爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
/ q& q8 K5 y# I
& ~! b, D3 P. s/ h' N" |/ T: o解释的不错
+ B" s" ?4 c& G  l$ ~: u
( D# E; ~7 `- Z- L% r递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# |* U3 z+ ?' n: x4 x6 y
, k( m9 f2 A& I2 h' H1 c, y
关键要素
2 \+ h0 Z  o1 d1. **基线条件(Base Case)**! a3 g2 {: s* {( n8 Z
   - 递归终止的条件,防止无限循环1 O0 Y8 O" X' T) G) f: Q5 |" h
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  F$ }9 a% J, S

" |7 D6 L6 J& j% n; [2. **递归条件(Recursive Case)**. @2 }4 I/ z- D: E" y- n1 C
   - 将原问题分解为更小的子问题! B- z8 N  Y5 j; ]+ G, p/ a
   - 例如:n! = n × (n-1)!& D; {8 l3 e! O; C3 j/ p
+ H. Y: W5 o  f$ X, A
经典示例:计算阶乘
) X* z0 e9 n5 A* ~$ T6 |python
7 g9 Y$ H$ H" Z! Adef factorial(n):
9 S  P8 d) E+ }1 F4 a$ W( I6 P    if n == 0:        # 基线条件# Y) q9 ]: p% v# S
        return 1& q4 ]) z/ e3 F
    else:             # 递归条件
* a" ?# Z# q8 v. Q2 j- V, j/ t        return n * factorial(n-1); m4 V. t  I0 f3 d
执行过程(以计算 3! 为例):: L6 S. I" S% X( a2 `
factorial(3)4 o. z* L) S' w  i( Q/ `4 g
3 * factorial(2)
9 R3 K% i- {; U7 ?4 X3 * (2 * factorial(1))
/ W+ z6 X- }2 _2 M3 * (2 * (1 * factorial(0)))) Y# ^* v4 J& n
3 * (2 * (1 * 1)) = 6
; I/ Y: `- b1 z# \8 [! d- W, }' k1 Z5 ?- R
递归思维要点
" E( C2 r, l# ^3 h  O1. **信任递归**:假设子问题已经解决,专注当前层逻辑- i8 S: u! g  d2 j2 ?1 B, K
2. **栈结构**:每次调用都会创建新的栈帧(内存空间), P4 u. E# g3 \6 E$ H) O" R
3. **递推过程**:不断向下分解问题(递)8 s' o9 s' S5 ]
4. **回溯过程**:组合子问题结果返回(归). h; W# o( U2 |8 G! Q" \9 }

! p. A* N% B% _6 H: U 注意事项- |$ X! Q) ?1 r0 w7 {1 W
必须要有终止条件
, m; M4 S! G! w5 ~3 `1 O' M递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* F- y! E* v$ r+ N( P
某些问题用递归更直观(如树遍历),但效率可能不如迭代
1 {, o- A+ H$ [' v! n尾递归优化可以提升效率(但Python不支持)) {6 r, u9 Z% m# u# ?

6 z  A% [( `* g- c; z/ C& | 递归 vs 迭代% K% I4 J# [5 A/ D, b% O
|          | 递归                          | 迭代               |) T) }" n/ w( `% ^1 S
|----------|-----------------------------|------------------|5 ~# S" _. A0 q
| 实现方式    | 函数自调用                        | 循环结构            |: G- l1 Z) ]) i* F  Z
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
/ @$ D' w+ s* @- L# b. {- ^* o' l| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
( D1 Z* R8 R0 k. e) e| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( C9 e3 K7 T/ E( S3 P

: E8 s/ g+ A( V+ ]5 `# w0 z 经典递归应用场景
* ^5 ]0 T* e8 @1 G1. 文件系统遍历(目录树结构)
; H/ m& L5 n: J3 f' f$ T. N2. 快速排序/归并排序算法  r- W, b' `: X
3. 汉诺塔问题- q- w0 V! Y% h5 h/ t$ d# X- O+ s
4. 二叉树遍历(前序/中序/后序)
- F/ a* i: }" i5. 生成所有可能的组合(回溯算法)! |! _" Z, z7 D  q( c2 R. t

7 d2 ]7 d1 h/ T, s, s$ N" w5 _3 F试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,& P' v! U+ t* H* x& R$ ^& ~
我推理机的核心算法应该是二叉树遍历的变种。
5 n9 P$ ?5 T  o0 x: Y另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
6 q# K3 U" ?% E. |' ~$ _) ?( @' m% H: lKey Idea of Recursion) h6 V# B  O) [( l, ^! o$ U8 C
# c  M% ?3 S7 k" t0 n
A recursive function solves a problem by:
, i+ P9 @0 \  O$ p( x  F4 x2 h
& D5 d) }: N, P" F    Breaking the problem into smaller instances of the same problem.
/ i9 ~+ x* B; M" I
. e' c% |( Q  g. j# H$ I3 f    Solving the smallest instance directly (base case).
, s! ]  p  ^+ T9 Q# k: p( I# W1 x: g, f8 B; E: U5 X, n
    Combining the results of smaller instances to solve the larger problem.4 W8 Y) e# F: ]& w) S

8 x3 V9 d& d/ W: L4 Z) t) OComponents of a Recursive Function; j0 t, M/ H( c: i, {9 l

2 p% k& m$ X2 s- z2 `/ Q    Base Case:
7 K+ |5 V5 R/ l8 \7 p  ~' ]! w( U% ~
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
" o4 g) u+ y5 O! X( q. }
/ L0 ]3 M, H! P. N/ Q% z) ?& I5 {        It acts as the stopping condition to prevent infinite recursion.% V, B+ X2 {4 q9 h
, N. S: L2 m' t) t
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
8 M2 U' M5 D$ e9 K& f9 s' y+ F
/ p7 Y7 r0 S( L" h    Recursive Case:: I. I4 c+ J/ i

, e. F4 E! ?# C* H6 P' i1 j        This is where the function calls itself with a smaller or simpler version of the problem.+ I  |( B+ Z3 ?" v1 H4 r

  ]1 i/ ?, M/ g. X        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
9 s* B) ]% C  o. n' d5 A6 o
2 m" g" ]# N$ hExample: Factorial Calculation* V8 H  b4 w& ]4 {5 W
/ L0 K2 n2 ]( N; Z3 @$ ], m
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 M& A- ^+ _3 f3 \- f6 @# D

  X7 N& E9 j; V' X+ f    Base case: 0! = 1
1 U# X- P7 F/ d$ U( A* r. K2 M3 C8 [
    Recursive case: n! = n * (n-1)!- f6 ^, s0 L' ~' ?6 y
. n4 y$ n- z, H9 r
Here’s how it looks in code (Python):4 g- `$ ^2 ^4 ]7 N7 M$ k/ a4 }7 Z
python6 a+ x9 C, }- l: w; z4 u
9 o& s0 y$ i, _: }, S4 P

' K( M, a- i2 w: `def factorial(n):
6 Q3 K2 G5 g) \1 W; s' |, G" \    # Base case0 |2 f$ h- h2 w  S. u
    if n == 0:9 F9 q, S  ^3 a; s# J
        return 1  ~8 I3 {8 w! d2 U
    # Recursive case2 b& y( Z8 @( F4 _& R1 [
    else:
4 U: C& S) {4 |' g* P        return n * factorial(n - 1)  v8 k& q' ]- a  L0 s
6 ?8 C0 O9 T, a! S1 H
# Example usage! k, B, Q" v* X9 y
print(factorial(5))  # Output: 120; j2 h0 O2 U/ b" s5 Q1 ]  I

1 X0 C' D. x$ B; I. b5 l6 `+ WHow Recursion Works
: X. l# [4 m3 g5 B7 \
. p; T9 {4 G8 T0 [+ ^# g    The function keeps calling itself with smaller inputs until it reaches the base case.
" {  f0 O5 p3 D7 T7 O7 E: I+ R* |$ n2 ^
% A: ~! g+ D& u    Once the base case is reached, the function starts returning values back up the call stack.
' K" {* c6 U4 T0 N  ~8 @4 m# ^' ]; f! P. m
    These returned values are combined to produce the final result.
1 o2 |2 X3 h: P7 x' e
/ N* l; M0 z7 lFor factorial(5):) s& @! E0 Y" ]" |

1 _+ z; P, x) B+ b- r
1 M8 c! Q' K" K1 S* Y1 B0 V4 Ffactorial(5) = 5 * factorial(4)
1 Z4 q% d; {3 P. ]# C/ U( |factorial(4) = 4 * factorial(3)
" n7 P6 C7 ]9 h3 qfactorial(3) = 3 * factorial(2)# V! y5 I, d% o& G" t" N
factorial(2) = 2 * factorial(1)# X: k" ~6 l& v6 L* b
factorial(1) = 1 * factorial(0)+ \- o* d$ y* v6 b, x% P
factorial(0) = 1  # Base case% u* u4 o' n$ D9 w; r  @! i* ]
, m1 w2 q: q" o+ _' h* ]
Then, the results are combined:* Y* ]* y  q- f  `

. R  f. x" r; n  g  ^
; v' h5 `* d& n+ R& \. P, J- ofactorial(1) = 1 * 1 = 1
; ?- n& ~8 i, {6 G* G. x  dfactorial(2) = 2 * 1 = 2$ r/ W+ N$ w( n7 G
factorial(3) = 3 * 2 = 67 o1 t; ^2 Q3 `. U- B, \
factorial(4) = 4 * 6 = 24
# I  m& v$ y4 h9 Z3 a: Wfactorial(5) = 5 * 24 = 120
! m* k1 L# C3 ]8 q% \% I* W8 @% ]% _
Advantages of Recursion; I, Z" ]! e$ ]
& L8 Y+ s% }' T) J
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).( v) c7 T7 h& l8 c2 u8 T( j
) H! s+ t% Y- R: d0 O
    Readability: Recursive code can be more readable and concise compared to iterative solutions.2 c; }6 B$ v! m- y$ o/ U5 b

! E( \. l$ z6 N% c3 D( EDisadvantages of Recursion3 m+ g; U7 z+ X4 m. u
) ^1 O' n) Z4 e, R, g$ \2 W
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
0 H$ w% \" i4 q7 T/ w* v3 a* |8 ~; |4 D3 e
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).7 y/ R  a( u8 N; w4 y

8 I- e/ s( X" o. D; R0 k0 cWhen to Use Recursion
, ?' p& Q4 d3 p" j- l+ z/ J3 I$ p, S7 O4 t; L
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
% d% \1 @3 N( k$ ^
9 W# f% |4 F# p0 t+ }8 ~4 l    Problems with a clear base case and recursive case.) h( x* ]$ P9 t5 t  }' b( x5 w
6 o# H3 H/ V5 Z& r5 u+ S1 f! B
Example: Fibonacci Sequence0 `1 B3 C- ]$ F4 [- _0 K, j
8 T/ _3 J# R) o" P( J8 X2 i1 P# ?
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
- Z: E2 I/ R9 {8 l) m) \" W
- K% X* S+ r4 u9 v6 w    Base case: fib(0) = 0, fib(1) = 1
; c( I9 j' r' E9 R) f3 ]# a
' V& p* }8 V# L6 ]    Recursive case: fib(n) = fib(n-1) + fib(n-2)' n' \, c) k) Q, p
# V: z- A) ^" }# S! X  P( x) j
python- x2 b% R0 w( ]+ i1 p4 h' v2 B

, G. |" e4 d5 S& @7 i
1 ]4 ?. R+ N# i# adef fibonacci(n):. M. t) E) D" d5 p% V
    # Base cases
' U8 L  ]: h$ b8 x* ]) R    if n == 0:
8 Y% |7 }6 s$ k7 w2 ?1 R$ C* \        return 00 G- I0 I8 Y1 \6 k
    elif n == 1:# M' p' ~$ X# s& q( E7 m
        return 1' W( Z0 E- N6 z# N  b+ T; Z# [+ q0 X5 L
    # Recursive case$ q3 F+ X% c: J9 J
    else:
# o- Y1 q  K4 e        return fibonacci(n - 1) + fibonacci(n - 2)
1 S! D3 X' I$ }. `$ \+ B
' i" E9 k5 R; `+ o$ D+ y- l+ `# Example usage$ O8 f$ B! v/ w' U( Z
print(fibonacci(6))  # Output: 8
  I/ V, R' `  Z# ]
# Y, X) o6 ^, jTail Recursion0 ?$ V" @/ i* A3 F- Q, P4 L  F
9 V. e( @& V8 X; B
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).4 \- {# A- q2 ?8 O

4 ]. q! z% \) q2 j0 `( f: e$ DIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://aswetalk.net/bbs/) Powered by Discuz! X3.2