Deepseek 3FS 与 NVIDIA Magnum IO 漫谈
AI 时代,数据“水管”哪家强?—— Deepseek 3FS 与 NVIDIA Magnum IO 漫谈DS在第五天开源的3FS项目,其实是涉及到了一个 AI 时代绕不开的话题:数据存储。别以为这只是硬盘、U 盘那点事儿,对于 AI 来说,存储可不仅仅是个“仓库”,它更像是连接“数据水库”和“计算水泵”的“水管”。“水管”要是细了、堵了,“水泵”再强劲也白搭,AI 的“大脑”会因为“缺粮”而罢工。
为什么这么说呢?想象一下,你正在训练一个聪明的 AI 助手,让它学习自动驾驶。这需要海量的道路图像、交通视频等数据,这些数据就是“水库”里的水,AI 模型则是“水泵”。如果连接“水库”和“水泵”的“水管”——也就是存储系统——不够给力,数据供应不上,“水泵”就会“空转”,训练就会变得异常缓慢,甚至根本无法进行。
如今的 AI 模型越来越复杂,需要处理的数据量也越来越大,传统的存储系统就像是“小水管”,渐渐力不从心了。这就好比你试图用一根细细的吸管去喝光一大桶水,那得多费劲!所以,为了满足 AI 的“大胃口”,我们需要更粗、更快、更智能的“水管”。
Deepseek AI 公司开源的3FS分布式文件系统,就是这样一根为 AI 量身打造的“超级水管”。这里的“分布式”是什么意思呢?你可以把它想象成一个由许多“小水箱”组成的巨型“水库”,这些“小水箱”通过高速网络紧密相连,对外却呈现为一个统一的整体。这样做的好处显而易见:一是容量可以无限扩展(加“小水箱”就行),二是多个“水泵”可以同时从不同的“小水箱”里抽水,效率大大提高。
3FS 的“超级”之处,不仅仅在于它的分布式架构,更在于它的一系列独特设计。首先是软件工程师们熟悉的“解耦架构”,3FS 的“小水箱”可以独立部署,硬件方面只需普通的 SSD 硬盘和高速网络(最好是支持 RDMA 的)即可。这种设计的灵活性极高,可以根据需要随时增加或减少“小水箱”的数量,就像搭积木一样方便,实现了存储容量和性能的弹性伸缩。
另外3FS 非常重视数据的“强一致性”。在分布式环境中,多个“水泵”同时抽水,没有好的协调机制,很容易造成数据混乱。3FS 采用了一种名为 CRAQ 的算法,确保数据在任何情况下都不会出错,保障了 AI 训练的准确性和可靠性。为了方便用户使用,3FS 提供了大家熟悉的文件接口,就像我们平时在电脑上操作文件夹一样,即插即用,无需学习。
更重要的是,3FS 不仅仅是一个通用的文件系统,它还针对 AI 的各种应用场景进行了深度优化。在 AI 数据准备阶段,3FS 能够高效地组织和管理大量的中间数据。在模型训练过程中,它能快速、高效地将数据“喂”给 AI 模型,无需像传统文件系统那样进行预取或数据打乱等额外操作。对于大规模模型训练,3FS 支持高吞吐量的检查点(也就是“训练存档”)保存和恢复,大大提高了训练的容错性和效率。在 AI 模型推理阶段,3FS 提供的 KVCache 方案,可以提供更大的缓存空间和更高的访问速度,有效避免重复计算,提升推理效率。
Deepseek 官方的测试数据也证明了 3FS 的实力。在大规模集群测试中,3FS 的读取速度峰值高达每秒 6.6 TiB(相当于每秒读取数千部高清电影!)。在衡量大规模数据排序性能的 GraySort 基准测试中,3FS 也表现出色。其 KVCache 方案在推理场景下的读取速度更是高达每秒 40 GiB,足以满足对延迟敏感的 AI 应用需求。当然, 作为一个开源的新项目, 3FS还需要时间和更多用户的检验。
除了 3FS,业界还有另一种提升数据访问速度的方案:NVIDIA Magnum IO。如果说 3FS 是一根完整的“超级水管”,那么 Magnum IO 更像是一套“水管加速系统”。它不是一个独立的文件系统,而是一套由 NVIDIA 提供的 I/O 软件加速套件,专门与 NVIDIA 的 GPU(图形处理器)和 DPU(数据处理器)紧密结合,通过优化数据从存储到网络再到计算的整个流程,实现端到端的 I/O 加速。
Magnum IO 的“加速魔法”主要源自几项关键技术。其中最核心的当属 GPUDirect Storage。传统的数据传输模式下,数据需要先从存储设备读取到系统内存,再由 CPU 搬运到 GPU 显存。而 GPUDirect Storage 打破了这种模式,它在 GPU 和存储设备之间建立了一条“直通通道”,数据可以直接从存储设备高速传输到 GPU,大大减少了传输延迟。除了 GPUDirect Storage,Magnum IO 还对整个数据流动的路径进行了全面优化,并利用 NVIDIA 的 DPU 来分担 CPU 的网络和存储 I/O 任务,让 CPU 能够更专注于计算。
Magnum IO 是 NVIDIA 整个软件生态系统的重要组成部分,性能表现出色,能够显著缩短 AI 模型训练的时间,降低推理延迟。它广泛应用于深度学习训练、高性能计算、数据分析等场景。其优势在于成熟的 NVIDIA 生态系统、完善的软硬件支持、强大的硬件加速能力。然而,Magnum IO 的核心功能和性能优势高度依赖于 NVIDIA 的 GPU 和 DPU 硬件,通用性相对较弱,而且可能受到出口管制的影响。
除了 3FS 和 Magnum IO,AI的行业中最常用的数管系统架构大都是一些基于键值(KV)存储的分布式文件系统(如 Ceph、Cassandra File System 等),它们利用 KV 存储(类似于一个巨大的“数据字典”)来管理文件元数据或存储小文件,以提高效率。但这些系统通常更适合特定场景,这里就不详细展开了。
那么,面对 3FS 和 Magnum IO,该如何选择呢?简单来说,如果你追求极致性能,希望存储系统灵活、开源,并且不局限于特定硬件,那么 3FS 可能更适合你。如果你已经大量使用了 NVIDIA 的 GPU 和 DPU,希望充分利用 NVIDIA 硬件的性能,那么 Magnum IO 可能更适合你。当然,最好的办法还是根据自己的实际需求来选择,甚至可以将两者结合起来使用。反过来,DS的没有明说的就是隐含选项,可以用相对通用的硬件组合一个适合自己用的“水管系统”,不一定非要依赖NVIDIA的软硬件套件(当然要是有就更好了)。
在 AI 时代,高性能存储是关键的“基础设施”。Deepseek 3FS 的开源,为 AI 存储领域注入了新的活力。开源意味着开放、共享、协作,它能让全球的开发者共同参与,加速技术的创新和应用, 推动整个AI产业的进步。相信在不久的将来,我们会看到更多像 3FS 这样的优秀开源项目,为 AI 的发展提供源源不断的动力。
原文链接
页:
[1]