爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
% c8 P& I  Q  @7 C
: N7 c% B: n  w. F解释的不错
0 w+ C9 `% A6 |2 @+ y: U& H, P) {! |" E9 ~: u
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。5 H  o9 L/ Q  a6 }7 P5 d8 \
9 C% {4 \# ^( e" X+ N
关键要素
( K0 A7 [! f+ U# Z0 h1. **基线条件(Base Case)**
4 g( r# C1 v; H2 b5 ^   - 递归终止的条件,防止无限循环
5 k; r. B7 W/ x# I3 \) A) Y   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& e) i% v, f, C3 \! Q8 G) y

, d% w1 V9 a, R2. **递归条件(Recursive Case)*** \+ e  ~; j5 S5 c2 e% p1 K
   - 将原问题分解为更小的子问题+ s  G# F0 E6 R  V
   - 例如:n! = n × (n-1)!5 Y, g$ g9 W/ s- ]# U/ s
! F3 o1 ]' @, Z; g
经典示例:计算阶乘
5 D. m' i6 F1 T$ [7 S, |& Gpython
2 p- n1 w; H" Q* X  Q9 a1 idef factorial(n):
1 F/ S6 B- _1 V, X    if n == 0:        # 基线条件/ b  y7 h" ?4 y7 T
        return 1
) e) l1 T( W+ X+ f6 d/ l    else:             # 递归条件
$ Z* q$ C$ N" k* d" {! h% M+ P        return n * factorial(n-1)
4 n& f3 ^% {2 f8 `% }2 k+ Z执行过程(以计算 3! 为例):5 S: C! a8 J, G5 B+ M
factorial(3)
8 J  R" n5 W: @% A/ [$ Z3 * factorial(2)6 `$ c# N! q: z  [
3 * (2 * factorial(1))* w/ G& ?; L/ l) z, r) u% M
3 * (2 * (1 * factorial(0)))
" g0 d* U1 i! S8 x# N3 * (2 * (1 * 1)) = 6
# q4 l; K0 H/ I+ A; ^9 \$ w3 K4 `
递归思维要点
. g) A. v3 m1 P( E: ?; f1. **信任递归**:假设子问题已经解决,专注当前层逻辑! A  b! J0 f# x
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  m* e  _5 E5 [, F1 b7 f
3. **递推过程**:不断向下分解问题(递)7 c4 y' Y% ~% F* G7 y
4. **回溯过程**:组合子问题结果返回(归); a# t1 @* U9 V  R1 z

+ N. X& e8 A' E: \3 _. X/ \1 R 注意事项6 X  k) Y* V0 d9 ~8 n
必须要有终止条件
, S* ]) k" G  o7 ~, O& M递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
. x8 P( h! t# l( n, d$ L某些问题用递归更直观(如树遍历),但效率可能不如迭代
! d+ K4 P4 l$ V% p1 q4 E. p尾递归优化可以提升效率(但Python不支持)
: a7 E7 s: P8 M, ]: x3 V( o/ t) |( m& j
递归 vs 迭代
3 q8 N/ A, h! H% e5 w& {: M|          | 递归                          | 迭代               |
5 {. _! Y, G  T2 w% Z. b9 q& n|----------|-----------------------------|------------------|5 |. H2 [$ s, b, `9 V+ ]2 e' @$ Z; E. Z
| 实现方式    | 函数自调用                        | 循环结构            |
+ L8 P$ ?# f) \) E| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 p: y7 ]: g5 \* O
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
3 y. {& `; Z& o9 |: C4 @3 m| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
7 y6 I4 v# L# ?( V  E8 f7 B# P/ g8 l9 H5 t: n; M2 v
经典递归应用场景# Y4 _, ]$ e9 M* @0 \/ O' f
1. 文件系统遍历(目录树结构)
' M( x+ g2 Z( R4 V; U  Q* N2. 快速排序/归并排序算法7 ^$ ]5 |0 m. _/ }0 b7 o
3. 汉诺塔问题5 \: H( @9 Z; y* b2 o1 W
4. 二叉树遍历(前序/中序/后序)( f5 r& D% s9 t3 r; L
5. 生成所有可能的组合(回溯算法)
# q! v. A6 R7 J! _
/ k) o8 k% ?0 @0 Q试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( S4 @/ i: d4 D, q) Y
我推理机的核心算法应该是二叉树遍历的变种。8 e; R( [" c1 }; ^- H6 @
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:* Y5 I6 v0 N. S: C7 z0 _
Key Idea of Recursion$ O  R' n# R5 ~3 p" x+ m" b% ?! J
. E; d+ m" W1 Z; g
A recursive function solves a problem by:
* Z4 I; g0 H: G8 _9 N* h% c# V- Q0 m( `" d
    Breaking the problem into smaller instances of the same problem.; T( P& X) s1 F
2 z5 c. j- R5 j  h4 w
    Solving the smallest instance directly (base case).
4 J) a# B5 ?2 ^; i9 q
* f- J9 Z& D# ^0 r" x    Combining the results of smaller instances to solve the larger problem.: ]: }# G0 y. i# E5 B
0 l: N: M6 N* h# K% E4 k. L* ]
Components of a Recursive Function
% g5 X" y' L5 b5 H1 r) C( ?, R8 B$ A3 n: @! ]' X* h. }- E
    Base Case:+ E. ~4 m7 o9 x; M' D0 |: {) A+ ~5 |
7 A8 R4 @, M' Y7 K' N
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
: u6 X* V& x( Z7 ^' m) {3 X
+ |9 p( [! L) i4 `) U        It acts as the stopping condition to prevent infinite recursion.( L- F9 A$ C* D9 J0 v) U% V6 c+ b# n

, O) V* L0 j# D        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.1 r/ W. Q5 }9 c8 ~
# J$ e4 H: T+ x, f7 c- F
    Recursive Case:
! t/ A; Y- s# O( I. g9 y5 H& n+ r& W& s
        This is where the function calls itself with a smaller or simpler version of the problem.. x2 Q' S3 W7 m3 v1 _7 e; i
) X) c) b! l" j* A6 Q4 H( f6 @, M1 ^
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
- M9 b9 H% B! N4 c/ G4 C* @: S4 G7 Q" P
Example: Factorial Calculation
3 b: F# }9 C' d2 U2 [9 b) q3 y0 d2 q7 ?( @# P
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, u: V/ H. N& U5 f
* c: _5 x/ e( W# {* l
    Base case: 0! = 1& z! m/ ~# U. i0 y' Z: e, j
9 s! D) M8 ~- w8 O, M' g4 U3 a  f
    Recursive case: n! = n * (n-1)!
7 Q; V! T3 _$ \" q- b2 a% H0 k" n  v
Here’s how it looks in code (Python):, P; J0 C  z$ e. o1 V5 R& o
python! f8 ^' c$ f' L, o; ~4 F

, ]# Y/ F6 T' H% _3 r: Q3 ]# I6 \9 Z+ K% Z/ {& L
def factorial(n):
8 {: l& v8 |. _9 |; l/ M9 X! I. Q    # Base case
5 I0 v  b* R" _    if n == 0:2 A7 F2 R5 o" P
        return 1' g' s& }* B. {; h0 G/ v
    # Recursive case  P0 D* x4 `3 i" H- k: I+ s
    else:
& \" i9 M7 O' U, P        return n * factorial(n - 1)
$ v; b2 J# X( [, e' x) w: t
( {! ?" T) }( D5 R# Example usage
4 M3 J: i! J8 ~2 fprint(factorial(5))  # Output: 120
1 T& U* z* n) M7 c. W" a& D1 `
How Recursion Works; K& T1 S' s8 z7 G2 n. F4 h  B
: t0 `% T5 `& i) O5 v. V& f6 _
    The function keeps calling itself with smaller inputs until it reaches the base case.
. O6 I+ a, [' v$ \* b
% p8 V7 z2 \# Q, D! C5 d3 O    Once the base case is reached, the function starts returning values back up the call stack.
% d6 ]' x% F6 j+ |3 W( R% P* ?6 Q4 z
    These returned values are combined to produce the final result.) Q& v& r" A- B2 q1 V1 r( S
1 R: R( _$ }- \' C3 X
For factorial(5):
% m3 O$ J0 a9 U) W" t0 z/ r% S: G4 o& k# P, ]$ s, A
8 O6 Y, S/ |4 k' e
factorial(5) = 5 * factorial(4)
9 D8 |9 ~* V% q- a. Zfactorial(4) = 4 * factorial(3)
$ ?9 j( _  Z% X5 }7 ^factorial(3) = 3 * factorial(2)0 h7 H8 e# g; v: _4 U3 h% N
factorial(2) = 2 * factorial(1)
3 U, |/ |- N. z( k* V- z( ufactorial(1) = 1 * factorial(0)$ o1 `5 ~, x6 g) L' |7 t3 w
factorial(0) = 1  # Base case+ d3 `3 f5 @4 r" X! O  L1 I8 }
4 ^1 l) [* ?* r* j# v& w
Then, the results are combined:
" g) ]# p% T- I# H3 g! A9 k' a' P: }9 i4 S2 Q# B5 |  j0 X% A  }

. u2 Z, J- X# E- hfactorial(1) = 1 * 1 = 1+ R0 n' {4 d" _: [
factorial(2) = 2 * 1 = 2
7 d+ s9 [7 {4 U; v$ k4 P* V8 ofactorial(3) = 3 * 2 = 6- b7 c( L5 E3 H
factorial(4) = 4 * 6 = 24* Z& L6 V0 ^1 m5 O8 o& r
factorial(5) = 5 * 24 = 120
, f0 C; K. k; d, d4 b  N- ?3 h- k2 O0 X
Advantages of Recursion0 Q$ r# M9 q) r5 |9 i8 b
! x; B( e  K5 K2 R
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).7 t* N9 ~, ]3 z1 u: I( B4 B/ y; x
9 ?) y/ |" l$ K; h( V) W
    Readability: Recursive code can be more readable and concise compared to iterative solutions.+ ?1 ?2 E, J7 |) C. a6 p. o/ s
0 v; m% B- J5 r8 O7 f
Disadvantages of Recursion$ s8 t+ }7 j3 W) c: u1 z6 G

7 M( {# L; @% I, ]    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
* y, o- E( Q' R* T+ b$ j8 _: ^: ?4 X1 J$ M/ j( p- G) ~5 a
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
' D7 j; h! P3 K1 T/ u7 v; R5 x1 Q6 N) |5 O2 A% e
When to Use Recursion2 [  W; j/ c4 w1 D$ p" T

. ]& A0 O% g  l; I% o$ N* B/ ^    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
) W  z6 i! f# V: U% C6 `8 k% L5 P# f! B2 V
    Problems with a clear base case and recursive case.$ d  K  v/ X  G+ \! U4 z
! i9 z' o3 ^8 ^- ?% A( Y# y
Example: Fibonacci Sequence
% J; x0 ^% ?5 O3 q+ S( ~& h( n" E/ {! l( |1 ]/ |) P" G
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
7 O3 s. I/ w- I% o- f3 p3 ~. [( @$ B5 |( _" y1 h* `
    Base case: fib(0) = 0, fib(1) = 1
5 I$ \0 J; Y; X) e6 ]9 l# L' d
) W5 q( c0 B- a  E2 N$ m8 l    Recursive case: fib(n) = fib(n-1) + fib(n-2)' @4 U: s, q2 d8 Z

$ N& R4 K) H! ?  l( H+ M" y* l/ Y; hpython8 s1 Y8 I5 P7 I( y$ N( d% O
) m4 o9 _9 T' g: r3 a
9 I1 W% e- x, a1 g" i- @
def fibonacci(n):$ j7 l6 S3 m. V) m# {/ u
    # Base cases3 E9 L1 X' h# h9 R& I
    if n == 0:$ i: X2 j' O; m9 S8 b7 }
        return 0! `% t" I* E: ]- n$ V3 V; ]! z) u
    elif n == 1:  g! O# C' Q: J4 V+ [' j7 I5 \
        return 1
/ M. q  a& Z% R* U2 o7 q; V    # Recursive case: L2 B+ i3 `3 V! c
    else:
) p$ y2 `" Z4 \/ A1 J        return fibonacci(n - 1) + fibonacci(n - 2)
: x4 r4 |: _# d9 |5 \8 D) ?# n) S- c/ w% i
# Example usage" t2 @) @3 H' }% e: _
print(fibonacci(6))  # Output: 8+ f# K6 y2 M9 K6 ~4 E! d; q& a8 }

7 g# D  K* X1 [* s+ uTail Recursion4 E  {$ U6 k7 ?" u6 _( |
$ y9 n' c* Z9 @7 P, k6 x( R  J! ]; X
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 ^7 O! `) D: S

8 J6 [; F5 {) h8 z9 S: a& U& zIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://aswetalk.net/bbs/) Powered by Discuz! X3.2