设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2926|回复: 14
打印 上一主题 下一主题

[信息技术] 美国会丢失人工智能科技高地吗

[复制链接]

该用户从未签到

跳转到指定楼层
楼主
 楼主| 发表于 2022-9-20 09:08:01 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 晨枫 于 2022-9-20 09:40 编辑 ) Y# U8 C2 n! o) k2 I, f( Q

$ ], D# P0 A) C2021年5月,美国国会指派、有谷歌前CEO埃里克·施密特和美国前国防部副部长罗伯特·沃克领导的人工智能事务国家安全专门委员会发表了长篇报告,指出美国在硬件、算法、人才方面领先,中国在应用、整合、数据方面领先。报告认为,美国的算法领先在5-10年内会被中国赶上,但美国在总体上还略微领先。1 k9 I) [! j" B% q

3 K6 B; Z: c7 \, H9月12日,委员会发表了竞争力研究特别报告,再次强调美国的人工智能优势正在迅速消失。
, J  ^% f) g0 ?. f% Y
# x) L6 W: {7 [, q1 q美国的担心是有道理的。2 o# S7 z. T. k/ D
& v7 o; ^* c) c! V" x% {3 c4 v. s
人工智能还是野蛮生长的领域。各种应用搞得热火朝天,但缺乏统一、严格的理论框架,理论严重落后于实践。最大的问题是难以分析、预测、设计系统的性能,使得人工智能的决策难以理解,难以信任。“阿尔法狗1.0”和2.0在与人类棋手大战的时候,都走出一些匪夷所思的步子。事后分析好像是好棋,又说不出好在哪里,更是想不出什么思路能走出这样的步子。这只是下棋,看不懂棋路不是大问题。要是人工智能用于国家核导弹自动发射控制,也给你来几步人类看不懂的反应,那问题就大了。/ v% k2 F. c8 ?: r( }, _6 i( e) `3 D

1 k- K3 Y) ?# D+ ^4 \6 X在缺乏理论指导的情况下,算法成为各家的“手工艺”。手工艺不可怕,可以在大量实践中精益求精,很多工业技术(包括尖端科技)都有这样只可意会不可言传的手工艺成份,事实上成为技术壁垒的重要部份。! a4 y3 v. b9 ^; z6 V% p

! v7 `. I/ B. M0 o/ x$ w; `& F问题是,人工智能的最大量实践是在中国,不是在美国。在美国和西方眼里,中国的人工智能就是用于大数据人群监控的,这是意识形态偏见。中国的人工智能应用正在野蛮生长中,头条、抖音的推送就是人工智能,这只是冰山一角。形成商业利益后,人工智能不再是纯学术或者纯政府行为,具有强劲的自我增殖能力,不仅引发更多的应用,也推动算法的发展。
. E# I: h3 m% }$ S$ ]6 ^% ~
% e& Y* L) ]& Y: n$ A# v在美国,人工智能应用依然主要由军方拉动,商业人工智能缺乏自我发展的动力。美国试图把私营资本拉入人工智能竞赛,但风险较大、没有明确的盈利前景,私人资本没有理由加入。华尔街能承受风险,但风险大,回报还慢,这就没有干劲了。这是美国各种“公私合作”设想的共同问题。
! E. e9 c6 g" s3 r% b- {
7 N- E6 U3 n/ _* ~7 T/ ], d片面依靠军方拉动正是苏联科技发展的问题根源,大力依靠民用需求拉动则是美国的成功经验。有意思的是,美国在走苏联的路,而中国在走美国的路。
$ \$ j6 p) m, [' k4 O' i+ b) ^& J7 |4 O
所以施密特-沃克报告清楚地看到,中国将迅速赶上美国的算法优势,如果不是在理论框架上首先突破的话。
/ L4 u; c& A6 Q4 @! c/ E0 [6 Z4 X4 j0 W4 i, I
) d/ S$ _/ q7 z* Y理论突破需要人才,但美国人工智能人才是否领先中国,是一个一言难尽的问题。如果把具有中国血统和教育的人统统排除,美国人工智能人才圈大概立刻坍塌一半。同时,中国人工智能在大量实践中,中国人工智能教育、科研、人才形成良性互动,中国人工智能人才赶上美国不是梦。* Y: I$ z+ X, ?2 ~" l3 B: ?  z

- w* }! D3 @/ @2 U, S7 B有意思的是硬件。中国还在先进芯片困境中,美国对英伟达和AMD高端芯片对中国禁运,就是冲着人工智能来的。但这些芯片在本质上是图形处理芯片,并行处理能力恰好与人工智能运算的要求符合,但本身未必是为人工智能优化的。
3 S/ z. @3 Q' |8 A' K5 M' @7 K) S9 W  l. W# k
中国芯片在闯关中,一方面是7nm、2nm等更高集成度的硬技术,另一方面是在专用芯片方面实现架构突破。中国超算就是通过精巧的架构设计,在较低的硬件技术水平上实现世界领先。尤其重要的是,这样的架构突破需要在实践中得到思路,在实践中检验成效。
, G: k- u! l' ?$ m5 n$ X
+ J4 Q3 a3 d! b+ P' y' H# j: p& Q在现在,中国还在大量采用来自美国的算法成果,硬件上也对美国有依赖,但历史上有过先例:要是在总体实践上掉队,核心技术的领先并不保证持续领先。, A! y  {6 i6 H( q$ a8 P  I

$ I* P: O) Z4 k& s" B在40年代,英国与德国同时发明喷气式发动机,德国抢先一步,首先将Me262投入使用,但英国紧随其后,只是因为战争大局已定,就不急于将格洛斯特“流星”战斗机投入实战了。但罗尔斯-罗伊斯的“尼恩”涡喷在40年代末代表最先进技术,苏联引进后,用于米格-15,从此苏联航空科技一骑绝尘。
; i" i$ i$ Q8 C( {5 y2 \" M- @+ [) ]2 _1 \4 f5 U3 \+ Z
发动机是航空科技的核心。苏联战斗机借用英国技术起飞后,在大量实践中迅速将“尼恩”改进为克里莫夫VK-1,以后克里莫夫和留里卡一起,成为苏联战斗机发动机的哼哈二将,罗尔斯-罗伊斯也在进步,但英国战斗机再也没有赶上过。( O4 f' ~8 G, I
! X8 E* M. [" C) s' K. O# }0 ^
另外,人工智能现在一根筋搞大数据学习,是存在“数据困境”的,尤其是工业应用。要使得人工智能有效、准确,需要大量历史数据;但产品一直在转换,大同小异但毕竟不一样。等训练出来了,也该转产了。绕了一大圈又回来了当然很好,但这是可遇而不可求的。单纯靠学习,可能跟不上变化的现实。这是大问题。
, `; ^  c, P) Z1 q4 C& J0 s7 H. d8 }! a6 z2 r* E8 k
但变化与变化不一样。大部分变化是变表不变本的,本的变化缓慢得多。这也是人类思维善于适应变化的环境的道理。在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,无视了变化的环境。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。8 w4 U$ l* H2 ^$ u+ L4 Y2 O

  x( G6 {0 w8 s人工智能需要在框架上形成演绎能力才好。这是巨大的挑战,但很可能不是从纯理论的空想中产生,而是从大量实践的摸索中完善。- A( g. P& r- L8 L
- i0 s9 N7 z: _( C
如果说芯片、软件是当今科技高地的话,人工智能是未来科技高地。美国很担心中国会抢占这个高地,担心就对了。0 g$ c; }+ r8 e8 B' \
7 E0 D& N( _4 K6 r
报告还提到,中国在5G、商用无人机、高超音速、锂电池方面领先,美国在生物科技、量子计算、商用航天和云计算方面领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。
. x: y) ^' @( {" B- o; X6 }( b8 A# j. b

评分

参与人数 3爱元 +26 收起 理由
landlord + 12 谢谢!有你,爱坛更精彩
MacArthur + 4
testjhy + 10

查看全部评分

本帖被以下淘专辑推荐:

  • TA的每日心情
    开心
    2023-2-8 04:51
  • 签到天数: 1811 天

    [LV.Master]无

    沙发
    发表于 2022-9-20 09:51:16 | 只看该作者
    美国在生物科技、量子计算、商用航天和云计算方面勉强领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。
    ) R* h: J$ x5 R, v& C' R5 j% _7 ^
    这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就starlink,还是生造出来的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
     楼主| 发表于 2022-9-20 10:59:16 | 只看该作者
    moletronic 发表于 2022-9-19 19:51
    ) F$ O2 e/ g7 E这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就sta ...
    5 _( W1 _" c0 {+ _1 s
    为什么说中国生物很难翻盘呢?5 E; P1 u0 `9 h7 o' a; ~8 ], |: Y

    : L- T# Y1 W* C9 i+ V1 t商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2023-2-8 04:51
  • 签到天数: 1811 天

    [LV.Master]无

    地板
    发表于 2022-9-20 11:07:26 | 只看该作者
    晨枫 发表于 2022-9-19 18:59
    1 ~2 U  G4 y$ f为什么说中国生物很难翻盘呢?' Y5 |: f% d/ V+ L! ]
    : l" ]8 u7 n4 A0 L6 R
    商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。 ...

    8 A4 W! g9 r) i# I" S2 h. t; s俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    5#
     楼主| 发表于 2022-9-20 11:18:24 | 只看该作者
    moletronic 发表于 2022-9-19 21:07
    ' S8 b2 |( D2 A% |7 H! D俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。 ...
    5 l* ]! R# i$ q4 |
    这事要一分为二地看。回国多,说明国内机会多,上升空间大;另一方面,要是国内已经很强了,反馈就该说国内已经很卷了,回去的人反而也多不起来了。

    点评

    油墨: 5.0 油菜: 0.0
    给力: 5.0
    油墨: 5 油菜: 0 给力: 5
      发表于 2022-9-20 12:14
    回复 支持 1 反对 0

    使用道具 举报

  • TA的每日心情
    郁闷
    2024-11-9 11:44
  • 签到天数: 2166 天

    [LV.Master]无

    6#
    发表于 2022-9-20 12:56:21 | 只看该作者
    还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已经后悔回去了,准备在出来。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    7#
     楼主| 发表于 2022-9-20 13:09:49 | 只看该作者
    huma 发表于 2022-9-19 22:56& k" l3 F; u1 Y3 b
    还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已 ...

    % a. f* l" A# {% M6 a1 g然后再后悔又出来了
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    无聊
    昨天 00:28
  • 签到天数: 2930 天

    [LV.Master]无

    8#
    发表于 2022-9-20 15:34:02 | 只看该作者
    一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是多品种,小批量。当你收集到足够的样本的时候,流水线说不定已经转产下一品种了,图形、花色都可能重大变化,当然,你可以慢慢累积成样本库,但企业特别是中小企业是不会有兴趣陪你长时间玩的。我们在考虑根据少量样本,采用瑕疵产生原理生成一批伪样本,目前对质量要求不太高的产品可能有效,但对高质量产品还感觉不太成功,前者比喻开始瑕疵检出率80%,然后几天内提升到90-95%,后者如果一上来就要求95%,大概率要失败。( e" ~0 M0 a, b' Z
    其实,最好是传统计算机视觉方法与深度学习相结合,前面偏原理分析,但非常繁杂,现在年轻一代都想省事,找一批样品扔进学习平台完事。我这个老古板属于看人挑担不吃力型,没办法。

    点评

    给力: 5.0 涨姿势: 5.0
    涨姿势: 5
      发表于 2022-9-21 04:59
    给力: 5 涨姿势: 5
    有道理!  发表于 2022-9-20 23:26
    回复 支持 1 反对 0

    使用道具 举报

    该用户从未签到

    9#
     楼主| 发表于 2022-9-20 22:17:19 | 只看该作者
    本帖最后由 晨枫 于 2022-9-20 08:21 编辑
    3 ?# `# g/ U* ~# i! O; Z% j2 p
    testjhy 发表于 2022-9-20 01:34
    & m8 ~; a( f" s一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是 ...

    9 R$ j& D" x1 E+ I- Q5 H; w9 [2 S+ e3 K. \# L/ e6 Y# r6 B% y
    太对了!4 ?2 E4 X9 W! _5 n
    : O8 O+ {. V" W  }% H
    人工智能现在一根筋搞大数据学习,正是数据问题。用自控术语来说,这是对有历史积累的时不变系统有效,时变系统就抓瞎了。7 e+ G" o5 {4 ^# h& H+ o4 B

    : S% q; y4 `  [  f$ h在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,不看变化的条件。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。
    0 Y: w+ ]2 e" R8 b4 r
    5 ]3 p1 w- A3 ^人工智能还需要在框架上形成演绎能力才好。怎么做到?嘿嘿,我要是知道,还在这里瞎耽误功夫嘛。
    , P. t1 F0 [1 P! f! n) X/ Y& S4 i+ t! r
    在自控和建模中,也曾经流行过纯数据驱动的黑箱模型。后来发现不行,robustness太差。后来转灰箱了,在具有机理背景的模型结构上,加一个黑箱尾巴,用机理模型解释大部分数据,黑箱尾巴只管“扫尾”,情况就好得多。不过实施也难得多,可以丢给“数据绞肉机”就不管的好处没了一大半。: ^, I9 y+ E( x
      t; C* |  R8 a- [! {0 g
    这就回到我一直在想的“复杂性守恒定理”。复杂问题如果存在简单的解决办法,一定是把复杂性隐藏到另一个方向了,最终还是绕不过去的。
    回复 支持 1 反对 0

    使用道具 举报

  • TA的每日心情
    慵懒
    2022-8-27 22:14
  • 签到天数: 351 天

    [LV.8]合体

    10#
    发表于 2022-9-20 22:44:25 | 只看该作者
    “罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。”
    ) Q# n; ?5 @) H) l' X! w少了一个“没”字吧?意思不对了8 j, G( R" i6 {8 N
    罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    昨天 01:55
  • 签到天数: 2612 天

    [LV.Master]无

    11#
    发表于 2022-9-21 02:31:21 | 只看该作者
    晨枫 发表于 2022-9-20 13:09
    8 q# f6 y9 |. M9 [0 t然后再后悔又出来了
    ; a/ n2 R" B. v6 J
    你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    12#
     楼主| 发表于 2022-9-21 02:47:17 | 只看该作者
    方恨少 发表于 2022-9-20 12:31
    8 C& e% e* q- J+ e) V你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据

    # V* w: {; ~! o; ?0 m: l# V开车?开什么车?
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-5-25 00:35 , Processed in 0.044283 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表