爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 + j" P$ P! ?, Z" f1 X# o
% U0 T3 i) l$ c7 A  p, D; F
解释的不错" j1 @" Y- F" k- n* `. `* b
( w& [! R' V9 [+ [1 k
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# F, u9 [3 }( J) _
9 e: r% S; E  F! C, U  |
关键要素3 L$ E3 t* G8 R# L' `
1. **基线条件(Base Case)*** S& c+ G6 E, V/ ~- D/ l3 E4 ~! z
   - 递归终止的条件,防止无限循环
: ~5 q9 W( t8 [+ h5 F  o3 ]   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 13 m0 L+ k1 B- X. L
: V, n9 V& ]3 W5 \- M
2. **递归条件(Recursive Case)**
+ I/ x3 C; M; D: ]   - 将原问题分解为更小的子问题
6 _/ ]1 c! u! h4 k: p; u   - 例如:n! = n × (n-1)!" M: n* ?1 `3 u7 U, A

' Y; v; j( ~$ ~. i! W) K 经典示例:计算阶乘
) |$ B/ N! S$ ~9 G  Jpython
: D' S2 e; D( G9 H6 Adef factorial(n):- }% w6 m' ]6 F- j! v/ s; K; l+ X' ]4 A
    if n == 0:        # 基线条件) n* |) }5 h3 M0 w. a9 i3 X7 s8 J
        return 1
: Z* U/ [( F7 c, Z0 r) E    else:             # 递归条件$ @' e  G( r/ Z8 |3 Z- G) G8 q
        return n * factorial(n-1)
9 k+ ~' }& E1 {7 `1 v- V3 x3 ~执行过程(以计算 3! 为例):
, O8 K2 }- Y/ t7 ]9 z( ~factorial(3). V7 D4 {2 f% L
3 * factorial(2)' K1 |  I. K/ H6 @2 F3 P7 a$ P
3 * (2 * factorial(1))
" ]) g+ X. P9 p3 * (2 * (1 * factorial(0)))
. n7 J: {8 j; B3 * (2 * (1 * 1)) = 6
5 x9 b8 o" ^- q9 S9 [
+ ?$ C& ]: x3 i; t. [: j4 ^ 递归思维要点
, q' E" L9 M; L9 p* Z. q! F1. **信任递归**:假设子问题已经解决,专注当前层逻辑
" O$ ~+ ~/ Z+ r2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 o8 _9 U, K' c- J4 l
3. **递推过程**:不断向下分解问题(递)
  W9 X- X; o( _& Y$ R" A4. **回溯过程**:组合子问题结果返回(归)
! b# [6 p* q5 o* N2 r5 E- E
3 c5 f- B3 {# o0 L9 {2 f9 U/ ^ 注意事项
4 T) E" ]4 Q4 m* p必须要有终止条件8 _) x6 ]+ V/ F
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
9 ?3 F& `  n. e+ \/ k# d4 ?, z. H某些问题用递归更直观(如树遍历),但效率可能不如迭代
3 H% o' ?" e4 Q7 F( X尾递归优化可以提升效率(但Python不支持)
1 H4 }7 ^5 |9 V  G- |. R" I. t4 N/ W7 c# j
递归 vs 迭代# D; N' x9 f3 i& V) c
|          | 递归                          | 迭代               |
) Z6 r6 K5 h, s1 k. j& W+ s|----------|-----------------------------|------------------|  C' G7 |% w' [7 i
| 实现方式    | 函数自调用                        | 循环结构            |
! k! B$ ?" l; L, \6 T| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |% m$ P/ B, m3 \3 Z7 [* K
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& z- A! `2 C) c5 Y: g
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |0 x5 {" T7 F# A
. }, B3 s+ R/ y5 o6 y
经典递归应用场景5 Y% R6 q. U8 Z  P) X3 ^
1. 文件系统遍历(目录树结构)/ e# @( M6 T9 Z" f* v$ R/ b0 N7 m
2. 快速排序/归并排序算法
( |( k5 Q8 {" Q1 ~# j3. 汉诺塔问题
0 q+ |2 |6 s; F9 Z4. 二叉树遍历(前序/中序/后序)6 H6 p3 d1 r: t# Y6 p
5. 生成所有可能的组合(回溯算法)
) S. X# l, f" M) J/ |( ^! f2 o( `) H/ p6 q  E% D0 ^
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,* \4 r6 E6 U0 j. P* K; T
我推理机的核心算法应该是二叉树遍历的变种。
- H" M4 a7 W7 l8 E) {另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
6 D5 N9 J, n/ n0 d6 L* X4 gKey Idea of Recursion
1 `4 y3 n- g& l' M
% U6 p: }+ C+ T5 VA recursive function solves a problem by:9 _4 m- @! L' Z, r5 @0 t9 o
5 d) ]8 T3 y' g- }
    Breaking the problem into smaller instances of the same problem.' E' h3 ^4 ]! b! I2 C( A. m0 r

% N; X( v5 j1 G% [* R    Solving the smallest instance directly (base case).# l  F& t  A: ~8 V

0 s( t* P  O% _    Combining the results of smaller instances to solve the larger problem." k0 }0 M. a  v' A5 J! v  q1 w4 \( C

% S: x$ B5 B* CComponents of a Recursive Function
9 }7 q  j. C/ B, c: r
8 x# d8 f) E) z. w    Base Case:- H3 ?% u# U# y$ v7 ~
0 |$ n* R) c5 H6 i- K
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
+ E2 W1 K5 N0 u" G) G' h6 g2 h+ D0 W" ^6 t- j9 d# r0 T
        It acts as the stopping condition to prevent infinite recursion.
" h* U& O$ |) B: A$ O# b* D4 a, G$ ^, _9 }4 P' c2 S8 D
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
1 g+ _, u% p& O# A( L! N! U& I
+ t. w3 i: r6 M0 a7 M& p* @7 ]    Recursive Case:
$ L2 r2 R. p! E2 l  Y
+ q' L* r4 R" u' E9 Z1 O5 I5 H        This is where the function calls itself with a smaller or simpler version of the problem.
+ [/ K2 Y/ s2 X8 {5 x- V5 P  L1 X9 L5 E- B- _
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
; m5 g% V; L. N4 p' ~% x: x
+ O% [8 Y$ y! e# C6 ^( CExample: Factorial Calculation
! [( W. L. m9 ^0 o& x/ P" {5 A* E
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
4 D2 p) i: L4 M- g# W5 O% U- K9 U$ n0 \8 |7 |' d% h
    Base case: 0! = 1' y5 s- H7 O$ P( S: m1 _  j
: K- l$ x: |3 k# O( L4 F; `! D
    Recursive case: n! = n * (n-1)!  m2 w" _: U6 t* |8 j6 p' C6 j" u

; L. b3 I. Z" a, Z$ |Here’s how it looks in code (Python):' M; J5 J. o1 S9 N5 r3 b
python4 ?  N9 I; f# P$ F) {" D, i: E

/ e! P$ N. g  p6 o: |, k# G( n  X
% X  z* l9 j* p% h1 t7 e. edef factorial(n):: j& t4 j4 C8 s$ \, a
    # Base case! e! x% V* s" M- I
    if n == 0:" }' ]: u8 o8 H- F
        return 1
& P/ {! [- ^5 J1 a    # Recursive case4 S) l; B8 U3 S  \, r
    else:+ v# B6 J2 R& r$ L' F$ y3 A
        return n * factorial(n - 1)+ X6 Z+ x: G% R! x, _: l6 j# ]
7 q  j" o% V& b( k/ H
# Example usage
( R, l/ v  W6 Q. h) w+ Nprint(factorial(5))  # Output: 1200 g+ ^* R% P% f' W% \  u
! [  z$ ?' z. e7 S- z3 E9 r- @
How Recursion Works
+ z7 J3 l. F4 X3 I
- d5 D, ~* L. V% ?# ^3 x& D) C    The function keeps calling itself with smaller inputs until it reaches the base case., v& s2 r4 `$ O# z5 w" D2 k
7 N0 R8 q9 ]; s5 ?7 u; g) |
    Once the base case is reached, the function starts returning values back up the call stack.
8 o; `$ P. Q3 t0 _% s% X. B1 W$ N6 o6 G/ Y; B4 t% U% ?! M1 {
    These returned values are combined to produce the final result.6 a+ k1 D% \( D+ J& {

! h5 n" ?$ n# c  d: ~0 J* YFor factorial(5):6 @& k, b5 B4 P( y3 i* K5 n1 X' l

- W; e5 q+ @/ i( B9 B1 W' P
* J3 u' G/ U3 ?. l" S9 t, qfactorial(5) = 5 * factorial(4)
. d+ \* Y& C* M/ Afactorial(4) = 4 * factorial(3)
# e0 E, C2 I% L) D  H2 @factorial(3) = 3 * factorial(2)
6 M6 K5 H- |/ _! h+ e1 Lfactorial(2) = 2 * factorial(1)
" Q. M: j0 ]% yfactorial(1) = 1 * factorial(0)
  B% {+ D3 i4 U( t# A; i5 Qfactorial(0) = 1  # Base case! e5 d+ b" `" E# O0 J
3 Q9 S2 w% y8 U+ `0 q- H6 {5 y$ p0 a
Then, the results are combined:
. C5 w1 {6 F- ^$ y. }0 z& p2 O. {
2 t3 `, A% d/ P
: v9 t+ \( j+ s+ u& L* e. rfactorial(1) = 1 * 1 = 1* x6 x- ?' B+ N: l
factorial(2) = 2 * 1 = 2
! m& Y. z) Q" ofactorial(3) = 3 * 2 = 6+ _/ r8 F7 M$ `* e
factorial(4) = 4 * 6 = 24& e0 \; Q# I$ O/ V. D
factorial(5) = 5 * 24 = 1201 g) W2 N4 x& d% b

( ~) j$ U1 t- a- W5 KAdvantages of Recursion
+ \% O/ J% h. k5 n
2 h* K. t: I; x" {0 [: @6 h" v0 [    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
+ t$ M- r( H7 P% Y1 {2 O# z8 _8 q+ }; z5 S) a3 a
    Readability: Recursive code can be more readable and concise compared to iterative solutions.
& Y! N, K9 }8 v" D+ Z+ L1 `$ C4 e0 l
Disadvantages of Recursion8 W  p4 Q' c! I8 E7 ]
3 _6 c! r* M4 v6 ?5 y5 [
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.- ?, X/ Q  ^3 {
" Q/ a, z6 d4 Z
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).9 Q7 ]" O# r' U# A  f- O! s; M  A

; c( W  U8 z1 i& C# c( D# N1 XWhen to Use Recursion2 K- }- Z- A9 w( K  o/ F
+ P/ A( h$ V8 f% u
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
- i" W2 B* g. e2 Z( a; Q  ~+ o
. n3 M0 K1 f/ v; Q2 O. R    Problems with a clear base case and recursive case.
9 ?: ~+ n; w  g2 K5 G' x) L; v
Example: Fibonacci Sequence
9 W5 |) H  D& I) g2 c  [" U, u  n7 x7 g% |, T+ g  F
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:1 }3 B' q4 x7 n! {+ B; }

* g' _0 ~# p, K5 ]( \3 p% ]/ b    Base case: fib(0) = 0, fib(1) = 1
( ^# r% w, N# O5 \4 x# Y; Q
; p% V$ y! Y# ?& E    Recursive case: fib(n) = fib(n-1) + fib(n-2)6 N1 ?  L) s  P  |2 v7 `' t, x# L
7 `2 ^- \2 A+ v) B  ?6 \
python9 S9 O  p9 q0 r! G
: X% P; U. R9 {+ x: w

! l# U3 P* S# [% @8 @2 rdef fibonacci(n):
! c1 m; g" ]7 M  ]( s" X    # Base cases
) {5 t8 h7 l( w    if n == 0:
1 M2 c' H! G$ r. F8 Q0 s1 V        return 0* x0 S4 R6 T- i5 E2 j/ _
    elif n == 1:
& K% w( C7 z, C/ ]; S9 \        return 1
* k  I& ]/ e& {4 A1 {5 Y/ e    # Recursive case
, }' z! u$ l  z- B+ g8 _    else:' |. Y8 {; \0 ]% |7 T# x
        return fibonacci(n - 1) + fibonacci(n - 2)
5 h; l1 X7 X0 I- u- b+ Y
' |) K8 E6 P6 a# \# Example usage
8 F% L3 ~, R& D8 s/ g, \" y9 F/ Q& Uprint(fibonacci(6))  # Output: 89 Z0 E$ |( f# }3 ^3 ~
  \& z0 i1 }) ]' K6 O* m% q
Tail Recursion
% N( x* {  R: a) E, c, Z- ?$ b8 J& i  C& N* ^
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).+ g/ [% m( d: E
) L. z& \3 i) O
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://aswetalk.net/bbs/) Powered by Discuz! X3.2