爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
+ e2 {7 F. ?' _2 u
8 C2 P3 R* ?; Z! g# I解释的不错
  E0 m' h* i& u) H7 p" X9 D$ s1 t9 X1 C% {+ ~
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* a3 t3 j9 E0 V, V0 b" ~
: g3 q% _) Q9 D
关键要素9 H3 j- I  B; _9 a' g
1. **基线条件(Base Case)**" c# {9 d" g# M$ I
   - 递归终止的条件,防止无限循环' y" B1 d. n, A) z: b8 Y
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
6 ^, [  [0 |+ z
# a$ f* X0 L$ F( ~( ]2 B, c2. **递归条件(Recursive Case)**+ R# ]  g4 t" K! R% b' T
   - 将原问题分解为更小的子问题: @, ~5 }5 N4 Z  r" j; o
   - 例如:n! = n × (n-1)!
& H3 b( U+ F, R- p* `
4 o2 c& v6 _0 b 经典示例:计算阶乘
1 w% V# [1 \" m" g7 Hpython: o3 x, C3 l. z5 [- Q0 f4 m
def factorial(n):
8 x  h0 B9 Z9 H; u! _& E    if n == 0:        # 基线条件( H) ]! Z1 v9 F: `; a) E4 U3 G
        return 1
$ ~0 C0 V, t" Y# f    else:             # 递归条件
7 C5 D' J$ ~7 c, Q5 N# }1 H1 h; K2 b6 U        return n * factorial(n-1)
) P8 A8 ^, m  A3 I9 l3 o: H执行过程(以计算 3! 为例):' b7 \7 q$ T1 P$ G. X
factorial(3)9 k" b1 i! B' u, V, X5 T
3 * factorial(2)* b- R3 E5 }1 I& f2 ^$ P
3 * (2 * factorial(1))
$ l) U4 |8 b3 |. g: |9 J+ v3 * (2 * (1 * factorial(0)))
# n( Y/ w% ~2 g& ^9 l) U3 * (2 * (1 * 1)) = 6( h5 P/ ]! f. ^' t- x

: z0 G5 |0 Z$ \' Z5 n 递归思维要点
6 i- }9 l9 w" p; ^: p* e. R' ~9 X1. **信任递归**:假设子问题已经解决,专注当前层逻辑& p. W" ^3 A% c2 j! g# _* i) S9 J; o
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& |( W6 B% d7 |* N
3. **递推过程**:不断向下分解问题(递): z, k' x9 e0 ]$ t0 T8 \9 U" z/ |
4. **回溯过程**:组合子问题结果返回(归)  X( [$ J5 v) Z( n0 p- i
( z0 A# r/ A7 U8 J: n* C3 U
注意事项: u. H/ n* x, i
必须要有终止条件
7 g1 Y9 y% B$ i! z5 ~递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
: k- }6 \" k! I9 [某些问题用递归更直观(如树遍历),但效率可能不如迭代4 i6 E$ c& t' I* J8 o
尾递归优化可以提升效率(但Python不支持)) q7 B) Z% |# |3 r# W8 j9 e4 B7 _
4 Q, L9 j! b, M% \- |
递归 vs 迭代
- z! r# Z5 F2 A6 p2 ]|          | 递归                          | 迭代               |
) Z. O# N% q, i8 y* J# ?|----------|-----------------------------|------------------|
1 E* K+ A2 G' z$ j| 实现方式    | 函数自调用                        | 循环结构            |
+ Q; j% P8 Y9 B+ R) K. x6 I  g| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |: |2 ^' y$ H$ Q! _4 a& K
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: V0 ^% w& T8 I! \
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
" |" U8 |" [; C, |1 Y5 P1 E- @6 H2 w/ ]+ r7 a: T4 v
经典递归应用场景) ^0 \8 X3 C. U. x
1. 文件系统遍历(目录树结构)4 f3 p$ b9 P  L1 E
2. 快速排序/归并排序算法
2 B' h9 ]1 |9 S; z4 c3. 汉诺塔问题
1 e: k# x  g4 [% S2 M8 {$ j6 B4. 二叉树遍历(前序/中序/后序)
8 f) y; t$ u& L! v' f' P: \5. 生成所有可能的组合(回溯算法)
4 A: t! f# U, n/ g! l3 J& @3 l7 _& `0 e1 r
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,0 \3 Y, C1 I% e( C% x- q+ l
我推理机的核心算法应该是二叉树遍历的变种。
& x5 t% B5 u1 q4 S& }另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
6 S# t' \, |/ ?! o( ^4 LKey Idea of Recursion2 p- A( A/ H7 a

) C* E" J9 W6 ~9 E# Z3 W+ MA recursive function solves a problem by:8 z! T( v! X; k% D2 q

& t: \; L7 h# x3 l3 W* H4 C    Breaking the problem into smaller instances of the same problem.& i& ^, A8 U  B& C% c

, _' T! |. ~8 V/ Z# [+ F; |9 V* G    Solving the smallest instance directly (base case).
8 q' B5 k: Q. [( j
$ o9 R3 L5 K! L* \5 J    Combining the results of smaller instances to solve the larger problem.
5 ?1 \* ?. v  P' y
) J# D6 @+ x$ f/ BComponents of a Recursive Function0 c- S( \9 `- I
+ b1 f% a& P. E7 A2 s2 @# x) X, F3 y
    Base Case:, ?# [6 m7 ]) M  O) [

& v/ Z8 I0 s0 }, W5 P5 s0 O8 D        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  f" ]# ^6 d9 g6 u) V8 X

# A9 g% s  v* l3 Q        It acts as the stopping condition to prevent infinite recursion.
6 E! {6 ]. ?# F4 W9 [" L* L1 w" q) A8 Q7 p% M
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
- l# f' v# s  k. U+ ]5 l  W% H) z) }& z- _. r/ w
    Recursive Case:
; N9 r" U: _5 |
, y# ^9 f! h7 m+ \& g9 @4 m7 V( `4 Q        This is where the function calls itself with a smaller or simpler version of the problem.
( ?% k- b2 R0 a+ x& }5 h5 F# v) v" p9 W, |! @
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
  Z3 M. \* h0 r+ T- s/ V" v
/ L8 Z. C# ]* y+ L& |Example: Factorial Calculation8 I$ e3 V2 ]9 ?

3 q6 J( C! }* |: s  _The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
. P; O, ~) U: B, ?  i( Y' e/ D3 d2 T$ `8 }$ W" C
    Base case: 0! = 1" E2 W& n) D) n5 m" N, H
" }. G# S0 A; `+ G, K
    Recursive case: n! = n * (n-1)!7 \: s' j$ e: r4 N+ \! C; E2 i

% l  H( V9 |: X/ l) ]. DHere’s how it looks in code (Python):
/ q' h( x5 J9 z# vpython
4 g  x2 f. b, q9 v# R4 V
- ^5 M  A$ ?7 C7 X. U& M3 O' ^, u. y% ]" [0 G
def factorial(n):
/ F* M% W' C9 v: x    # Base case  G  P2 F7 E! E/ o# m; J
    if n == 0:' u) l9 [% X3 R
        return 18 G4 U! I/ i9 L) Y  Z5 f
    # Recursive case, N* k+ F2 k& j" h( T3 y6 w
    else:
" u8 ~2 t0 D9 `- D        return n * factorial(n - 1)- p, L- k' o% @% ~7 I
& A- Y; p* z) i
# Example usage' M! A. O+ K0 R! A- e: a3 G6 o
print(factorial(5))  # Output: 120/ |* B/ B! J$ G3 `9 m0 b

) T' k& Z0 j5 `' }0 G! L2 a3 OHow Recursion Works
" x! Y9 |8 a* D8 n( N% Q5 I1 Q* x6 o7 t  `( k6 [; R) Z: I( p
    The function keeps calling itself with smaller inputs until it reaches the base case.) i* L. ^% b4 q) t* z% z# c
* L$ @$ m1 Z* S4 g( ^
    Once the base case is reached, the function starts returning values back up the call stack.& U* n4 `  Z( c. J! x/ [

. m, Q# H, K  F" g; `; J    These returned values are combined to produce the final result.
6 ?; `7 |! W4 O  E
- m  [. ]: z) p5 hFor factorial(5):
) |$ G% S, V1 ?2 I" N( \+ W% ~* d
* U7 M6 A) q, v: k! `( _  M- O
7 g" X; B+ A! _8 F" k2 k" I9 g, @factorial(5) = 5 * factorial(4)
; H: l3 B, y+ m* W; b+ ]$ \! v) {2 Jfactorial(4) = 4 * factorial(3), P+ y% p- d* ?, X
factorial(3) = 3 * factorial(2)# y! U& o! t5 C0 x$ \, m7 @
factorial(2) = 2 * factorial(1). Y$ o  k; h) x2 D& J1 Y
factorial(1) = 1 * factorial(0)
5 y5 E9 o1 T, v/ O  Ufactorial(0) = 1  # Base case% q1 L; n5 q# V* W
+ l, _, O! J% `% B5 f& {
Then, the results are combined:
, e, t/ E! o/ A# g9 h" a' z7 l, a6 T" |* \8 B' j

' O+ V: d0 Q5 S; P' h! Y( Q; I' Z1 Ifactorial(1) = 1 * 1 = 1! U' \4 ]$ t/ x1 m2 W. l
factorial(2) = 2 * 1 = 2
" C" O9 _) D  q1 w0 k+ `. x" Ofactorial(3) = 3 * 2 = 67 r% d) `1 O- z. {/ \) |
factorial(4) = 4 * 6 = 24
7 F+ |+ L; b( `( F# P: Xfactorial(5) = 5 * 24 = 120
. s0 i, X  L: ^9 p. }  z$ w) m" S4 k; Y9 B" Y
Advantages of Recursion
. w- n4 a( }  {, x" {+ e! p
9 Y- j6 O; f( I) G    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)., p* l- N' ~$ H$ F4 d( q' v3 i. A% I
2 {: k5 |9 J# \+ V* a) Z6 Y
    Readability: Recursive code can be more readable and concise compared to iterative solutions.8 _1 j5 i- L; l9 d
2 A, Y( F5 u; ]. W
Disadvantages of Recursion; l8 o, ~( R8 x- D' t" M
3 }* o) ]' I' |  H- _+ l6 U
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% I4 Z+ N3 O; S+ Y" i+ c8 o$ y- f

" x8 e+ x4 N6 N2 V& R7 T% w    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
# V  Q; Z) V1 T* S- q6 h" F: w$ Z8 j, W2 L+ ~
When to Use Recursion
4 D2 K3 F7 h6 f$ w, C% O0 Q) _% E0 A) F
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
; e. e( `* p$ [% B$ X3 b* L* K! I' O
    Problems with a clear base case and recursive case.7 [7 V3 H+ f) _- {+ X) i

  N* P5 o. s, w: K/ Y/ [Example: Fibonacci Sequence
! h9 y* Z7 C% t4 |( @1 ]6 Z- v4 H9 ^- d
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ z) |0 h. F! |+ [
9 d0 X( S: U( K" q, N- D
    Base case: fib(0) = 0, fib(1) = 1
7 H$ F7 ?3 S* Q# [1 |
4 }2 U5 ]! [2 b( Y* ?    Recursive case: fib(n) = fib(n-1) + fib(n-2)$ G8 p7 f  S' Z7 t* a, T' Y9 C- |; W
' W: P5 k7 H* t+ H+ W
python. ?* T+ Y* {/ [: }% A

  w* a6 a7 j* o3 D8 M2 n' y2 |8 M, Q* F; e
def fibonacci(n):8 W4 {0 r- E( N0 o, s
    # Base cases0 T" `# x# k( O1 y/ W
    if n == 0:/ m2 K$ e0 K" v+ L7 E
        return 0
/ f" t5 H* j3 {    elif n == 1:
! r- s: U: X8 d' B/ U8 Y0 C2 L3 L        return 1
. _* K" t0 _' @: c$ j  D    # Recursive case
/ l0 s- c* B& t) N2 c7 T4 X0 Q    else:
/ v: h; ?( X0 r" Q- ~4 R; x0 x        return fibonacci(n - 1) + fibonacci(n - 2)) ]! j. m) c6 P6 Z, G" o1 n
; f* t" ^: h& u
# Example usage
* U. F/ g, O, P3 J6 t% Iprint(fibonacci(6))  # Output: 89 K3 Z+ {( q. q( {4 U. ~$ z$ W
5 R3 F& @1 ], x% s- D6 m# R
Tail Recursion
% z5 I. e* [3 \/ @
5 F% \2 w- J. m% }Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).* d: ?' c& t0 p  o0 c8 h

. a* J3 s, P; K( t8 DIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://aswetalk.net/bbs/) Powered by Discuz! X3.2