|
本帖最后由 stpearl 于 2013-6-7 11:44 编辑
9 `2 ]9 u% Z. h烟波钓徒 发表于 2013-6-6 04:12
2 h: ~* X4 P t- W想不到在这里碰到专家阿。" r, C$ R8 S: S: Q' n; h1 k
7 \. h" Z8 x+ jAmbiguity Aversion最近确实算是一个在很多领域都比较热点的问题。但是要能在 ... * }2 p0 j* S: e: T" d
8 ^. \7 q0 z- ] p# G' x" e多谢这么高水准的综述. 专家可不敢当. 就借着这个帖子往下写写.
" g2 b* ]% ^1 C% a) T: b( _5 y/ K2 U) ]& W/ ~, x3 G/ H
目前的文献里,ambiguity 和 Knightian uncertainty基本上是等价的概念. Risk 是uncertainty with known probability distribution; ambiguity 是 uncertainty with unknown probability distribution. 在您的例子里,罐子A就是一个“risky” 罐子,而罐子B 是一个“ambiguous” 罐子:它的白黑球的probability distribution是不确定的。或者说,我们可以有100个不同的prior distribution: [0, 100/100],[1/100,99/100]...[1,0]. 在没有其他的信息情况下,很难说哪一个才是比较合适的prior。这个例子就揭示了经典的期望效用理论和Ambiguity aversion framework的一个根本区别:前者有一个唯一的probability distribution来描述各种可能的结果;而后者这个probability law却不是唯一的。之所以没有一个统一的ambiguity aversion model 就在于不同的model对人们如何在存在ambiguity 的情况下的decision rule有不同的假设。0 u9 h% u4 W* H- d c% S1 J& B" O
( W. y6 L* q c, s( X1 ~. Q( O
在Gilboa的“max-min” model下,假设人们(1)先在不同的probability distribution下最大化期望效用;(2)然后在所有可能的(最大化)期望效用里面挑一个最小的作为最后的“最优”结果。在这个框架下,人们都被假设为保守或者是“悲观者”。这是这个模型所面临的最主要的问题。 另外的一个缺陷是,这个期望效用它不连续。这可是“要了亲命“。当然这是夸张了,Epstein和Schmeidler一样用类似的model发了JF。
7 Q' V$ J- p" a0 R4 e8 K* Y2 d+ ]( }4 K0 O* x+ d
所以,一个直接的拓展就是 ”alpha max-min“ model。凡事还是要往好处看么。那么我们就在最好和最坏的(最大化)期望效用里面作个折中。alpha[0,1] (1-alpha)就是给最坏的(和最好的)结果的权重。
9 J/ _% @; A o) e3 y3 L* }. A4 ~5 z; h" t
Klibanoff(2005)就提出了一个smooth的model,简言之就是“期望的期望”。“max-min” model可以作为这个model的一个特例,如果人们的ambiguity aversion非常非常非常大。这个模型的另外一个好处就是可导性,能做一些比较分析,而且可以在理论上区分risk aversion和ambiguity aversion. 结合CAPM, Maccheroni 对这个模型进行了进一步的拓展,显示出 存在ambiguity aversion的情况下,ambiguity premium会直接反映在 CAPM的alpha里。0 i7 T9 K1 e# Y7 F; x
# A6 {# V+ n6 J) B' N个人认为Hansen, Sargent的robust constrol与以上模型最大的区别在于:虽然存在多个(可能是无限多个)probability law,能不能结合已经有的“经验” 来帮助我们找到一个比较合适的distribution? 比如,我们对未来的失业率有一个2%的估计。这个估计可能是一个无偏估计,当然也会受到一个噪音的影响(假设这个噪音服从中心为零的正态分布)。所以他们引入了一个在统计上非常重要的概念:entropy。借助entropy,这个理论假设:人们在作决定时可以偏离prior distribution来最大化期望效用, 但是鉴于这个distribution 是基于现有信息的最优估计,必须对偏离这个最优估计加以“惩罚”。 entropy正是用来度量决策所用的distribution和“现有最优估计”的偏离程度。这个模型(不太严谨,人家可是写了一本书)可以拓展到许多领域中的parameter uncertainty的研究中去。当然这个模型也不是没有问题。 Epstein(2010,NBER的paper) 他老人家就指出这个模型实际上就是给效用穿了个马甲嘛,exp(u(x)),没有从本质上解决 Ellsberg Paradox。& ?$ ~/ ^6 g- [) [0 I3 F- F
0 @7 F/ ~- ]# s. p; Q
以上,我们还都只是讨论在ambiguity aversion 下个体决策的问题。如果涉及到多个决策主体,比如资产市场中的卖方和买方,又有不同的blief。这种情况下,分析起来就更为复杂。MIT的Hui Chen 就有着方面的研究,有兴趣就可以放狗。
1 _- W. n9 }, |& Y3 X7 K% R1 Z) Y0 r+ g- O8 d9 e
总的来说,个人认为很难有一个比较统一的理论,因为很难对个体的决策准则作一个统一的假设。这个理论之所以比较热,因为很多领域都存在parameter/distribution uncertainty的问题。举个例子,从上个世纪末开始,保险行业就开对重大自然灾害(地震,飓风)进行电脑建模。现在美国特定的区域(比如佛州)已经可以做到zipcode level的建模,包括房屋构造,年限,周围的地址环境,飓风等级,行进的可能路线。可是即使这样,还远远不够。原因就在于这些灾害都是小概率事件,50乃至上百年一遇,可用的历史数据太少。一次黑天鹅事件(Katrina)就能改变原有的估计。所以,模拟的数值能够落到3,4个标准差之外也不少见。而且所有的建模里面,最要命的还是 unknown unknown。2011年日本的地震引发的海啸就是个例子。日本的地震是保险巨灾模型里都有的,但是地震所触发的海啸的“二次灾害”却没有包括在原来的模型里面。另外同年,新西兰地震带来的泥石流,泰国的洪水和智利的地震给全球供应链产生的冲击都是原来巨灾模型里的盲点。很多时候,只有发生了才知道“哦,原来不知道还能这样。” 对于保险商来说可就没有这么一句带过的轻松了。一个盲点就意味着上十亿美金的赔付。原来的可保风险,比如business interruption,现在很可能就变成了不可保风险了。这些例子都说明,我们已知的,甚至是熟知的,很可能都是不完整的,only partial law。这也是为什么要研究ambiguity的动因。0 X: V$ k1 g' o& @4 G
* X; z8 g) s* v7 a% n) Z写了一些浅见,算是狗尾续貂吧。
* Q" P& M% @( H) m m* I3 v# U& L# Y0 a5 }
6 K) b' ?( f1 H& _' R" T! F# @* w% h' g" L& g
|
评分
-
查看全部评分
|