|
本帖最后由 烟波钓徒 于 2013-6-2 09:09 编辑 + x- X8 {" p- B, M8 N, \
7 P; e) Y- a# ?& _+ Z先说明一下,这个游戏没有写的很清楚,应该是在游戏一和二里面每个必选一个。这样的话就一共有四种组合,按照游戏一二的顺序:
4 r4 W6 D- Y. V6 kAA,AB, BA, BB.
- N, c( P! L. p, X" f( e: s$ |- |4 g先看看这个游戏的结果:
& t# R, o/ g t( Q一共投票者84人,在游戏一和二里面各选一个的有66人。其中选择的人数分别是:8 I8 D1 C$ ^! v( \1 i0 M
2 H0 N2 _1 W U4 Q7 l4 Z8 B) M A) u h3 m- p/ Z' v
8 x7 c4 e' g8 \, o+ j( n- Z3 |3 F# c
经济学研究的基础是如何理解人的行为,或者说人在特定情况下会作出什么样的选择。特别是在面临不确定情况下的选择。
0 V" P/ u# B" B6 Q其中最基本的模型一般最假设人知道将来收益的概率分布。就是游戏里面的罐子A.
5 [) u" q0 O2 S所以如果假设一个游戏是抛一个公平的硬币,正面游戏者得到一块钱,反之损失一块钱。那么游戏者选择玩或者不玩这个游戏,反应了游戏者的风险厌恶的态度。, D# v. N4 Q) w, @1 \; m+ x
0 t# B; S. m( B6 x5 s, a
比如我们如果自己在抛一个公平的硬币,我们知道正和反的概率大概都是1/2.但是现实中我们往往并不知道将来收益的概率分布本身。如果我们把知道概率分布时候的选择叫做风险,我们把这种连概率分布本身都不知道的情况叫做不确定性。而这个游戏就是考察人在不确定性的情况下的选择。8 E0 E' f3 U9 M; y2 P! h$ S
|
评分
-
查看全部评分
|