4 x, N; s0 q9 q" k7 r% _. ?3 U* Q, W* t' q r
前三种振动模态的混合, r4 {& o. m) B' H
9 W/ C' p- i0 W' w 至于拉弦乐器,它们的情况与此则大不同。你一弓能拉多久,小提琴发出的音就能以恒定的振幅持续多久。虽然能量还是要转化为声音和热量而散失掉,但琴弓总是在以一种正恰当的速率在补偿其能量的损失。如此一来,不同的振动模态之和便不能再被上述的简单方程式所描述,这一点,即是识别非线性系统的标志。对于此类系统,理论会更复杂,且,其复杂的结果和无序的振动状况是有一个适用范围的。小提琴琴弦所能发出的,悦耳的声音与刺耳的噪音的范围,正是这些复杂结果的例证。同样的,这一具有普遍性的解释也能很好地应用在可以持续发音的乐器上,例如木管乐器和铜管乐器。. s) e. Z( Z( S) H
& i `$ C2 z3 [# g+ z. J5 ` 那么,小提琴的弦是如何振动的呢?140年前,赫尔曼.冯.亥姆霍兹第一个给出了这个问题的答案。当小提琴处于正常的演奏状态下时,弦看起来就在振动。用肉眼看来,弦进行着纺锤形的来回振动,就如拉紧的弹性弦的第一种自由振动模态一般。0 n4 n7 A7 t' j* R4 b4 C" C
% R+ W i6 P9 H; Y; k( @! I- _" i6 ]
* J+ f/ I. a/ g; C( h. {9 [! G
% f7 x' W* i* I- Q; B `
不过,经过亥姆霍兹仔细的观察,他发现,弦是以一种让人意料不到的方式在振动:事实上,弦的来回振动是V字形的,即,弦在振动中其实被分为了两个直线部分,这两个直线部分相交处,是一个突出的尖角。我们用肉眼所观察到的弦的振动之所以是一条柔和弯曲(纺锤形)的曲线,是因为这个尖角一直沿着这样的一条曲线来回移动。所以说,我们通常看到的,只不过是弦振动的包络线,或者说,大概轮廓。0 K8 h: ^0 j6 D3 W- M, W
3 _4 D. G) b4 T+ ^! ^& o 弦的这种运动方式,被称作亥姆霍兹运动。V字形的顶点,即被称作亥姆霍兹拐点,这个点,是沿着弦来回移动的。亥姆霍兹拐点每次通过琴弓与琴弦接触点时,都会使粘着摩擦变为滑动摩擦:当该点从琴弓出移动至手指处再移回时,琴弦粘滞在琴弓上并被其拖曳着移动;接下来,当该点从琴弓处向琴马处移动并返回时,琴弦会沿着弓毛滑动,其滑动的方向是与琴弓的运动方向恰好相反的。这两种摩擦状况之间的来回变换,即其系统的非线性要素。 ( ?3 w4 I. Z0 L. p: f % M, F6 K7 _# O- Y9 K: C a