设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 233|回复: 2
打印 上一主题 下一主题

[时事热点] 如果用deepseek 训练自己的模型-by deepsek

[复制链接]
  • TA的每日心情
    开心
    3 小时前
  • 签到天数: 3371 天

    [LV.Master]无

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-2-14 00:03:17 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    To use DeepSeek for training your project, follow these steps based on whether you're leveraging their API or self-hosted models:
    1. Choose Your DeepSeek Model
    DeepSeek offers models like DeepSeek-R1, DeepSeek-MoE, or chat-optimized models. Decide if you need:

    API Access: For quick integration without hosting (ideal for inference or limited fine-tuning).

    Open-Source Models: For full control, fine-tuning, or customization (e.g., via Hugging Face).
    2. Access the Model
    Option A: Use DeepSeek API
    Sign Up: Get an API key from DeepSeek’s platform.

    API Documentation: Review their API docs for endpoints, parameters, and rate limits.

    Example API Call (Python):
    import requests

    api_key = "YOUR_API_KEY"
    url = "https://api.deepseek.com/v1/chat/completions"

    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }

    data = {
        "model": "deepseek-chat",
        "messages": [
            {"role": "user", "content": "Explain how AI works."}
        ]
    }

    response = requests.post(url, json=data, headers=headers)
    print(response.json()['choices'][0]['message']['content'])

    Option B: Self-Hosted Models
    Download Models:

    Get open-source models from Hugging Face Hub (e.g., deepseek-ai/deepseek-r1).

    Use git-lfs to clone large files.

    Install Dependencies:
    pip install transformers torch

    3. Fine-Tune the Model (Self-Hosted)
    If using open-source models, fine-tune them on your dataset:

    Load the Model and Tokenizer:

    python

    from transformers import AutoModelForCausalLM, AutoTokenizer

    model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-r1")
    tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-r1")
    Prepare Dataset:
    Format your data into prompts and completions. For chat models, structure with system, user, and assistant roles.

    Training Setup:
    Use Hugging Face’s Trainer:

    python

    from transformers import TrainingArguments, Trainer

    training_args = TrainingArguments(
        output_dir="./results",
        per_device_train_batch_size=4,
        num_train_epochs=3,
        logging_dir="./logs",
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_dataset,  # Your preprocessed dataset
    )

    trainer.train()

    4. Deploy the Model
    API: Directly use the API endpoint in your application.

    Self-Hosted: Deploy via cloud services (AWS, GCP) or frameworks like FastAPI:

    python

    from fastapi import FastAPI
    from pydantic import BaseModel

    app = FastAPI()

    class Query(BaseModel):
        prompt: str

    @app.post("/predict")
    def predict(query: Query):
        inputs = tokenizer(query.prompt, return_tensors="pt")
        outputs = model.generate(**inputs)
        return {"response": tokenizer.decode(outputs[0])}

    5. Resources & Considerations
    Documentation: DeepSeek Official Docs for API details.

    Hugging Face Integration: Use their transformers library for model loading.

    Compute Requirements: Fine-tuning large models may require GPUs (e.g., A100s).

    Data Privacy: For sensitive data, prefer self-hosted models over API.

    评分

    参与人数 1爱元 +16 学识 +2 收起 理由
    老票 + 16 + 2 精彩

    查看全部评分

  • TA的每日心情
    开心
    3 小时前
  • 签到天数: 3371 天

    [LV.Master]无

    沙发
     楼主| 发表于 2025-2-14 00:06:31 | 只看该作者
    在执行调用api时候发现, 不交钱不行。。。在纠结要不要自己花钱。。。首先我就是有兴趣,但是抠门的人不想花太多钱, 不知道图书馆会不会有免费的使用
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    3 小时前
  • 签到天数: 3371 天

    [LV.Master]无

    板凳
     楼主| 发表于 2025-2-14 02:22:44 | 只看该作者
    据国内的人说不贵, 但是目前官网不能直接付款
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-2-24 03:20 , Processed in 0.035376 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表