|
|
6月13日《南华早报》报导,《上海航天》4月25日刊发西北工业大学和上海航天工程研究所联合团队的论文,描述用人工智能实现反卫星对抗的研究,研究表明,经过大量深度学习计算后,被追踪的大卫星学会识别敌对反卫星的意图,自主躲避,但3颗小型的反卫星最终在人工智能的指引下,用回马枪“抓住”了目标卫星,并在不到10米远的距离用捕获装置“俘虏”了目标卫星。
( f" [: a! r; a$ u2 r
4 U2 E6 {1 H2 d这个研究有意思的地方在于攻防双方都使用人工智能,追踪和捕获不是靠速度、机动性等硬性能,而是靠诱骗、迂回等战术。这是攻击武器的新高度,也是设防目标智能化和硬性能差别缩小化后的必然要求。% |! e2 N. V" R# m1 K1 [
e: t3 F( D5 r5 k; D' R' `% Z反卫星作战以大型卫星为主要目标,一般假定是大型卫星目标大、机动性差,所以反卫星是捕获目标、跟踪和追击的问题,也就是说,是动力学问题。这是防空导弹、空空导弹制导原理的基础,只是延申到地球轨道上去了。
8 T4 J; K6 y* K1 m/ ~% {! y
& O! ~5 H* o1 @: P; ?当然,这不是一句“只是延申到地球轨道上去了”那么轻飘飘,上了轨道,导弹相对于飞机常见的动力学优势(速度、加速度、机动性)没有了,小卫星根本没有多少变轨机动能力,几下就燃料耗尽了,速度差也没有多大。% ~& ]) H$ i; G- V
! ~5 ^) x" m* F0 w- x* a更大的问题是,主要大国都有完备的空间监控系统,图谋不轨的反卫星刚发射,就能猜个八九不离十,在反卫星还在上升到足够轨道高度之前,可能就命令目标卫星变轨机动,躲开攻击。反卫星还没有开始追击,已经要为了追上新的轨道而消耗大量燃料。
6 z( G( C! S3 d5 T q0 p) J1 Q8 ]) v9 n# ]3 n2 ^! p' ]
这和在反潜中用远程鱼雷攻击一样的问题。鱼雷一下水,目标潜艇就知道了。假定理论上鱼雷射程为30公里,最高航速50节,潜艇为30节,鱼雷在10公里距离上发射,似乎击中十拿九稳。假定潜艇朝背离鱼雷的方向全速疯跑,两者的速度差为20节,忽略所有转弯、加速因素,也忽略鱼雷捕获目标需要的时间和可维持最高速度的时间限制。在最简化的情况下,鱼雷需要16.2分钟才能消除这10公里,而在这段时间里,鱼雷需要航行35公里,也就是说,超出射程了,没有追上就没劲追了。: F% U" G, ~# u9 Q$ X1 a& U
6 t+ D" e& n# D) i9 W, O! h- m鱼雷减速可以大大增加射程,追击时间延长,但反而追得上了。假定鱼雷速度降低到40节,能把射程延长到60公里,追击时间要延长到32.4分钟,但刚好能追上目标潜艇,理论上可以实现有效攻击。
% _( c7 C6 L, F9 G7 U0 p2 Q1 k; @5 C' v
这当然是简单化的场景,带来的问题是,速度差减小,动能差就减小,即使追上了,目标潜艇不再靠疯跑甩掉追击鱼雷,还是有可能靠机动甩掉,这就回到“智能追击”的问题了。7 T8 N. r( n! I4 R: `- c9 G; r
Z, R7 ^& h) G4 o% p% K# u {; n1 I对于高超音速拦截,问题类似。高超音速飞行本来就是极限飞行,高超音速拦截弹难以保持足够低的成本前提下,做到速度、机动性全面高于高超音速目标,否则拦截作战的成本是不可承受之重。
5 i1 l/ ?0 g5 i: i0 T
+ J! X+ y* }( ~" Z$ r! C5 a/ M即使对于常规防空导弹、空空导弹,降低动力学性能要求,可以大大降低成本、延长射程,只要发射就迫使对方开始机动躲避,就在功能上破坏了对方完成任务,前提是智能拦截能确保“迟到但亲密的接触”。1 n" i* m b: {
5 t! V3 j: u7 ], t, y6 P也就是说,西工大的“智能拦截”具有远比反卫星更加广泛的应用前景。但智能拦截并不容易做到,尤其在目标也有智能规避功能的时候,或者目标是有人操纵的。
7 u" c/ n/ U- K) ^% E. P4 i; g" L9 Y8 s/ \+ V; }
从人工智能角度来看,反卫星与下围棋没有本质区别,都是对抗。深度学习通过大量“棋局”训练,提高“棋艺”。阿尔法狗从人机互博开始,用3000局精选人类棋局作为初始“经验”,以后过渡到人工智能自己“左右互搏”,最终“训练”出人类难以战胜的围棋大师。西工大一步到位,用人工智能“左右互搏”,“训练”出反卫星智能拦截大师。不光要“赢”,还不能花时间太长,不能反卫星之间互相撞到一起或者互相挡路,不能浪费星载燃料。
, `' M, G4 @( N! o( `
8 L3 d" k6 s2 O- F, {) j这是需要超强算力的研究。最初10000个回合里,攻防双方都打得很糟糕,双方都是失分远远超过得分,不及格。
9 R' M! E l/ k# ]: D1 W1 V% W4 d* V* x
可能由于反卫星“人多势众”,深度学习的进展更快,到20000个回合时,反卫星开始占上风。但目标卫星也琢磨出道道来了,开始“看透”反卫星的简单战术,规避机动更加有效。8 {4 q( Q- y' i8 b( n: e
! R! G7 C6 S S e6 H# q反卫星在失败增加后,通过深度学习改进战术,不再傻追,成功率再次提高。到22万个回合后,反卫星战术和技术接近完美,从假装漫不经心地渡步到目标卫星周围再突然发难,到目标卫星机动规避后假装放弃再反戈一击,各种花招确保目标卫星基本上“死路一条”了。
1 p8 z* q, L" l- F: ]4 [( O9 a( T& O2 H( l8 `- V$ Y5 H
这样的超级算力装上每一枚反导弹、反卫星是不可能的,但深度学习需要超级算力,学习完成后的控制算法实施并不需要超级算力,这就是人工智能武器化可怕的地方。当然,西工大的算法只是针对卫星和反卫星的特定动力学特性设定,扩大到更广泛的应用需要重新进行深度学习,但基本方法是相似的,可以举一反三。
% ~9 i* m# b; X& ~/ r7 _# \1 d. C6 @( p! K
4 |6 K$ O% T1 w& R. k美国在呼吁中国参加军控会谈,不仅包括导弹核武器,也包括为人工智能武器化设立护栏,但中国并未积极响应。在很大程度上,这是很难限制发展的地方,也有大量民用应用,不宜控制发展。参加军控会谈,与其说能建立可靠的护栏,不如说双方以透明化为名互相摸底。在严重缺乏互信的情况下,很难说这样的透明化有多大意义。
! l- L: F3 N, _
, G) U0 C; F( T' Q另一方面,中国走到前面,或者至少并跑,才谈得上有意义的人工智能军控,但这是另外一个话题了。
) K3 M; c# E9 @ t X$ ` |
评分
-
查看全部评分
|