标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 * v. f: s: q q( E0 c" _' `3 B- G8 U- |8 n& Y( j
解释的不错 5 g8 t/ ~6 u4 H# p, E* v' L3 c) d; G6 \+ Z3 ?* \
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 ' @! ]- m H7 K" T7 i% {5 V5 [, m 0 |8 ^1 }$ ]/ v) O4 G8 T# r 关键要素 % Y% `: ]! P+ G- |* y" e" J+ A/ f2 q1. **基线条件(Base Case)**) s: i+ d; H1 d' e# o( F" r- U
- 递归终止的条件,防止无限循环) o3 T& I4 w. Y1 |$ O& H
- 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 4 p, K! z- z4 L ' Q! L% ~6 ]) K' ]5 i7 S* q2. **递归条件(Recursive Case)** ) @# _0 b4 A5 h$ T( |3 c9 T2 t - 将原问题分解为更小的子问题+ p0 S: u/ @* S+ h& R
- 例如:n! = n × (n-1)!# |( c( _3 H, i/ y% B' R3 d
+ r* t- E- c/ y- f& z. w 经典示例:计算阶乘 9 N/ g! R* Y9 W. a% D0 N* hpython6 l2 C. l# g+ k2 S8 H
def factorial(n):6 j: F4 s4 k" Y1 p& x' k9 T
if n == 0: # 基线条件 ( X Q- X, _! l. @- F return 1 ( E, I. |! s/ c f: a else: # 递归条件2 y: j, {& k6 i5 k
return n * factorial(n-1) 5 g+ L/ L# \3 O( @执行过程(以计算 3! 为例):/ n' ?5 `8 s4 w/ r- ?( ~
factorial(3)# C8 D* f( C; a( h4 M
3 * factorial(2) 5 i/ d" e7 \+ U6 I/ H. M. O3 * (2 * factorial(1))' r0 ?: I0 _7 Z! T+ S
3 * (2 * (1 * factorial(0))) & w. {: t, J4 j u E3 * (2 * (1 * 1)) = 6 # N6 n5 R: a7 R& |% g* {9 G# O* b. x4 m$ D Q+ `% U
递归思维要点8 P) y' Y5 f' \8 O- i" ~ J
1. **信任递归**:假设子问题已经解决,专注当前层逻辑 9 x$ X' t9 V/ O2 v2. **栈结构**:每次调用都会创建新的栈帧(内存空间) 7 \0 N( r8 ~9 S7 D' w9 ^" d t3. **递推过程**:不断向下分解问题(递) ; n& F& F; _: w# G4. **回溯过程**:组合子问题结果返回(归) / E& K6 I; I) p, J1 N4 J: g / ]* J, @9 x" T% P- Z8 M 注意事项 # P/ \ \7 e$ p0 Q n H* ~必须要有终止条件 4 z! K4 j' x( {递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 T/ S" w `0 x5 d) h6 V
某些问题用递归更直观(如树遍历),但效率可能不如迭代- Y) ^/ t# t8 M" r
尾递归优化可以提升效率(但Python不支持) $ ]( V7 \+ X# q1 x# n # W3 Q9 j2 ^, q2 n" l2 c2 d6 P, U 递归 vs 迭代 1 }0 L+ c( a, g( t3 }' y+ V0 d| | 递归 | 迭代 | 3 c- F2 z s% d/ X|----------|-----------------------------|------------------| 7 ~$ L" E$ C: @5 V& d2 ^| 实现方式 | 函数自调用 | 循环结构 |+ M" } z! a+ ]- V) P0 g$ r
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 | ; }5 e5 r/ V. U* h y) b, Q& @: N1 i, || 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |) ^, d, E+ P$ P5 K2 [% l
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 |$ {) [: v# d( D" o& U" i
9 a- k7 \( n# v 经典递归应用场景 : J4 H5 _; k* c* e1. 文件系统遍历(目录树结构)5 x) W p1 r# M, K
2. 快速排序/归并排序算法+ u: b9 S* b' a3 p; L0 F
3. 汉诺塔问题4 D3 Z5 C y# S. a. t0 i; ?, ^/ |
4. 二叉树遍历(前序/中序/后序)- H+ V# w) j$ _
5. 生成所有可能的组合(回溯算法)1 |: s$ I, K2 y6 K" @$ v5 d K
! R' T6 m* C: {, F( z/ h
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. H' b$ X8 v" E/ z" U
我推理机的核心算法应该是二叉树遍历的变种。 ! D4 L' b3 d/ y f( F另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:/ M4 u* ~- I j5 M' _
Key Idea of Recursion9 c- M+ I6 G0 F: O( \
# ?! S# _. ?! o$ ~' e) |" F4 `; kA recursive function solves a problem by:) x0 X2 ]% w6 |* X4 r( K
~3 U0 c: ?3 w1 p6 `9 Z
Breaking the problem into smaller instances of the same problem. ; }. i, [' s4 i" `3 X3 k' C+ s- Z9 b8 e
Solving the smallest instance directly (base case).' a% Z, _" o8 b1 `8 s" o
- V: m" ~( B1 ^2 [! ?6 b Combining the results of smaller instances to solve the larger problem.- G/ O) ~0 p6 w- s
5 F8 z' a/ B1 Q& v) r4 r3 d
Components of a Recursive Function: Q, Y" Q6 S& }
5 T( g8 W0 J8 I, {' |9 ?$ k! S Base Case:6 d$ E- C5 {4 E* o% k0 Z4 ]( c
( O& ?) `' O# L# ^ y! ?
This is the simplest, smallest instance of the problem that can be solved directly without further recursion. ! T7 g9 j7 r# M$ k" u" h4 k + @4 k+ Z3 d. p* r: z It acts as the stopping condition to prevent infinite recursion.# v! ]& V3 v" l& ?. M
3 r, [7 G5 }( w% X0 `5 w Example: In calculating the factorial of a number, the base case is factorial(0) = 1.( l4 b/ ^+ A) f. }/ V
7 `, f( ]- J) u& y2 ~8 d
Recursive Case:% {6 P+ j5 M- a# i5 l' c( s
; r% H# I8 `0 H7 X9 I, [- E
This is where the function calls itself with a smaller or simpler version of the problem. * Y0 E2 `0 z @" \; L* N% y$ ?- e' j' \6 B1 J$ ~0 ?& b. R* M
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). 4 O) P8 a; ?6 n3 s6 [8 _# d9 y) f+ w1 F& B& ^# Z" E% ~7 O
Example: Factorial Calculation ; B4 V& H2 a; s6 p - r1 `5 z2 C v% @$ aThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: - `# C6 ^1 O: d6 X0 I* v , t1 e; a- \* U3 V) Q4 { Base case: 0! = 1 1 J7 M7 {, o! |# b- a- g# g9 _" }, K& I1 a1 z
Recursive case: n! = n * (n-1)! - M. M8 C! }6 y8 h: ]2 _) x6 |! b4 O8 d' g% B! B9 N
Here’s how it looks in code (Python): 5 E/ x& N! o; p( upython" D9 q# Y# y) D$ M0 P, a: O
* b' L8 c* q: h7 S0 o1 \" M9 y 0 l' `2 N; m; u2 x# qdef factorial(n):# p7 A; T2 E& a, s4 R+ e
# Base case & s4 h. `7 J# r6 O if n == 0:* [( m1 i d% l# e9 j) N
return 18 n7 t6 _, | W3 r) X& `: `
# Recursive case % D' N2 z6 @. @5 a* R4 S/ d& I else: 3 n( ^% b1 \5 ~& U% l7 T0 R( \6 _ return n * factorial(n - 1)0 a; {/ m6 D' g4 h4 l; A& @
9 [) A- d5 K. w- l
# Example usage3 g0 U }( G- d7 G6 G2 T* N$ `# _
print(factorial(5)) # Output: 120 + V% ^1 `8 L; D8 }$ q5 t- E; M 6 g4 o: @/ K$ THow Recursion Works . _8 K8 }+ y7 [& f& K8 n1 R/ M K6 |% k* r* I% Q0 w- s& U
The function keeps calling itself with smaller inputs until it reaches the base case.+ ]9 z, o6 E) o( ?# ~8 R
3 L$ H" u* W$ S. K/ } Once the base case is reached, the function starts returning values back up the call stack.4 ]3 A% h5 r3 \6 X$ C" ^
+ v; G% }3 b0 ^0 K- n0 t: F# O
These returned values are combined to produce the final result.* z8 R e) x. R5 L3 i
: O& J1 u' O3 l# O* f T
For factorial(5): % g6 G4 e! v: s5 z' ]5 ^/ G' y' Z- P J
0 v8 l2 D6 F) Y9 K- u
factorial(5) = 5 * factorial(4)# v7 p/ g5 i" }. E8 P$ k4 A
factorial(4) = 4 * factorial(3) + m% Y9 r6 L4 |) W/ }! q2 x% L- Wfactorial(3) = 3 * factorial(2) ) B* L: [# ^, Y% c, C. [5 Gfactorial(2) = 2 * factorial(1) ) n: M' t1 G# ffactorial(1) = 1 * factorial(0)3 q" _& P: x) M
factorial(0) = 1 # Base case0 Z$ S j% P# N- }, T4 {
% f5 D! @5 r1 H
Then, the results are combined:# o1 M$ p H- j; _' O
7 g4 A0 L& m) W2 H0 _/ c( M, ]1 U5 p$ b3 k5 j3 n
factorial(1) = 1 * 1 = 16 h/ J2 X' A2 v f: \: H
factorial(2) = 2 * 1 = 24 ?9 N. j0 L# y5 C
factorial(3) = 3 * 2 = 6" U. h; I8 _/ L: g7 q1 @' H, V
factorial(4) = 4 * 6 = 249 r6 f4 {! k7 ` U
factorial(5) = 5 * 24 = 120! A) m/ j: H: D
& N8 Q' i7 { p0 ?3 b
Advantages of Recursion 4 P; Q) M* s5 D6 a - a! | H3 D/ M7 K" E# D Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). 0 K$ @, E& d. P" i) v4 k& Z. v3 o4 L$ J0 P" @6 ~2 n. W5 E# L
Readability: Recursive code can be more readable and concise compared to iterative solutions. , J, {, c' }1 ]5 o; {- v: R/ g! _1 N9 `% ~# d% S
Disadvantages of Recursion 9 @$ z. P: Z; j6 A+ \+ I' c 5 i# C$ m" {2 v Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 v0 N' f: D7 `& c+ G5 a
. l. h% {$ [1 S0 ?6 m+ c# I- s0 C Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). {/ E0 ^- `3 j- I# h
1 B l A: J. @% V. h6 u
When to Use Recursion # b* _, u# `% N. a+ f- \9 K : B) F9 K( O' {4 S; Z/ r4 ~; z Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).9 Z) s9 o3 r/ |' L
( x0 d9 G4 c* Z+ H+ S: l Problems with a clear base case and recursive case.* l& v- g! s' D; h& L! K. Q
" s8 W, y5 O5 v+ x$ z
Example: Fibonacci Sequence + t! D8 f) _9 K4 W& b7 n1 y4 M, K$ ~5 k
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: # m5 Z9 d0 K, t y# L# Q7 {6 a+ v 3 M, h" k( Z; B0 l Base case: fib(0) = 0, fib(1) = 1 3 A3 L/ I( T4 r& I- q8 G; R 4 O0 B" G V6 x! Z6 j Recursive case: fib(n) = fib(n-1) + fib(n-2) ) a! k' e: A9 {% o; ~$ X {7 X( t% h6 ?" Bpython % T- @7 W7 i% |1 y% V$ T1 d) J. X2 T + j0 w0 p* X) ^4 w* T, E& | $ s! M6 K) K0 v4 L) W$ Qdef fibonacci(n):2 e: q4 B0 Y( t' i
# Base cases 9 [! g! g5 E# s6 w4 q if n == 0:) C4 E% r \3 B! \
return 0 # s5 ?; w7 C7 E1 E0 T a elif n == 1: 1 x; B7 k q, t6 m" C# c return 19 d' \& R: t, t' g8 g6 p
# Recursive case 4 D) \5 U6 S x4 \2 q: H else: " ^0 o0 \9 }5 V) {/ ` return fibonacci(n - 1) + fibonacci(n - 2) : O; V* W6 s. Z N5 b0 r) g 0 J5 [- k" @8 M7 g* y S# Example usage ) j0 P( b5 S* m/ q. fprint(fibonacci(6)) # Output: 86 X6 ^2 \: n/ X) D2 |
* g/ l w' C4 U! T4 t& gTail Recursion 3 k% ]7 ^ v! e: ~* h0 ]4 z) v # z* i" ]0 Z/ f( F6 q8 o/ ~Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). 7 N# a# }# |" q4 q* r 2 N& ]& y* Q! {5 Y. G) ~; F8 VIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。