ X0 p' I6 q* rA recursive function solves a problem by:" c& |) ~# q/ l5 f
    ! [8 S+ U* ?: C
        Breaking the problem into smaller instances of the same problem.
    6 y$ D. T- g' m; P/ ^+ ^; _8 _; r) f! P, [2 n
        Solving the smallest instance directly (base case).
    - D7 j" Y& O( L0 S0 i& w0 s# p: K' e. \" U2 E
        Combining the results of smaller instances to solve the larger problem." V: k9 R; e4 P6 N; V5 o/ V# y

    8 J+ c8 i6 ]8 Z  X# R; ?Components of a Recursive Function
    . s) n7 |0 ]0 {0 E
    " e" n$ ?" w) X+ S" l+ d    Base Case:8 L$ V/ N( L' Q& @7 y2 }2 x
    * z" C3 Q4 A: X$ G
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 b8 b1 G+ V- a& Z+ O# D: X- e( n4 ?* q; B% g) G; a% N$ t
            It acts as the stopping condition to prevent infinite recursion.$ l: V, [3 _8 G  Y# u

    $ _( |, U- x+ q1 _6 P( }        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    + }. W+ G$ x$ R/ G$ Y/ J  w
    6 b9 o3 b% L/ `2 G    Recursive Case:
    - t! u5 h5 s$ M2 _0 G% p6 ]
    ( @% f& D7 e9 K" t5 i        This is where the function calls itself with a smaller or simpler version of the problem.& m' ?" h7 R3 P

    * o5 \3 s0 \. Z9 @, L" H        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).* s0 m6 X; H0 F( y6 T1 i% @+ l
    4 @/ w' q& R; M$ |
    Example: Factorial Calculation
    ' _6 L, s$ O+ u1 C7 P# [2 r8 Q9 k1 H9 A8 `) C7 n. Q' s5 {) F
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    3 Z/ D7 o: H. L2 I8 ?( m+ Q% a' I$ D$ U3 W, C5 [
        Base case: 0! = 1& S% p1 m4 J: \3 |! m' S

    ' f3 J, c: ]8 d9 E; T4 t  l- n    Recursive case: n! = n * (n-1)!
    ( t& J. b* s. f7 N
    0 t, z& j* I% ?0 e1 q) Q& GHere’s how it looks in code (Python):; h  m- l# B3 {% Q3 q
    python8 [% Z$ M$ M# W& h. k3 }1 u0 e. c4 s0 |
    1 d) p4 N: l; U, y! S4 b; Y

    ( b+ V- J8 E" C1 L* i9 n; Sdef factorial(n):' D$ O# Y$ ~, @: C8 m# q
        # Base case8 U0 z: k6 V0 w( w& u
        if n == 0:
    / h9 Q5 z. t8 ?% ]1 \- F: a+ F8 s        return 1" w: G  Z+ v* }; Y9 ~+ ~. E
        # Recursive case
    - D, T3 Y' |2 s. E, a  a    else:
    3 Y3 F8 A+ b. A$ t7 q1 |        return n * factorial(n - 1)
    & N2 N( s6 |0 _, e# `
    / H2 \7 m. o0 T4 H9 o8 o3 C# Example usage0 }; v' n& |0 s0 Y+ S+ c$ z
    print(factorial(5))  # Output: 120
    : L6 ^6 t- S, X$ \9 K9 G! Z; r! C8 h. J# j4 H
    How Recursion Works
    + Z0 F7 C1 j" F5 p& B- e
    % ]7 p8 Q; E% O, W3 R    The function keeps calling itself with smaller inputs until it reaches the base case.
    : M$ g' D# F& U
    4 h% C. @' k. q5 J" u) E3 o    Once the base case is reached, the function starts returning values back up the call stack.& a$ r- y. v4 G# z, T. P9 s# S& S

    % R0 c$ N+ o% r    These returned values are combined to produce the final result.; x+ E/ w4 F6 O/ z7 n6 K, {

    0 D* G9 h9 f0 ?; EFor factorial(5):
    / i8 X% I$ C9 v
    3 z, w2 _" J, ?5 D6 k, n" K! c
    : B. ~8 I& ]0 |$ F: ~factorial(5) = 5 * factorial(4)- w" V2 |8 \% J) s" h( e9 C
    factorial(4) = 4 * factorial(3)( I& k+ u" a" O  O$ `! b+ W
    factorial(3) = 3 * factorial(2)
    : ~3 @7 C- m# Q$ U$ H, \factorial(2) = 2 * factorial(1)
    1 M6 z: z" D6 W3 t* U$ M/ @7 |factorial(1) = 1 * factorial(0)
    % v7 c# r  c3 l7 w7 a% \3 |factorial(0) = 1  # Base case
    $ e- K5 H! n  V0 ]: O6 ~
    : f8 K5 `6 [6 B" ^Then, the results are combined:& v7 d' g$ J, c3 T0 Q' w

    9 G3 l5 c% ~% S+ F7 C4 y* v
    6 V- i- H1 v0 u2 D! O. Z* |factorial(1) = 1 * 1 = 13 d3 B, q7 {$ p/ Y$ E- H8 a) m* ~8 N
    factorial(2) = 2 * 1 = 2
    ; ~& c7 O+ M2 j$ |; i/ k2 f3 Z3 e% K: ?0 Efactorial(3) = 3 * 2 = 61 T( F& p% ?0 J1 _
    factorial(4) = 4 * 6 = 24
    ; E* j+ u- r9 o8 p; yfactorial(5) = 5 * 24 = 120! h* @/ R4 `7 d5 k5 B

    - K  J' P1 k7 z( M' J( U5 pAdvantages of Recursion" Z- U: V, y6 R, M7 @8 A, l" |- R. z. @' A

    " X. V( |8 {# x2 V- k    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ) s! ~8 `+ U# O6 q
    7 u  B0 J# B. i4 K0 V6 C    Readability: Recursive code can be more readable and concise compared to iterative solutions.6 e' ]1 J9 }$ F' m
    # ]; X' ^4 i1 J9 ?. U4 F% \
    Disadvantages of Recursion
    / W/ E0 g3 _/ Z# q$ U. h* L9 u# o1 h
    ' I. t$ h: @3 k5 T- U    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% b  ~) ?' I/ P' F9 [

    8 d9 e$ L* I' g, I# I4 i6 S& |+ Y    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* U$ K' T, ^0 E/ P1 s5 H

    0 I8 T: M! h; }8 j5 `When to Use Recursion9 G4 `+ D; p4 B; k0 ^. }
    ) {$ [. y8 d1 Q
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' c; y  u3 l& i- E9 W$ S
    # f3 `/ |* K' S; F  ]2 h( C" [    Problems with a clear base case and recursive case.8 ~' x: k* r4 E

    % ~& ]( V4 X. x# Y9 h5 dExample: Fibonacci Sequence
    . Y9 U5 J# Q$ a/ Z- q4 Q2 b: L( T& W3 M. p
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ' ^. z( v* c8 B7 ^# x$ j& t/ B
    3 P2 z7 U: G( m3 |+ h& l    Base case: fib(0) = 0, fib(1) = 1
    - i  I* l+ f+ h% k( I$ _
    0 t# a/ W2 V7 T0 T/ z2 @  ?' U    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    8 j- s( u* j+ c5 |
    6 l7 _9 o- R: ^2 P4 ]) R% g0 Upython
      k: U8 M6 f8 w( `5 [& f
    2 R# h- Z% ?2 i. S" @. d' z
    8 B3 ]" d$ k8 ndef fibonacci(n):
    % L2 e; u1 {5 x; o0 V1 p* t/ w; j: U! l    # Base cases
    & Z1 S, p$ Y6 w: u2 e    if n == 0:
    ; G* O+ N! Y% [; R8 x1 @        return 0- u! U& V8 u) D3 ]7 j* c6 \
        elif n == 1:6 g: L/ _" X  u
            return 1  q# i9 a1 b+ d: O: h& c  L# W8 w
        # Recursive case
    & @& X1 ]( k) s& X9 \    else:
    5 C( x6 x1 G3 B2 [4 t        return fibonacci(n - 1) + fibonacci(n - 2)
    6 t2 h/ b$ ?9 u; R
    % j4 b4 c! A- u6 d% M6 `8 _% @# Example usage
    & Z$ C9 {+ w4 j7 G  J, o  Xprint(fibonacci(6))  # Output: 8) t: q: U( P5 D$ J& i  }0 _" F

    ) Z- n+ ~% p+ |8 xTail Recursion; ]; |9 m& }0 z3 m

    - w4 p$ q) Q5 k; M0 Y% F6 _% uTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).  I! [# }9 [0 O0 m

    ! X" c+ d; ^9 q& o( U' v/ a8 Y% _In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-20 03:42 , Processed in 0.029730 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表