标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 : X" n& ~5 d7 I: J+ T
8 x- R9 I0 L' Y
解释的不错! d; V7 D- M- l& h
* e; F( U& Z$ Y; r递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 / \! T4 v, J# |" B5 R: R v- }4 } 5 X& K8 Y+ q1 ^% T2 j2 i 关键要素 3 c& U4 E8 z, T" c1. **基线条件(Base Case)**9 V/ V c! g9 Q S! [$ b
- 递归终止的条件,防止无限循环 ) t% H' R8 J* C) v4 k2 o# O - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 , _1 I& s5 |, c! d0 h' s" u9 Y & H% i/ U6 t/ M% p. ]2. **递归条件(Recursive Case)**; o( D$ K* _8 \" `
- 将原问题分解为更小的子问题 9 c4 r+ N/ o/ r - 例如:n! = n × (n-1)! % A3 s% }- e- ?0 V $ T0 t! w) _; r 经典示例:计算阶乘 $ F8 t, [) e, k9 w6 r4 W7 jpython $ @1 e' g+ i; P, M& s q8 \def factorial(n): # v+ ^1 n+ |/ w' A4 F if n == 0: # 基线条件& M& U2 ^- p9 e7 e5 G1 B
return 1 0 o5 n* F1 M4 [4 {4 P; a& T else: # 递归条件' @1 {- e8 |) ~2 @1 c: ?
return n * factorial(n-1)4 |+ R3 M3 c# J# C
执行过程(以计算 3! 为例): ' V- Q) F" m+ O$ X0 sfactorial(3) [: g$ t6 {4 {: }/ o3 R
3 * factorial(2)" g6 _4 V' u2 {2 F
3 * (2 * factorial(1)) 6 m: \8 x) c8 C& x+ f. ^4 \$ Q. b4 ~) w3 * (2 * (1 * factorial(0)))* K! S2 N- {) I, Y3 u
3 * (2 * (1 * 1)) = 6% l7 j6 v) J8 n! g8 c
" c& k- w' I# y" l
递归思维要点 : M7 l) J! K6 y6 b8 W3 d6 A1. **信任递归**:假设子问题已经解决,专注当前层逻辑 ! M5 ~) i. Y0 K2 Q2. **栈结构**:每次调用都会创建新的栈帧(内存空间) 9 g" Z2 m' l: s% C! d4 V" J' b y3. **递推过程**:不断向下分解问题(递) # J2 h! u( j1 \# p$ t4. **回溯过程**:组合子问题结果返回(归)% Q# d# r# `9 @# e
* u" {* j* W1 \+ F4 x6 {
注意事项 7 F. ^* V# t" ~& y! ?必须要有终止条件 5 b! P$ ?5 E/ t递归深度过大可能导致栈溢出(Python默认递归深度约1000层) 3 }7 X# F% o0 e9 h* E7 q6 o某些问题用递归更直观(如树遍历),但效率可能不如迭代; o/ n9 V, T3 t( g6 E& v5 `- l M$ j4 h
尾递归优化可以提升效率(但Python不支持) z- y" @6 L; ^+ H& r# B$ o; L& r1 a& B5 N& `
递归 vs 迭代; h0 c# r7 }" W
| | 递归 | 迭代 | l$ G% ^; k7 b6 [8 |* w8 W
|----------|-----------------------------|------------------|* C% b2 R8 t3 W/ x
| 实现方式 | 函数自调用 | 循环结构 |9 ~8 a/ [2 {/ V' d6 F+ O, z
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |+ `" m/ G. Y* j. f' J1 M: y: q
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | G3 Z0 l. Z9 q6 e| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 |9 @8 v- U% ?/ p+ a, H
: w0 n/ }9 r: B; X( V2 d! f% o
经典递归应用场景% x3 S0 v y( x7 k1 q
1. 文件系统遍历(目录树结构) : _) n, a4 k! N2. 快速排序/归并排序算法& m* p2 v* K2 E) R1 r% P+ d, [( d
3. 汉诺塔问题 - l: p# M0 Y8 o! j9 c Z4. 二叉树遍历(前序/中序/后序)5 b& [/ L. {. E0 N: @+ m
5. 生成所有可能的组合(回溯算法) a! y1 W7 t4 F& y( C! f( v
. w( c+ G0 Y7 e J9 \. ^7 B- B试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ @9 @, R9 b' T6 Q ~2 m# S
我推理机的核心算法应该是二叉树遍历的变种。 3 f2 _3 u5 w. y另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: $ _6 L, Q5 r1 S5 {1 v( d4 AKey Idea of Recursion / d' O5 t% u, K& v' O& R% i, C. p& Y+ T' T, q
A recursive function solves a problem by:! m: g. [( U% c* Y$ N) r* z
) w+ \) r+ d6 f# _
Breaking the problem into smaller instances of the same problem.& ^' I2 P, R* e8 Q) J- e/ I
/ z% {& h' X* L: k" H Solving the smallest instance directly (base case). / N- I5 K( h1 _# f1 Q# R5 [/ I( v$ b5 I" H' A
Combining the results of smaller instances to solve the larger problem.6 s+ g9 k2 v/ B( U" s, J% Z
% O1 ~ Q8 c* g6 G; Z3 qComponents of a Recursive Function! \1 Z. q& q6 J$ w2 Q/ W
4 M. C0 C2 m& r1 B+ r" L Base Case: / _7 b5 O5 o2 _+ x* x" _. k" i& ~, ?8 u* x+ d
This is the simplest, smallest instance of the problem that can be solved directly without further recursion.4 W6 p/ B, G$ v$ n- d7 Z
' K# B, M4 K4 c% d' M0 c3 i6 a# @ It acts as the stopping condition to prevent infinite recursion.0 q* @. w" {0 l% S* `
8 |/ J+ n. E6 i B Example: In calculating the factorial of a number, the base case is factorial(0) = 1. * D" x. j$ Y$ R3 E/ D5 r+ B0 p( X0 N3 Z
Recursive Case: + d0 K0 d k7 g+ F) K& \: p0 G# j( j1 c% }
This is where the function calls itself with a smaller or simpler version of the problem./ K* {) c& l) ~
- w& a0 n4 S2 k
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). + P! |2 n; w6 m$ v9 s 1 }$ E& a; ]3 Y, {3 K7 AExample: Factorial Calculation 4 B! Q$ R4 @5 o% n9 `) {0 h" j 9 ~9 [$ K: k" K' YThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:' ]" U# r2 R6 Z! r$ z
: ?; u: @2 x3 [8 L. Z7 r( Z
Base case: 0! = 14 }9 F+ e. W N3 @& L9 T; |- \2 @; H% \
& h) f8 R3 t7 n k( W* c
Recursive case: n! = n * (n-1)!7 I: X% \% M$ r. R. A0 o) T2 p( m
! ]7 Y/ B/ N4 j' k# @9 WHere’s how it looks in code (Python):$ ]& g5 y: b4 h, d: q
python 3 N+ v8 w) p6 D1 ]6 o5 F Z & ~5 C' J, x. {! q7 c7 ? % L8 m! L" \2 J. D4 h$ kdef factorial(n):4 @5 C2 p8 t8 k5 }3 T4 q9 v* X
# Base case : e# }( q, O$ P8 O" i/ t8 U8 Y6 { if n == 0: 6 ?, k' R2 `1 o8 G return 1 % O6 Y* r, o, v: K. D # Recursive case9 I5 X( n6 _, O9 @' i
else: 2 M! X c# F3 j! ^ return n * factorial(n - 1) \$ u! W4 N) O; a
1 U( q: _' q+ h4 }: W# Example usage % }- V# k1 t$ K& k4 ^print(factorial(5)) # Output: 120 - u: d# ^4 o2 G9 i% O) q' v* K! O9 T3 y6 J9 {/ W
How Recursion Works % d7 a2 F4 h; V/ J5 H4 [4 f- F; a 1 i L1 M9 i2 p4 F3 O The function keeps calling itself with smaller inputs until it reaches the base case. ! ~+ o6 u: E. Q( w8 W: i3 m; U7 y# u K* R8 Q) l1 I
Once the base case is reached, the function starts returning values back up the call stack., v, R1 K* A* ?) ^
# r8 J' |3 f, `1 H- v" u
These returned values are combined to produce the final result.. ]1 O6 N; U8 u
$ q& Y! z. \2 S+ ?. xFor factorial(5): ~1 {3 I' M! F) y4 Q1 x4 m8 k# p5 I3 e& [
. Y2 z6 U+ | M! z5 O8 s0 N% W4 \
factorial(5) = 5 * factorial(4) & Z; y* C0 X- B4 kfactorial(4) = 4 * factorial(3)9 p/ e2 O5 b, s4 N" ^
factorial(3) = 3 * factorial(2) 3 F6 X0 L' o8 v Cfactorial(2) = 2 * factorial(1)- b ~8 V$ d4 Z$ e
factorial(1) = 1 * factorial(0)2 r9 S, K7 U9 y5 g% E# C
factorial(0) = 1 # Base case4 V/ N8 r8 {& ^* K
1 |% P' w' N# x1 {. R0 @$ \+ D4 _
Then, the results are combined:: A4 v# E' L' y5 M( M- X! T8 R
# R9 @6 x2 b) G0 d A
6 @+ P# I! i7 Vfactorial(1) = 1 * 1 = 1 " r" r2 W9 f' x0 O4 ~. ofactorial(2) = 2 * 1 = 2; K/ ] K7 L$ b; G3 a2 z
factorial(3) = 3 * 2 = 68 D9 n0 \: U5 Z$ K# \ f
factorial(4) = 4 * 6 = 24; v4 w ~: i6 ^/ {& L4 ]" Z3 ~
factorial(5) = 5 * 24 = 120 S1 A( v+ b% Z5 ?1 ~6 _2 i. j. b! Y1 m9 J4 l m
Advantages of Recursion 2 {- v. D, F# w1 D5 f0 a4 o% C0 c1 x* z- ]- \3 Q* `8 H
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). ! X6 ?" q3 Y1 D; L/ {+ t * m7 C+ U/ }! j Readability: Recursive code can be more readable and concise compared to iterative solutions. 7 a5 I( B/ @3 Y( Y( f G 2 M; |$ d( e6 h3 r% cDisadvantages of Recursion * k; V' \) ~9 h" l3 G6 M " Z5 h( A& `$ P9 f! P8 ^ Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. ( s4 H( Y5 I+ h$ s# [5 ?% Q% y& v0 r) ^( t) }. R* l* r2 S
Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). , }6 {4 @4 ?5 L* X % l5 ?" i9 n& z4 E7 ~When to Use Recursion) f2 O4 P2 }+ V) \! V V, x6 a6 l
' i; G C8 b, i4 v4 l4 n6 k
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). k! y8 {9 K% L 4 e- P Y/ z8 g1 m' v9 E Problems with a clear base case and recursive case.2 n3 Y1 A2 i" R
" J. _& M2 _7 z$ u6 u0 G! G8 uExample: Fibonacci Sequence % U& Z0 Q9 E6 v' ~ ( l* Z9 |! h/ CThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:2 u7 {( y% K6 w2 E
" @* k: l3 A5 K& I* b6 ]
Base case: fib(0) = 0, fib(1) = 1& |3 a3 ]' M# W
. ? |! d# C" |0 V; f8 J; Z1 ^% X U
Recursive case: fib(n) = fib(n-1) + fib(n-2) * B# ?2 E5 f. {9 z4 R% ~ 3 Z$ Y" u* o. I) o1 o. |python! g3 G' \' r- D9 K1 ]
2 h- a$ f% n& B8 d) _7 F3 ?2 n, g# X+ f* \6 ?0 f) z
def fibonacci(n): % w O3 x$ t: e # Base cases0 a1 K" m9 `% p6 _7 W( i
if n == 0:9 a a! `5 @! b$ J. B: v6 [4 S l
return 0 3 H9 I6 s# ^- X( T elif n == 1:& \1 g i$ c+ ^( e2 y# \6 p# V/ ]
return 1 $ g* L& N2 G" e% M$ h ]: w& j% M+ Q6 c # Recursive case 2 r7 c4 `! @7 B, ^ else:) |* j5 T7 Z& U) j* P2 z# y3 o
return fibonacci(n - 1) + fibonacci(n - 2)3 @( b+ W5 }, V J3 B/ G
) k( E/ @" h( b% Y6 |
# Example usage+ C6 V5 P, z+ z' a, i
print(fibonacci(6)) # Output: 8 6 @" c u6 T( l: }, \1 y1 \& {8 i7 | B) s2 @6 k v
Tail Recursion : o4 m* c* j. H' { " Q/ l+ Z" c/ s- N I" ETail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). 0 n- m! }3 I( d. z% h7 M1 d( l7 i Q1 X
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。