设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2572|回复: 14
打印 上一主题 下一主题

[信息技术] 美国会丢失人工智能科技高地吗

[复制链接]

该用户从未签到

跳转到指定楼层
楼主
 楼主| 发表于 2022-9-20 09:08:01 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 晨枫 于 2022-9-20 09:40 编辑 9 g  q' B5 d5 w$ ~& K

: D% j8 r' c3 v( t  o6 D2021年5月,美国国会指派、有谷歌前CEO埃里克·施密特和美国前国防部副部长罗伯特·沃克领导的人工智能事务国家安全专门委员会发表了长篇报告,指出美国在硬件、算法、人才方面领先,中国在应用、整合、数据方面领先。报告认为,美国的算法领先在5-10年内会被中国赶上,但美国在总体上还略微领先。
; H; I) x9 K% c6 A5 }7 t8 O/ [4 E& f
9月12日,委员会发表了竞争力研究特别报告,再次强调美国的人工智能优势正在迅速消失。0 ~. f$ n5 z( X

2 u9 v8 @9 d/ M+ T8 }" K# k美国的担心是有道理的。
- T- h3 v3 I; Z! A
2 M$ v' U9 T' |( l' J人工智能还是野蛮生长的领域。各种应用搞得热火朝天,但缺乏统一、严格的理论框架,理论严重落后于实践。最大的问题是难以分析、预测、设计系统的性能,使得人工智能的决策难以理解,难以信任。“阿尔法狗1.0”和2.0在与人类棋手大战的时候,都走出一些匪夷所思的步子。事后分析好像是好棋,又说不出好在哪里,更是想不出什么思路能走出这样的步子。这只是下棋,看不懂棋路不是大问题。要是人工智能用于国家核导弹自动发射控制,也给你来几步人类看不懂的反应,那问题就大了。
; _8 `6 o0 _8 l2 |( P8 y
* Y5 E$ s) g1 I5 Y% J" I/ a在缺乏理论指导的情况下,算法成为各家的“手工艺”。手工艺不可怕,可以在大量实践中精益求精,很多工业技术(包括尖端科技)都有这样只可意会不可言传的手工艺成份,事实上成为技术壁垒的重要部份。
, p% j, g+ ^9 _! J9 V# l( M8 o1 t* x" _; g
问题是,人工智能的最大量实践是在中国,不是在美国。在美国和西方眼里,中国的人工智能就是用于大数据人群监控的,这是意识形态偏见。中国的人工智能应用正在野蛮生长中,头条、抖音的推送就是人工智能,这只是冰山一角。形成商业利益后,人工智能不再是纯学术或者纯政府行为,具有强劲的自我增殖能力,不仅引发更多的应用,也推动算法的发展。
7 s, V  B% g9 A3 M5 B8 q6 O" g
0 N3 C0 S5 |/ H6 `在美国,人工智能应用依然主要由军方拉动,商业人工智能缺乏自我发展的动力。美国试图把私营资本拉入人工智能竞赛,但风险较大、没有明确的盈利前景,私人资本没有理由加入。华尔街能承受风险,但风险大,回报还慢,这就没有干劲了。这是美国各种“公私合作”设想的共同问题。5 d7 `" _1 s) z0 o) ~
  m4 h/ }& e# k
片面依靠军方拉动正是苏联科技发展的问题根源,大力依靠民用需求拉动则是美国的成功经验。有意思的是,美国在走苏联的路,而中国在走美国的路。
" s0 \" Z2 p( @1 P1 J2 y5 u6 b7 D* w* z
所以施密特-沃克报告清楚地看到,中国将迅速赶上美国的算法优势,如果不是在理论框架上首先突破的话。
/ [7 e/ e9 A, v; x1 g: W- x, D" H% a- E5 C* G( d- S/ q* }6 Z
理论突破需要人才,但美国人工智能人才是否领先中国,是一个一言难尽的问题。如果把具有中国血统和教育的人统统排除,美国人工智能人才圈大概立刻坍塌一半。同时,中国人工智能在大量实践中,中国人工智能教育、科研、人才形成良性互动,中国人工智能人才赶上美国不是梦。4 J7 C% S, v- J( J: g3 l, y& h! k& o
. |1 P9 ~4 o* P0 @6 x
有意思的是硬件。中国还在先进芯片困境中,美国对英伟达和AMD高端芯片对中国禁运,就是冲着人工智能来的。但这些芯片在本质上是图形处理芯片,并行处理能力恰好与人工智能运算的要求符合,但本身未必是为人工智能优化的。
4 d0 F; T' B6 F( {% ^
6 B9 T7 A8 S. L( i& D中国芯片在闯关中,一方面是7nm、2nm等更高集成度的硬技术,另一方面是在专用芯片方面实现架构突破。中国超算就是通过精巧的架构设计,在较低的硬件技术水平上实现世界领先。尤其重要的是,这样的架构突破需要在实践中得到思路,在实践中检验成效。
4 q0 y0 \: S: A. o( t
" g) Z  l( N0 p! C$ E在现在,中国还在大量采用来自美国的算法成果,硬件上也对美国有依赖,但历史上有过先例:要是在总体实践上掉队,核心技术的领先并不保证持续领先。
& V. B+ @/ G" y! R
& \, N. K: v1 e; O在40年代,英国与德国同时发明喷气式发动机,德国抢先一步,首先将Me262投入使用,但英国紧随其后,只是因为战争大局已定,就不急于将格洛斯特“流星”战斗机投入实战了。但罗尔斯-罗伊斯的“尼恩”涡喷在40年代末代表最先进技术,苏联引进后,用于米格-15,从此苏联航空科技一骑绝尘。; K2 l  J; M$ ~" O7 Z
! L5 w6 e; l" o* t+ l; n
发动机是航空科技的核心。苏联战斗机借用英国技术起飞后,在大量实践中迅速将“尼恩”改进为克里莫夫VK-1,以后克里莫夫和留里卡一起,成为苏联战斗机发动机的哼哈二将,罗尔斯-罗伊斯也在进步,但英国战斗机再也没有赶上过。4 I9 z8 A" q& T6 R  ]6 K' |% ]# {
3 b& T$ e; y/ v  L
另外,人工智能现在一根筋搞大数据学习,是存在“数据困境”的,尤其是工业应用。要使得人工智能有效、准确,需要大量历史数据;但产品一直在转换,大同小异但毕竟不一样。等训练出来了,也该转产了。绕了一大圈又回来了当然很好,但这是可遇而不可求的。单纯靠学习,可能跟不上变化的现实。这是大问题。; R2 x6 e8 J7 {' f# e7 X- A
: O' L: v0 s; ]* [
但变化与变化不一样。大部分变化是变表不变本的,本的变化缓慢得多。这也是人类思维善于适应变化的环境的道理。在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,无视了变化的环境。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。
/ w3 E1 U' p& L" A# k% y; f1 p/ W1 S- e3 ]
人工智能需要在框架上形成演绎能力才好。这是巨大的挑战,但很可能不是从纯理论的空想中产生,而是从大量实践的摸索中完善。/ J* {  a4 d6 r, Y" g

+ y$ `6 {# U  q. @0 A8 z3 x" e如果说芯片、软件是当今科技高地的话,人工智能是未来科技高地。美国很担心中国会抢占这个高地,担心就对了。: P! P  i% D2 ^

- f) y: h* {4 q# D报告还提到,中国在5G、商用无人机、高超音速、锂电池方面领先,美国在生物科技、量子计算、商用航天和云计算方面领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。
: B) T+ O/ q0 S4 r8 d! u3 _5 T6 s" g
) x) C' R6 d$ d: c+ v6 B

评分

参与人数 3爱元 +26 收起 理由
landlord + 12 谢谢!有你,爱坛更精彩
MacArthur + 4
testjhy + 10

查看全部评分

本帖被以下淘专辑推荐:

  • TA的每日心情
    开心
    2023-2-8 04:51
  • 签到天数: 1811 天

    [LV.Master]无

    沙发
    发表于 2022-9-20 09:51:16 | 只看该作者
    美国在生物科技、量子计算、商用航天和云计算方面勉强领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。
    6 j4 s6 T8 m8 k- g7 m! T
    这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就starlink,还是生造出来的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
     楼主| 发表于 2022-9-20 10:59:16 | 只看该作者
    moletronic 发表于 2022-9-19 19:51$ M7 A7 t6 q. q) j$ Q. F; R+ I
    这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就sta ...
    * j4 V7 B9 E0 z1 U
    为什么说中国生物很难翻盘呢?
    / ^# K  N: S! {- n/ e4 P6 `/ K7 ]
    3 w9 M4 C# |4 l8 Z- H- e, f商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2023-2-8 04:51
  • 签到天数: 1811 天

    [LV.Master]无

    地板
    发表于 2022-9-20 11:07:26 | 只看该作者
    晨枫 发表于 2022-9-19 18:59$ v3 P- v5 w) J. A0 }
    为什么说中国生物很难翻盘呢?: P! z+ T: h3 ]0 H
    # @) i% N0 E+ f
    商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。 ...

    ; k4 j, t  \8 @' ?! v9 o9 Z$ [俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    5#
     楼主| 发表于 2022-9-20 11:18:24 | 只看该作者
    moletronic 发表于 2022-9-19 21:07
    " o  ?+ L' Z2 \3 Y8 `, l% y, q俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。 ...
    : ?: h) m. X. ^% B% D
    这事要一分为二地看。回国多,说明国内机会多,上升空间大;另一方面,要是国内已经很强了,反馈就该说国内已经很卷了,回去的人反而也多不起来了。

    点评

    油墨: 5.0 油菜: 0.0
    给力: 5.0
    油墨: 5 油菜: 0 给力: 5
      发表于 2022-9-20 12:14
    回复 支持 1 反对 0

    使用道具 举报

  • TA的每日心情
    郁闷
    2024-11-9 11:44
  • 签到天数: 2166 天

    [LV.Master]无

    6#
    发表于 2022-9-20 12:56:21 | 只看该作者
    还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已经后悔回去了,准备在出来。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    7#
     楼主| 发表于 2022-9-20 13:09:49 | 只看该作者
    huma 发表于 2022-9-19 22:565 T# a& D7 D: ^
    还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已 ...
    ( k5 J' d- |% N: s  q
    然后再后悔又出来了
    回复 支持 反对

    使用道具 举报

  • TA的每日心情

    7 小时前
  • 签到天数: 2756 天

    [LV.Master]无

    8#
    发表于 2022-9-20 15:34:02 | 只看该作者
    一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是多品种,小批量。当你收集到足够的样本的时候,流水线说不定已经转产下一品种了,图形、花色都可能重大变化,当然,你可以慢慢累积成样本库,但企业特别是中小企业是不会有兴趣陪你长时间玩的。我们在考虑根据少量样本,采用瑕疵产生原理生成一批伪样本,目前对质量要求不太高的产品可能有效,但对高质量产品还感觉不太成功,前者比喻开始瑕疵检出率80%,然后几天内提升到90-95%,后者如果一上来就要求95%,大概率要失败。# X* F0 I  s# h8 t
    其实,最好是传统计算机视觉方法与深度学习相结合,前面偏原理分析,但非常繁杂,现在年轻一代都想省事,找一批样品扔进学习平台完事。我这个老古板属于看人挑担不吃力型,没办法。

    点评

    给力: 5.0 涨姿势: 5.0
    涨姿势: 5
      发表于 2022-9-21 04:59
    给力: 5 涨姿势: 5
    有道理!  发表于 2022-9-20 23:26
    回复 支持 1 反对 0

    使用道具 举报

    该用户从未签到

    9#
     楼主| 发表于 2022-9-20 22:17:19 | 只看该作者
    本帖最后由 晨枫 于 2022-9-20 08:21 编辑
    8 {" `: [' Z5 L7 i2 ~
    testjhy 发表于 2022-9-20 01:34: j5 b  }5 g/ W% p# n$ @+ Z
    一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是 ...

    - x7 o8 g1 |9 ~3 \, V* y9 }: g4 C  `1 r& T9 ^" a
    太对了!% Z" W- \% T/ G: F$ _2 K) U

    9 n+ l0 z4 }6 ^3 a+ _+ a  [人工智能现在一根筋搞大数据学习,正是数据问题。用自控术语来说,这是对有历史积累的时不变系统有效,时变系统就抓瞎了。% G  b; q7 Y% }$ `! W& l

    ' g- Q' I7 ?0 P2 s% @7 G在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,不看变化的条件。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。1 ?1 h; Y0 ?. K$ J0 b
    ) r7 e. G; q5 a  p7 k+ I
    人工智能还需要在框架上形成演绎能力才好。怎么做到?嘿嘿,我要是知道,还在这里瞎耽误功夫嘛。
    ) E. f8 ?7 C4 G! m
    % T( ~0 G" \" O在自控和建模中,也曾经流行过纯数据驱动的黑箱模型。后来发现不行,robustness太差。后来转灰箱了,在具有机理背景的模型结构上,加一个黑箱尾巴,用机理模型解释大部分数据,黑箱尾巴只管“扫尾”,情况就好得多。不过实施也难得多,可以丢给“数据绞肉机”就不管的好处没了一大半。
    ! I7 K+ i+ n6 {3 ]. ?3 X. H% t
    ' D4 f; e  Q" i/ B& P( N# m" c9 a这就回到我一直在想的“复杂性守恒定理”。复杂问题如果存在简单的解决办法,一定是把复杂性隐藏到另一个方向了,最终还是绕不过去的。
    回复 支持 1 反对 0

    使用道具 举报

  • TA的每日心情
    慵懒
    2022-8-27 22:14
  • 签到天数: 351 天

    [LV.8]合体

    10#
    发表于 2022-9-20 22:44:25 | 只看该作者
    “罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。”1 h% U+ R1 g. L5 D$ f9 \& {* h9 ~; e* \
    少了一个“没”字吧?意思不对了
    % s# x: Q; d( H& H8 D& m 罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2 小时前
  • 签到天数: 2447 天

    [LV.Master]无

    11#
    发表于 2022-9-21 02:31:21 | 只看该作者
    晨枫 发表于 2022-9-20 13:09; ^  y% z6 h5 o6 e
    然后再后悔又出来了
    $ v' m5 G: W, K
    你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    12#
     楼主| 发表于 2022-9-21 02:47:17 | 只看该作者
    方恨少 发表于 2022-9-20 12:31
    9 C% C% M  H9 x+ R4 Q4 G/ p8 S你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据

    ) ^3 h& r# \3 j/ y5 Y( d8 f  K开车?开什么车?
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2024-11-29 07:32 , Processed in 0.048972 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表