爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
* v. f: s: q  q( E0 c" _' `3 B- G8 U- |8 n& Y( j
解释的不错
5 g8 t/ ~6 u4 H# p, E* v' L3 c) d; G6 \+ Z3 ?* \
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
' @! ]- m  H7 K" T7 i% {5 V5 [, m
0 |8 ^1 }$ ]/ v) O4 G8 T# r 关键要素
% Y% `: ]! P+ G- |* y" e" J+ A/ f2 q1. **基线条件(Base Case)**) s: i+ d; H1 d' e# o( F" r- U
   - 递归终止的条件,防止无限循环) o3 T& I4 w. Y1 |$ O& H
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
4 p, K! z- z4 L
' Q! L% ~6 ]) K' ]5 i7 S* q2. **递归条件(Recursive Case)**
) @# _0 b4 A5 h$ T( |3 c9 T2 t   - 将原问题分解为更小的子问题+ p0 S: u/ @* S+ h& R
   - 例如:n! = n × (n-1)!# |( c( _3 H, i/ y% B' R3 d

+ r* t- E- c/ y- f& z. w 经典示例:计算阶乘
9 N/ g! R* Y9 W. a% D0 N* hpython6 l2 C. l# g+ k2 S8 H
def factorial(n):6 j: F4 s4 k" Y1 p& x' k9 T
    if n == 0:        # 基线条件
( X  Q- X, _! l. @- F        return 1
( E, I. |! s/ c  f: a    else:             # 递归条件2 y: j, {& k6 i5 k
        return n * factorial(n-1)
5 g+ L/ L# \3 O( @执行过程(以计算 3! 为例):/ n' ?5 `8 s4 w/ r- ?( ~
factorial(3)# C8 D* f( C; a( h4 M
3 * factorial(2)
5 i/ d" e7 \+ U6 I/ H. M. O3 * (2 * factorial(1))' r0 ?: I0 _7 Z! T+ S
3 * (2 * (1 * factorial(0)))
& w. {: t, J4 j  u  E3 * (2 * (1 * 1)) = 6
# N6 n5 R: a7 R& |% g* {9 G# O* b. x4 m$ D  Q+ `% U
递归思维要点8 P) y' Y5 f' \8 O- i" ~  J
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
9 x$ X' t9 V/ O2 v2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
7 \0 N( r8 ~9 S7 D' w9 ^" d  t3. **递推过程**:不断向下分解问题(递)
; n& F& F; _: w# G4. **回溯过程**:组合子问题结果返回(归)
/ E& K6 I; I) p, J1 N4 J: g
/ ]* J, @9 x" T% P- Z8 M 注意事项
# P/ \  \7 e$ p0 Q  n  H* ~必须要有终止条件
4 z! K4 j' x( {递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 T/ S" w  `0 x5 d) h6 V
某些问题用递归更直观(如树遍历),但效率可能不如迭代- Y) ^/ t# t8 M" r
尾递归优化可以提升效率(但Python不支持)
$ ]( V7 \+ X# q1 x# n
# W3 Q9 j2 ^, q2 n" l2 c2 d6 P, U 递归 vs 迭代
1 }0 L+ c( a, g( t3 }' y+ V0 d|          | 递归                          | 迭代               |
3 c- F2 z  s% d/ X|----------|-----------------------------|------------------|
7 ~$ L" E$ C: @5 V& d2 ^| 实现方式    | 函数自调用                        | 循环结构            |+ M" }  z! a+ ]- V) P0 g$ r
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
; }5 e5 r/ V. U* h  y) b, Q& @: N1 i, || 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |) ^, d, E+ P$ P5 K2 [% l
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |$ {) [: v# d( D" o& U" i

9 a- k7 \( n# v 经典递归应用场景
: J4 H5 _; k* c* e1. 文件系统遍历(目录树结构)5 x) W  p1 r# M, K
2. 快速排序/归并排序算法+ u: b9 S* b' a3 p; L0 F
3. 汉诺塔问题4 D3 Z5 C  y# S. a. t0 i; ?, ^/ |
4. 二叉树遍历(前序/中序/后序)- H+ V# w) j$ _
5. 生成所有可能的组合(回溯算法)1 |: s$ I, K2 y6 K" @$ v5 d  K
! R' T6 m* C: {, F( z/ h
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. H' b$ X8 v" E/ z" U
我推理机的核心算法应该是二叉树遍历的变种。
! D4 L' b3 d/ y  f( F另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:/ M4 u* ~- I  j5 M' _
Key Idea of Recursion9 c- M+ I6 G0 F: O( \

# ?! S# _. ?! o$ ~' e) |" F4 `; kA recursive function solves a problem by:) x0 X2 ]% w6 |* X4 r( K
  ~3 U0 c: ?3 w1 p6 `9 Z
    Breaking the problem into smaller instances of the same problem.
; }. i, [' s4 i" `3 X3 k' C+ s- Z9 b8 e
    Solving the smallest instance directly (base case).' a% Z, _" o8 b1 `8 s" o

- V: m" ~( B1 ^2 [! ?6 b    Combining the results of smaller instances to solve the larger problem.- G/ O) ~0 p6 w- s
5 F8 z' a/ B1 Q& v) r4 r3 d
Components of a Recursive Function: Q, Y" Q6 S& }

5 T( g8 W0 J8 I, {' |9 ?$ k! S    Base Case:6 d$ E- C5 {4 E* o% k0 Z4 ]( c
( O& ?) `' O# L# ^  y! ?
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
! T7 g9 j7 r# M$ k" u" h4 k
+ @4 k+ Z3 d. p* r: z        It acts as the stopping condition to prevent infinite recursion.# v! ]& V3 v" l& ?. M

3 r, [7 G5 }( w% X0 `5 w        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.( l4 b/ ^+ A) f. }/ V
7 `, f( ]- J) u& y2 ~8 d
    Recursive Case:% {6 P+ j5 M- a# i5 l' c( s
; r% H# I8 `0 H7 X9 I, [- E
        This is where the function calls itself with a smaller or simpler version of the problem.
* Y0 E2 `0 z  @" \; L* N% y$ ?- e' j' \6 B1 J$ ~0 ?& b. R* M
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
4 O) P8 a; ?6 n3 s6 [8 _# d9 y) f+ w1 F& B& ^# Z" E% ~7 O
Example: Factorial Calculation
; B4 V& H2 a; s6 p
- r1 `5 z2 C  v% @$ aThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
- `# C6 ^1 O: d6 X0 I* v
, t1 e; a- \* U3 V) Q4 {    Base case: 0! = 1
1 J7 M7 {, o! |# b- a- g# g9 _" }, K& I1 a1 z
    Recursive case: n! = n * (n-1)!
- M. M8 C! }6 y8 h: ]2 _) x6 |! b4 O8 d' g% B! B9 N
Here’s how it looks in code (Python):
5 E/ x& N! o; p( upython" D9 q# Y# y) D$ M0 P, a: O

* b' L8 c* q: h7 S0 o1 \" M9 y
0 l' `2 N; m; u2 x# qdef factorial(n):# p7 A; T2 E& a, s4 R+ e
    # Base case
& s4 h. `7 J# r6 O    if n == 0:* [( m1 i  d% l# e9 j) N
        return 18 n7 t6 _, |  W3 r) X& `: `
    # Recursive case
% D' N2 z6 @. @5 a* R4 S/ d& I    else:
3 n( ^% b1 \5 ~& U% l7 T0 R( \6 _        return n * factorial(n - 1)0 a; {/ m6 D' g4 h4 l; A& @
9 [) A- d5 K. w- l
# Example usage3 g0 U  }( G- d7 G6 G2 T* N$ `# _
print(factorial(5))  # Output: 120
+ V% ^1 `8 L; D8 }$ q5 t- E; M
6 g4 o: @/ K$ THow Recursion Works
. _8 K8 }+ y7 [& f& K8 n1 R/ M  K6 |% k* r* I% Q0 w- s& U
    The function keeps calling itself with smaller inputs until it reaches the base case.+ ]9 z, o6 E) o( ?# ~8 R

3 L$ H" u* W$ S. K/ }    Once the base case is reached, the function starts returning values back up the call stack.4 ]3 A% h5 r3 \6 X$ C" ^
+ v; G% }3 b0 ^0 K- n0 t: F# O
    These returned values are combined to produce the final result.* z8 R  e) x. R5 L3 i
: O& J1 u' O3 l# O* f  T
For factorial(5):
% g6 G4 e! v: s5 z' ]5 ^/ G' y' Z- P  J
0 v8 l2 D6 F) Y9 K- u
factorial(5) = 5 * factorial(4)# v7 p/ g5 i" }. E8 P$ k4 A
factorial(4) = 4 * factorial(3)
+ m% Y9 r6 L4 |) W/ }! q2 x% L- Wfactorial(3) = 3 * factorial(2)
) B* L: [# ^, Y% c, C. [5 Gfactorial(2) = 2 * factorial(1)
) n: M' t1 G# ffactorial(1) = 1 * factorial(0)3 q" _& P: x) M
factorial(0) = 1  # Base case0 Z$ S  j% P# N- }, T4 {
% f5 D! @5 r1 H
Then, the results are combined:# o1 M$ p  H- j; _' O

7 g4 A0 L& m) W2 H0 _/ c( M, ]1 U5 p$ b3 k5 j3 n
factorial(1) = 1 * 1 = 16 h/ J2 X' A2 v  f: \: H
factorial(2) = 2 * 1 = 24 ?9 N. j0 L# y5 C
factorial(3) = 3 * 2 = 6" U. h; I8 _/ L: g7 q1 @' H, V
factorial(4) = 4 * 6 = 249 r6 f4 {! k7 `  U
factorial(5) = 5 * 24 = 120! A) m/ j: H: D
& N8 Q' i7 {  p0 ?3 b
Advantages of Recursion
4 P; Q) M* s5 D6 a
- a! |  H3 D/ M7 K" E# D    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
0 K$ @, E& d. P" i) v4 k& Z. v3 o4 L$ J0 P" @6 ~2 n. W5 E# L
    Readability: Recursive code can be more readable and concise compared to iterative solutions.
, J, {, c' }1 ]5 o; {- v: R/ g! _1 N9 `% ~# d% S
Disadvantages of Recursion
9 @$ z. P: Z; j6 A+ \+ I' c
5 i# C$ m" {2 v    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 v0 N' f: D7 `& c+ G5 a

. l. h% {$ [1 S0 ?6 m+ c# I- s0 C    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).  {/ E0 ^- `3 j- I# h
1 B  l  A: J. @% V. h6 u
When to Use Recursion
# b* _, u# `% N. a+ f- \9 K
: B) F9 K( O' {4 S; Z/ r4 ~; z    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).9 Z) s9 o3 r/ |' L

( x0 d9 G4 c* Z+ H+ S: l    Problems with a clear base case and recursive case.* l& v- g! s' D; h& L! K. Q
" s8 W, y5 O5 v+ x$ z
Example: Fibonacci Sequence
+ t! D8 f) _9 K4 W& b7 n1 y4 M, K$ ~5 k
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
# m5 Z9 d0 K, t  y# L# Q7 {6 a+ v
3 M, h" k( Z; B0 l    Base case: fib(0) = 0, fib(1) = 1
3 A3 L/ I( T4 r& I- q8 G; R
4 O0 B" G  V6 x! Z6 j    Recursive case: fib(n) = fib(n-1) + fib(n-2)
) a! k' e: A9 {% o; ~$ X
  {7 X( t% h6 ?" Bpython
% T- @7 W7 i% |1 y% V$ T1 d) J. X2 T
+ j0 w0 p* X) ^4 w* T, E& |
$ s! M6 K) K0 v4 L) W$ Qdef fibonacci(n):2 e: q4 B0 Y( t' i
    # Base cases
9 [! g! g5 E# s6 w4 q    if n == 0:) C4 E% r  \3 B! \
        return 0
# s5 ?; w7 C7 E1 E0 T  a    elif n == 1:
1 x; B7 k  q, t6 m" C# c        return 19 d' \& R: t, t' g8 g6 p
    # Recursive case
4 D) \5 U6 S  x4 \2 q: H    else:
" ^0 o0 \9 }5 V) {/ `        return fibonacci(n - 1) + fibonacci(n - 2)
: O; V* W6 s. Z  N5 b0 r) g
0 J5 [- k" @8 M7 g* y  S# Example usage
) j0 P( b5 S* m/ q. fprint(fibonacci(6))  # Output: 86 X6 ^2 \: n/ X) D2 |

* g/ l  w' C4 U! T4 t& gTail Recursion
3 k% ]7 ^  v! e: ~* h0 ]4 z) v
# z* i" ]0 Z/ f( F6 q8 o/ ~Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
7 N# a# }# |" q4 q* r
2 N& ]& y* Q! {5 Y. G) ~; F8 VIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://aswetalk.net/bbs/) Powered by Discuz! X3.2