设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 256|回复: 0
打印 上一主题 下一主题

[科普知识] Deepseek 3FS 与 NVIDIA Magnum IO 漫谈

[复制链接]
  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-3-2 09:45:43 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    AI 时代,数据“水管”哪家强?—— Deepseek 3FS 与 NVIDIA Magnum IO 漫谈
    # q/ Y- u  P8 S: s
    ; s9 B! f1 e3 F* e9 b2 P: M) PDS在第五天开源的3FS项目,其实是涉及到了一个 AI 时代绕不开的话题:数据存储。别以为这只是硬盘、U 盘那点事儿,对于 AI 来说,存储可不仅仅是个“仓库”,它更像是连接“数据水库”和“计算水泵”的“水管”。“水管”要是细了、堵了,“水泵”再强劲也白搭,AI 的“大脑”会因为“缺粮”而罢工。5 d3 i6 B2 n, l8 R5 R2 y6 ]
    7 U/ \& `  }+ f
    为什么这么说呢?想象一下,你正在训练一个聪明的 AI 助手,让它学习自动驾驶。这需要海量的道路图像、交通视频等数据,这些数据就是“水库”里的水,AI 模型则是“水泵”。如果连接“水库”和“水泵”的“水管”——也就是存储系统——不够给力,数据供应不上,“水泵”就会“空转”,训练就会变得异常缓慢,甚至根本无法进行。
    1 C2 b  i' H- l) S$ j2 R" Y5 y  a
    如今的 AI 模型越来越复杂,需要处理的数据量也越来越大,传统的存储系统就像是“小水管”,渐渐力不从心了。这就好比你试图用一根细细的吸管去喝光一大桶水,那得多费劲!所以,为了满足 AI 的“大胃口”,我们需要更粗、更快、更智能的“水管”。
    . k2 y2 `9 A0 i8 R6 R
    0 T! E6 W/ a# c/ Z$ nDeepseek AI 公司开源的3FS分布式文件系统,就是这样一根为 AI 量身打造的“超级水管”。这里的“分布式”是什么意思呢?你可以把它想象成一个由许多“小水箱”组成的巨型“水库”,这些“小水箱”通过高速网络紧密相连,对外却呈现为一个统一的整体。这样做的好处显而易见:一是容量可以无限扩展(加“小水箱”就行),二是多个“水泵”可以同时从不同的“小水箱”里抽水,效率大大提高。
    ; R( O7 @" l6 U8 z* M; E! t
    * j4 ?0 l, z8 D1 Z, }- l$ V% C; Y3FS 的“超级”之处,不仅仅在于它的分布式架构,更在于它的一系列独特设计。首先是软件工程师们熟悉的“解耦架构”,3FS 的“小水箱”可以独立部署,硬件方面只需普通的 SSD 硬盘和高速网络(最好是支持 RDMA 的)即可。这种设计的灵活性极高,可以根据需要随时增加或减少“小水箱”的数量,就像搭积木一样方便,实现了存储容量和性能的弹性伸缩。
    1 \; ]# N0 Y6 _/ i* J+ a2 {" B" e8 N" l0 V' [8 ]- }0 l
    另外3FS 非常重视数据的“强一致性”。在分布式环境中,多个“水泵”同时抽水,没有好的协调机制,很容易造成数据混乱。3FS 采用了一种名为 CRAQ 的算法,确保数据在任何情况下都不会出错,保障了 AI 训练的准确性和可靠性。为了方便用户使用,3FS 提供了大家熟悉的文件接口,就像我们平时在电脑上操作文件夹一样,即插即用,无需学习。
    0 R9 w+ ]- i, |  `" R6 ^1 r
    4 ]6 G6 n% t4 P- o- Z" e更重要的是,3FS 不仅仅是一个通用的文件系统,它还针对 AI 的各种应用场景进行了深度优化。在 AI 数据准备阶段,3FS 能够高效地组织和管理大量的中间数据。在模型训练过程中,它能快速、高效地将数据“喂”给 AI 模型,无需像传统文件系统那样进行预取或数据打乱等额外操作。对于大规模模型训练,3FS 支持高吞吐量的检查点(也就是“训练存档”)保存和恢复,大大提高了训练的容错性和效率。在 AI 模型推理阶段,3FS 提供的 KVCache 方案,可以提供更大的缓存空间和更高的访问速度,有效避免重复计算,提升推理效率。
    ( a8 K2 o8 }$ R- C5 o6 m3 |1 }
    4 x4 w$ M7 t% k, O" h2 YDeepseek 官方的测试数据也证明了 3FS 的实力。在大规模集群测试中,3FS 的读取速度峰值高达每秒 6.6 TiB(相当于每秒读取数千部高清电影!)。在衡量大规模数据排序性能的 GraySort 基准测试中,3FS 也表现出色。其 KVCache 方案在推理场景下的读取速度更是高达每秒 40 GiB,足以满足对延迟敏感的 AI 应用需求。当然, 作为一个开源的新项目, 3FS还需要时间和更多用户的检验。
      g: p6 z* e4 [. b$ y" s3 A! q- d  h3 H$ R& r4 \# f( C3 w
    除了 3FS,业界还有另一种提升数据访问速度的方案:NVIDIA Magnum IO。如果说 3FS 是一根完整的“超级水管”,那么 Magnum IO 更像是一套“水管加速系统”。它不是一个独立的文件系统,而是一套由 NVIDIA 提供的 I/O 软件加速套件,专门与 NVIDIA 的 GPU(图形处理器)和 DPU(数据处理器)紧密结合,通过优化数据从存储到网络再到计算的整个流程,实现端到端的 I/O 加速。
    $ i! h; Q& h$ q1 ^, w' V! o8 W! A$ x& v) M
    Magnum IO 的“加速魔法”主要源自几项关键技术。其中最核心的当属 GPUDirect Storage。传统的数据传输模式下,数据需要先从存储设备读取到系统内存,再由 CPU 搬运到 GPU 显存。而 GPUDirect Storage 打破了这种模式,它在 GPU 和存储设备之间建立了一条“直通通道”,数据可以直接从存储设备高速传输到 GPU,大大减少了传输延迟。除了 GPUDirect Storage,Magnum IO 还对整个数据流动的路径进行了全面优化,并利用 NVIDIA 的 DPU 来分担 CPU 的网络和存储 I/O 任务,让 CPU 能够更专注于计算。$ O- h2 O; y& ]

    7 n2 r6 j+ I/ `5 WMagnum IO 是 NVIDIA 整个软件生态系统的重要组成部分,性能表现出色,能够显著缩短 AI 模型训练的时间,降低推理延迟。它广泛应用于深度学习训练、高性能计算、数据分析等场景。其优势在于成熟的 NVIDIA 生态系统、完善的软硬件支持、强大的硬件加速能力。然而,Magnum IO 的核心功能和性能优势高度依赖于 NVIDIA 的 GPU 和 DPU 硬件,通用性相对较弱,而且可能受到出口管制的影响。
    # s: l, O5 r0 l! X+ x; x) P6 ]
    4 _* y- d7 u4 W) f9 D6 \- \除了 3FS 和 Magnum IO,AI的行业中最常用的数管系统架构大都是一些基于键值(KV)存储的分布式文件系统(如 Ceph、Cassandra File System 等),它们利用 KV 存储(类似于一个巨大的“数据字典”)来管理文件元数据或存储小文件,以提高效率。但这些系统通常更适合特定场景,这里就不详细展开了。
    ! x: W; `; b4 t! _& _; k1 e% j4 \# F
    那么,面对 3FS 和 Magnum IO,该如何选择呢?简单来说,如果你追求极致性能,希望存储系统灵活、开源,并且不局限于特定硬件,那么 3FS 可能更适合你。如果你已经大量使用了 NVIDIA 的 GPU 和 DPU,希望充分利用 NVIDIA 硬件的性能,那么 Magnum IO 可能更适合你。当然,最好的办法还是根据自己的实际需求来选择,甚至可以将两者结合起来使用。反过来,DS的没有明说的就是隐含选项,可以用相对通用的硬件组合一个适合自己用的“水管系统”,不一定非要依赖NVIDIA的软硬件套件(当然要是有就更好了)。9 q$ [. N0 D9 A# k' Y

    / E0 G$ M4 U" }) P在 AI 时代,高性能存储是关键的“基础设施”。Deepseek 3FS 的开源,为 AI 存储领域注入了新的活力。开源意味着开放、共享、协作,它能让全球的开发者共同参与,加速技术的创新和应用, 推动整个AI产业的进步。相信在不久的将来,我们会看到更多像 3FS 这样的优秀开源项目,为 AI 的发展提供源源不断的动力。
    4 ]7 M1 p$ G- R8 G原文链接3 H! l! d5 q# B6 {3 F' q5 W
    : F0 Y  Z( o- k! o) O1 {

    评分

    参与人数 3爱元 +41 学识 +2 收起 理由
    mezhan + 10
    常挨揍 + 15
    老票 + 16 + 2 涨姿势

    查看全部评分

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-4-3 15:45 , Processed in 0.031842 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表