标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 7 C2 E1 w2 p/ A$ Z0 X. T . a! L5 r Z- t8 D4 `! s解释的不错$ G Z( A, v- a; |
* N, ^8 n* \$ \- M5 o5 K& t! x
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。" L/ i5 X% H; `% t7 H
) K2 x: ^1 Q3 C S, I 关键要素5 u5 @7 B( C3 T
1. **基线条件(Base Case)**1 E- ?; r4 d. }! q
- 递归终止的条件,防止无限循环7 d! j/ d, H* W8 n$ x
- 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& U- _% g. i* W, e# n
! p+ {, B( g( Q, h2. **递归条件(Recursive Case)** 4 B+ q% R3 w2 I - 将原问题分解为更小的子问题 # F/ Y+ |: A1 _& w+ v7 I" s - 例如:n! = n × (n-1)! 4 v) X# J [2 i% |( J0 d, j & N' B2 y J5 E6 q6 O 经典示例:计算阶乘% k1 C4 T. |$ G: X" g3 s0 A" L L+ a
python - u6 W& N; o1 ]# Y/ Bdef factorial(n):, G1 R5 z; k0 S/ Z) x
if n == 0: # 基线条件& @ O! V) z' ~3 i: a. ^8 j
return 1! }# g/ d6 N' g9 b
else: # 递归条件) M0 Z' I: F4 ]* X4 E" U) }
return n * factorial(n-1)6 z" ]# n4 _" G, n$ X
执行过程(以计算 3! 为例):# V+ A, k6 I1 ?6 i A3 G3 M
factorial(3). ?( X+ o) M* r/ M7 a
3 * factorial(2) 1 l) G8 J3 t$ J1 x3 * (2 * factorial(1))3 I/ t0 S& }- R' c0 \
3 * (2 * (1 * factorial(0))) ( S7 M8 d, _' L3 * (2 * (1 * 1)) = 6 7 ~7 [& e! @% q $ e4 B% k0 n2 L* P1 Z9 e 递归思维要点 # K, b+ @6 R4 M$ z0 X1. **信任递归**:假设子问题已经解决,专注当前层逻辑 ) D* W7 O2 v ?; a* g: O1 n$ K [3 y! U2. **栈结构**:每次调用都会创建新的栈帧(内存空间) ) v" f% P, N5 ^* r2 Q/ j8 ]1 n5 a3. **递推过程**:不断向下分解问题(递)4 m- e+ `$ O& N
4. **回溯过程**:组合子问题结果返回(归) 1 v7 g; ^' A4 l8 w7 D2 l . O Z8 N8 N/ o8 F+ B 注意事项" v; i4 l2 B! T/ l# |& [
必须要有终止条件- Z t7 y' m9 u$ A
递归深度过大可能导致栈溢出(Python默认递归深度约1000层) ! h0 z( H- t' v Q) ~9 B某些问题用递归更直观(如树遍历),但效率可能不如迭代 ' n( q ^ w8 e x! |2 q2 h尾递归优化可以提升效率(但Python不支持) : K1 G* X/ R; W+ q. k# ~# s5 v6 ~+ `$ |% S! a& ?" q V5 ?
递归 vs 迭代 & ]7 |1 i3 X: M| | 递归 | 迭代 |8 W, i: ^8 \. ~) D1 j$ x
|----------|-----------------------------|------------------|: j6 ]- u& \+ P
| 实现方式 | 函数自调用 | 循环结构 | # f" [4 z- W& }; X| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |( X& |3 g; K! p! {1 b
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | 7 X) g. _' W& M6 f- K( [| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | % L/ [( A6 J1 q ~; l9 r: r' R9 p' T& \2 u; h4 V
经典递归应用场景# x( `2 z$ @7 v. X) `0 P, ]$ q
1. 文件系统遍历(目录树结构)2 `) G, A7 p7 u2 u/ W
2. 快速排序/归并排序算法 0 M8 I6 n3 T3 E1 T3. 汉诺塔问题 , Y" J( A4 l6 [+ E4. 二叉树遍历(前序/中序/后序), t. ], R" ^, y& h, S% Q
5. 生成所有可能的组合(回溯算法) 6 H# Z' E! A) M# K8 d1 e5 J. M8 M7 [& S `
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,0 O- M7 C$ |2 }( S
我推理机的核心算法应该是二叉树遍历的变种。 & Q- m, ^# E6 A$ D% D" s( Q# k- {. B另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. V# J% e6 o% G3 c
Key Idea of Recursion 6 O+ Q2 h5 a. \) ]. M( ]1 M7 ]0 N" s2 o8 |( ]$ a# q, \
A recursive function solves a problem by:0 ^! e8 H0 b8 j+ y( [" F
! V% W7 w% ]( A0 a7 c
Breaking the problem into smaller instances of the same problem.2 A# F0 N6 ~2 i: ]2 z% x
( t* r9 x+ e& o* j% }) }
Solving the smallest instance directly (base case). / ]+ [; o. n6 J9 P' t- A \* z S ~( @- D* p8 ?, J6 [. U Combining the results of smaller instances to solve the larger problem.$ w6 ?; R. A' N! B; M
5 D& r7 W7 [; w1 K
Components of a Recursive Function - w- D+ d5 w. d+ V + s$ S* g2 l. {/ v4 t. X, b Base Case:) ^, [ j; [5 S6 M- v2 c
7 b/ _( o* |: |' k# y8 d ?2 y
This is the simplest, smallest instance of the problem that can be solved directly without further recursion. y5 s7 Q9 R! {- v7 F9 ^: x, t% O9 @% b. y; ~0 ^
It acts as the stopping condition to prevent infinite recursion.! I4 @ K. D9 A2 r# j- l. e
5 N' C& o9 A8 X9 h( e* A. a Example: In calculating the factorial of a number, the base case is factorial(0) = 1.+ E6 ^, z. L+ ^1 B* g
6 X: O$ D( M+ z( A3 [4 K Recursive Case: ?) P" _: v: S0 W5 d3 C8 D
9 ^/ |6 @; Q! i( ]9 U( J
This is where the function calls itself with a smaller or simpler version of the problem. 6 n1 L8 ~( v& g7 q2 }1 }9 q1 G4 a) e; d! R
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). ( ^" r6 V9 C: Y- C8 [( q: O, ^) Z! c5 G& z V6 U5 ]8 D) z
Example: Factorial Calculation 8 Y$ \, Q5 e2 w9 C3 ^+ [$ P% u3 z! M% ^, {/ d N( D6 X: Y! N% p
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: 0 T2 \4 `& x- p h( L+ h6 L; r / l5 [0 d, t9 a" U3 l# g" p Base case: 0! = 10 |7 o4 [) _/ K: E4 Q7 o
# i+ o* Q9 @% o9 f, n3 L v0 A# C6 B
Recursive case: n! = n * (n-1)! : s4 O9 f8 M' i/ [6 w5 i* r- K# y# o# b
Here’s how it looks in code (Python): 0 s% _ g! G1 m4 k: Spython ; l4 c4 q0 j- H0 A" e+ S' S. B0 {- ^* p5 z- g1 P' t% b, o* T
5 k' F1 c/ W5 Zdef factorial(n): ) J ~. ~- D2 Q% _, h/ J, e) e # Base case/ w& a3 W1 P# D/ i) F" h. u
if n == 0: 4 H A5 `: B# V& N; Q return 1+ Z% D$ _7 v7 N
# Recursive case, A' d/ q5 x9 F, M
else:4 A% N1 ?# f0 w: f- `
return n * factorial(n - 1)) ~5 s$ _ P% G" W
5 d3 H4 K2 [! O- l, h
# Example usage" e6 h4 L; F! G* {
print(factorial(5)) # Output: 120 4 W# x" k% \ G1 }. E+ I2 O- p+ Y# @# T
How Recursion Works 9 `6 ^' F* D0 ]+ I 7 \; m2 W+ f* z+ M f4 \/ H The function keeps calling itself with smaller inputs until it reaches the base case. 2 ` Q$ U. e; H5 m! m& N( L$ U( f5 w6 X( C5 r3 g
Once the base case is reached, the function starts returning values back up the call stack.: u* G, w2 p" @/ Y
3 ^. k! Y! m& {- L; I: m* y
These returned values are combined to produce the final result.% C8 n( u" E' t; D
" M* e' x. J2 b4 ]5 A6 K- b0 W
For factorial(5): 4 V% ~9 E0 b5 e/ X / R5 w( @. O) n1 w Z; p+ V7 g1 R+ l& z( B5 @, d
factorial(5) = 5 * factorial(4) / V* q1 D, l2 k( D, xfactorial(4) = 4 * factorial(3)9 m# ` M# Z) Y! |% f5 _
factorial(3) = 3 * factorial(2). F9 m$ S0 r8 C: d
factorial(2) = 2 * factorial(1)" D ~2 S! x4 A4 j n5 w
factorial(1) = 1 * factorial(0) l- Q3 E: o, d& `2 \
factorial(0) = 1 # Base case ! L# k' G2 N6 L; c ( U" t5 Y" G0 S; Q- K& vThen, the results are combined:8 H, |0 X1 u: s6 o
* |$ c% ]4 D8 b6 P Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).. A4 R. q4 k: x% b
' p2 d4 g& S# r1 a) L
Readability: Recursive code can be more readable and concise compared to iterative solutions. . i2 X1 R! S# s, ~- [4 Q* G2 z, ~1 y7 C( S
Disadvantages of Recursion 6 g' Y$ K8 g* S4 ~6 C& n) E/ u$ B& `7 E% u
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. * I' l+ ^8 t. t# a ]# c/ k3 _- }$ Q$ J* G8 N2 B4 J( K( y5 o
Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). : T0 V, N% h& E' h9 p( Y7 f2 b: d8 W5 _1 O3 X) d
When to Use Recursion8 z/ M* @8 @# S' C! ]+ A$ z$ o; x
+ m8 |' O# K% U/ b! n" z) r Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). 9 ^0 Y, z" g+ `/ E - Y, m9 V- @* m" i, f$ } Problems with a clear base case and recursive case. . x2 m# z( z% H2 a3 `/ Q% X. D% c" Z + Z/ }, Y& x9 z. H: [+ WExample: Fibonacci Sequence* t B' z5 g/ J* h% Z2 v
8 _/ _. E! {2 B3 eThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: * `; T" D" _& v2 g/ ^4 h 4 e9 X/ a# d% [8 H Base case: fib(0) = 0, fib(1) = 1 X& y7 c1 l, X$ n9 l5 c9 I& s! _8 j6 [% a
Recursive case: fib(n) = fib(n-1) + fib(n-2); a3 D' B/ F1 o& j- U
9 R, |" T/ f/ z- m' d& b1 `; k! e6 B, Ppython; N3 j0 a/ W9 I3 K6 A1 t9 t
# B6 x' D! J+ g. I( b. F& _
% C" _. U( W, g2 Y" s1 h
def fibonacci(n):* S3 i2 B% s$ K+ Y: o( N- c( B# T
# Base cases# \0 _, I( x5 R
if n == 0:/ Q0 p8 L+ C# P+ ~( }
return 0 | a! t) V$ }* v3 f( f, S( A
elif n == 1:1 P* d0 q! ^# t, d- H+ }
return 1 6 _, K6 X' t. T7 B, r# } # Recursive case3 U. z5 K4 A3 h; `- Q; N
else: 5 @3 }& L _3 P: W. H: ~7 e return fibonacci(n - 1) + fibonacci(n - 2) ( J; h7 _5 p: c+ z+ p: G3 V) {! A, X3 z
# Example usage8 G$ \8 E1 W/ Y. ~
print(fibonacci(6)) # Output: 8 0 z6 m; F6 S$ ]% P! A1 U) }. Q, V N8 C8 q& j7 h1 c* W' _( s
Tail Recursion % d8 \) p" B0 G* C/ R8 h0 O4 S5 r3 J- |2 v. J: P+ `' Q
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).% w: z+ j0 n0 J) S; V1 U; C& [ d
4 @5 y' c: ~4 ^' S
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。