3 N: \) ~0 k, s0 Q+ S. B: E2 R3 F尾桨触地的危险毕竟还比较直观,但直升机在陡直速降过程中,还有另一个更加凶险但并不直观的问题:涡流环。旋翼靠旋转产生升力,但桨叶靠近圆心处的线速度低,靠近叶尖处的线速度高,所以旋翼产生的升力不是沿径向均匀分布的,而是中间小,周边大。这也可以用旋翼产生的压力分布来表示,向下的压力可以等同于向上的升力,旋翼的压力分布就是像曾经流行的蛤蟆墨镜的形状,两端下垂,中间扁平,也就是边缘处压力大,圆心处不产生压力。在直升机下降过程中,旋翼盘面承受向下运动的阻力,旋翼边缘继续产生足够的升力,可以克服阻力,气流继续向下运动;但旋翼中心本来就不产生什么升力,此时在阻力作用下形成圆心处局部空气向上流动的现象,造成严重升力损失,这就是涡流环。 % L! Q2 [- N# d7 W1 i7 F 2 N3 K4 c) F* B$ l在下降速度不高的情况下,涡流环导致的升力损失问题不大;但高速下降时,涡流环急剧恶化,导致升力迅速下降。更加糟糕的是,此时急剧增加总距实际上加速涡流环的恶化。这好比汽车轮子在泥泞地里陷住了一样,拼命加大马力,只有陷得更深。汽车轮子陷住了只是狼狈一点,直升机在不可控高速下降时旋翼“打滑”,那就不是狼狈的问题了。在下降过快最需要加大升力以阻止不可控下降的时候,急剧增加总距反而使下降加速,这种违反直觉的现象非常容易导致失事。美国V-22倾转旋翼直升机在试飞阶段两次非常引人注目的坠毁就是由于涡流环。涡流环问题在旋翼直径较小、转速较快的时候更容易发生,但直径较小、转速较快的旋翼的重量较小,阻力较小,适合于高速飞行,这是一对很难调和的矛盾。V-22的倾转旋翼恰恰直径较小、转速较快,但在现有翼展的情况下,旋翼直径已经到了极限;进一步增加翼展的话,不仅增加阻力和重量,也使得机翼平转后不超过机体长度的要求不再可能得到满足,超过美国现有两栖攻击舰的升降机尺寸。看来V-22是注定要“一辈子”忍受涡流环的痛苦了,只有在敌前机降的时候“小心轻放”,避免涡流环造成事故。 ! O6 C' d$ Y( w) v. N+ V( s8 G, e% C, r; v5 b$ q
像汽车陷进泥泞一样,如果刚陷进一点,还陷得不深,加大油门一下子就冲出去了。刚进入浅度涡流环的情况也是一样,增加总距可以冲出去。但如果已经进入深度涡流环,反而应该收一点总距,同时压低周期距,增加前进速度,可以改出涡流环。前进速度使旋翼的压力分布有所变形,把前进一侧的蛤蟆镜片向旋翼圆心方向挤压,填补圆心处的低压区,改出涡流环状态。事实上,当前进速度足够快的时候,或者在下滑角度小于30度的时候,涡流环现象可以避免。 ' b I2 L: U3 Y1 U" B: m1 O9 O# E8 D/ f; O { ]" I3 w
人们对直升机降落安全的信心在很大程度上来自于直升机在危急时刻依然保持的自旋降落能力。自旋是直升机发动机失去动力时,旋翼进入风车状态的情况。自旋状态下的旋翼依然可以产生一定的升力,这自旋状态下的直升机在本质上和滑翔状态的固定翼飞机相似,存在安全降落的可能,但远非轻而易举。如果没有前进速度,单靠重力下落,旋翼也能产生自旋,但这点自旋不足以使下落的速度减慢到足以安全降落的程度,通常需要结合前进速度的动能加上起始高度的位能才能转换为足够的驱动旋翼的转动能量,使下降速度降低到安全的程度。在发动机正常出力的情况下,桨距可以按速度和升力要求放在较大的位置。在发动机故障而失去动力的时候,首先要降低总距,减小桨距,才能保持或者增加旋翼自旋转速,赢得足够的旋翼转动能量,否则有可能在10秒钟内就导致旋翼停转。这容易理解,在极端情况下,风车叶片完全平行于风向时,也就是说,桨距达到最大,叶片完全“顺着”风向,这时风力并不能驱动风车。另一个极端情况是桨距达到最小,风车叶片完全垂直于风向时,风力只是撼动风车,也不能使其转动。一旦发动机故障,飞行员应该立刻减小桨距,建立稳定的自旋,下一步就可以进入自旋降落了。 9 U. g# |2 S K) Y( |2 a7 ]9 Y' B# x$ Y) c6 o* {/ h' w" B
如果有一定的前进速度,应该采用相对较小的角度进入,在适当的时候拉起机头,使旋翼盘面对准下滑方向,将更多的动能转化为旋翼的转动能量,并消耗掉过多的前进速度,然后改平,尽量轻缓地降落,同时减少接地后向前的滚动。如果没有足够的前进速度,自旋下降就主要依靠下降过程中的位能转化为旋翼的转动能量了。如果这点能量不足以把下降速度降低到安全限度以下,那就只有自祈多福了。在实战中,如果是发动机被击中后被迫自旋降落,通常是在低空低速甚至悬停的时候,所以到了需要靠自旋降落救命的时候,并不一定能够救命。非战斗条件下起始速度和高度可能更有利于自旋降落,成功率要大幅提高。- {' f/ u$ M- D" f
8 y/ M# Q) f; v. u/ T! G+ C
由于现代军用直升机都有很强悍的抗损设计,除非发动机被直接命中而立刻解体,即使丧失全部润滑油甚至部分机件损坏,都有可能坚持运转最关键的几十秒钟甚至几分钟,足够坚持到安全降落,而不需要依赖自旋降落。在实战中,尾桨被击中其实是更大的危险。即使不受到战损,尾桨在机尾的最后端,远离飞行员的观察视线,在拥挤的降落场上,很容易由于疏忽而撞上障碍物。低空强烈阵风或者附近直升机起落时卷起的强烈气流也可能使尾桨失控偏离,发生碰撞。更糟糕的是,在貌似正常的飞行中,也可能出现尾桨失效的情况。 0 J" t1 `( H7 ?5 [5 ` , ^9 e u' _- J1 x7 g从上往下看的话,美英的直升机旋翼是逆时针方向旋转的,法俄直升机则是顺时针方向旋转的。这只是技术传统的差别,没有优劣之争。为了方便起见,以下讨论都以美英直升机为例,法俄直升机只要把左右颠倒一下,讨论完全适用。 5 c. I. \6 X8 ^+ q( X2 q5 w1 N# s7 Y* Y, Y
旋翼旋转时,在旋翼的上下方都形成旋转的气流。在10-30节速度前飞右转的时候,或者在风向来自左前方约60度的时候悬停右转,尾桨将进入旋翼气流冲刷区,强化了尾桨的反扭力作用。为了保持航向,尾桨出力应该适当减小。但继续右转时,尾桨离开旋翼气流冲刷区,反扭力作用急剧下降,如果不及时补偿,会马上造成直升机突然急速右转。对于飞行员来说,直升机好像首先在很迟疑地右转,需要减小反扭力才勉强使其右转,然后右转突然加速,需要大大增加反扭力,在操作上很不自然。相对来说,左转动作就很自然。这种左右不对称的操作很容易导致飞行员操作失误,造成事故。有趣的是,美国航母的舰桥从“兰利”号时代就采用右岛设计,直升机从左舷进入和离去,起飞后迅速飞离或者降落出现意外时加速左转复飞的动作比右转更容易。航母先于直升机出现,或许这是美英直升机采用逆时针转动的原因。 8 f2 p! l" l' S* V. q : l1 w1 Y- L; H& E: z: j8 ?
另一方面,如果悬停或者低速飞行时是背风,尾桨和尾撑好比风向标的尾羽,不很强烈的背风都容易使机尾被吹向一侧,风向在正后方左右60度范围内影响最大。完全正后方的背风当然没有影响,但风向略微偏离正后方,就有影响,而且尾桨和尾撑被吹向一侧要加大投影面积,进一步强化背风的作用。如果吹向右侧(机头指向向左),还可以用降低尾桨出力来补偿;如果吹向左侧(机头指向向右),就要看发动机是否还有余力提供额外的反扭力了。在重载悬停的时候,发动机出力已经达到最大,尾桨不一定有余力提供额外的反扭力,无地效背风低速右转弯是更糟糕的组合,很容易进入不可控的迅速右偏。空气密度较低和重载是等效的,阿布塔巴德突袭的时候,据说天气预测不够精确,空气密度预报偏离了一点,导致重载的直升机操作乏力,可能是神秘直升机失事的原因之一。顶风悬停则没有这个问题,高速前飞也没有这个问题,尾桨和尾撑顺着风向,是自然稳定的。6 P# D3 W( l! a5 Q. ~2 u
( ?9 K+ X4 h" f" w V直升机无控右偏是发动机扭力无法得到补偿造成的,降低发动机出力是根本的解决办法。在高度和速度容许的情况下,牺牲高度,增加速度,可以改出尾桨失效状态,如果做不到,最极端的办法就是自旋降落。 9 u3 Q5 k y9 t0 U- A $ x+ }+ Z) h6 b) |/ P但这些都是在开阔、平坦降落场的情况,如果地面不平,在山坡上降落,或者降落时有侧滑导致右侧机轮或者雪橇首先接地,问题更加复杂,最主要是机身侧向滚转的支点从重心转移到首先接地的机轮或者雪橇了。旋翼盘面指向、直升机是否水平、地面坡度都使问题大大复杂化。2 i, x1 l; Q! i! q) }% v
) n& ?- [2 U; B. \7 J1 o
在一侧机轮或雪橇首先接地的情况下,重力和旋翼升力的滚转力臂都不再以重心为支点,而以首先接地的机轮或者雪橇为支点。如果机身向首先接地的一侧倾斜,重力的力臂将长于旋翼升力的力臂,所以周期距对滚转控制的效率相比于空中自由飞行时急剧下降,接地瞬间这种控制效果的急剧变化好像汽车从硬质路面开到深厚积雪的瞬间突然转向不灵一样。如果是右侧机轮或者雪橇首先接地,尾桨的推力方向有把机身向右方推动的自然趋向,进一步恶化了稳定性问题。来自左面的侧风、重载降落以至于缺乏额外升力用于克服滚转倾向、装载不均匀导致重心向右偏移都使一旦发生侧滚更难恢复。装载不均匀实际上是一个很大的问题,机身倾斜的时候,机内燃油会在重力作用下向一侧流动,即使舱内人员、货物装载均匀,燃油重量的不对称也可能造成重心的不利偏移。) b4 j7 N$ U2 C( D- u