爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
  \+ Y1 t4 o. C5 U7 R0 w* d3 n, m, v: ~9 Z
解释的不错9 o; D/ ^! L5 J( \

/ Q1 X) I, x$ g! F递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
( K1 @3 n! {+ H5 A, j1 x/ [2 X1 v
关键要素  [6 X- K+ A3 R" H, r7 r( l, g
1. **基线条件(Base Case)**) u' t! B4 w. q' c/ z
   - 递归终止的条件,防止无限循环. N. [, N# r: p& U
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, @+ X/ e7 H5 S* f# L

/ y6 G$ i0 S5 J. [0 f' _6 @/ t2. **递归条件(Recursive Case)**
# l- O7 P! t# {) b" a   - 将原问题分解为更小的子问题
/ \. ?. k: E( Z4 e( o) o   - 例如:n! = n × (n-1)!4 v8 s- G! l# ^5 z4 F) ^- o
8 H7 N) B7 y3 ]9 w+ K7 S6 [
经典示例:计算阶乘
' G3 F: N  Q* k- [& V6 x1 Fpython" v+ p+ b& b. y3 D% b# L
def factorial(n):3 ~  Z# Q9 X9 y& i( a. N
    if n == 0:        # 基线条件/ l9 z6 D8 Q, h$ Y* S
        return 1$ `5 x1 ]( R7 q( T3 T& \! \& u
    else:             # 递归条件
( G9 W7 t2 P/ s) I: x& o        return n * factorial(n-1)
% N- I) a+ r! P1 V9 q5 U执行过程(以计算 3! 为例):2 y6 ^; C. g- O5 }  }* r1 `; m5 e
factorial(3)
+ r2 p8 Y! x" p# F1 D( q  K3 * factorial(2)
- E# N9 E1 f# W% y3 I% w3 * (2 * factorial(1))
2 x2 d! |2 p5 w" O# f5 `2 S8 M# u3 * (2 * (1 * factorial(0)))
+ r& r6 L0 D4 \1 B3 * (2 * (1 * 1)) = 6# S" Z) o8 V  R; i
# Q' s8 y( @4 }! O% L# E8 O
递归思维要点2 {- |" U8 `+ s1 m7 ~' F
1. **信任递归**:假设子问题已经解决,专注当前层逻辑9 H5 l, n  C3 H6 d
2. **栈结构**:每次调用都会创建新的栈帧(内存空间). P( t2 @5 A2 K! A7 h
3. **递推过程**:不断向下分解问题(递)
- V" Q# U; N9 ^4. **回溯过程**:组合子问题结果返回(归)
) H8 P" ]7 O1 t. h% P7 \# d7 u( ^6 g/ z3 W' W& U
注意事项
0 A3 z) R, ]" R$ O* E  |必须要有终止条件
/ C" B4 \! C) x1 n! r递归深度过大可能导致栈溢出(Python默认递归深度约1000层)" S+ k! e3 c5 T+ z/ e
某些问题用递归更直观(如树遍历),但效率可能不如迭代
- t+ p: E3 U7 t$ L# ]尾递归优化可以提升效率(但Python不支持)
4 `2 \- x5 N1 b8 p9 e& u' M$ L; J; t3 l/ W1 ^+ ]; R
递归 vs 迭代+ }9 h5 L( a) F
|          | 递归                          | 迭代               |' f  k- c( P, r
|----------|-----------------------------|------------------|
8 O6 g4 @) g5 h1 A2 P* b| 实现方式    | 函数自调用                        | 循环结构            |. r  I; S! d+ i: l3 q
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
+ X5 e+ Z8 [5 y| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |7 b( j" u% d! }( Q# Q, }3 ?
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( o* {- C: M# y- V1 T. U
' ]. o9 t; p$ X, a8 B
经典递归应用场景
7 o  |: Y1 y8 e, t  W* R  G- i1. 文件系统遍历(目录树结构)
5 l5 k- m( n$ y* m, U& w0 T  }2. 快速排序/归并排序算法5 H# i  o# b5 e9 B7 W
3. 汉诺塔问题
, l1 w: [" V( E2 g4. 二叉树遍历(前序/中序/后序)
  n2 O7 ]( k1 }& v  y5. 生成所有可能的组合(回溯算法)
( m, F/ s8 K- a3 B
9 A7 J& Q, P- G) L9 s5 H' x( P试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
% i: z2 q$ p7 t, W我推理机的核心算法应该是二叉树遍历的变种。3 U0 _* Q% r8 R  E
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:5 Z& P7 i  `" Z. z; L2 r5 U4 T# @
Key Idea of Recursion" H% r) O. D2 v. \5 G! _

0 Q! i2 C2 `  ^$ PA recursive function solves a problem by:
) k8 t: I: h& W) x" `- R: d) e0 C
    Breaking the problem into smaller instances of the same problem.
  `4 p3 C1 ^7 G; t' X$ U* H; a: c. \
    Solving the smallest instance directly (base case).1 ~( [" d, W' u8 G5 q8 z# r
& ]- q# w9 }8 ^: n6 y$ C- I' k5 i5 B
    Combining the results of smaller instances to solve the larger problem.
8 i. U! g: z$ _
0 N. F$ V( Z+ l' `Components of a Recursive Function
# J4 g. F4 N  a- y: g) z9 V8 ]! J3 e
    Base Case:
' M) }+ B8 k# O" t; W
9 V% P6 s5 P& t  H        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
. |% _4 L0 D) d$ h1 ]9 w8 `
9 g; }* X5 `5 _        It acts as the stopping condition to prevent infinite recursion.* T8 |/ M( s; [
+ ~+ I2 g! K% k4 z0 h) \1 v
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.8 u8 E( E9 X1 u0 N$ a: F  _0 Z/ [

) O1 S- C9 K9 ~+ x4 y6 d1 H    Recursive Case:
& h- ]( w) Y- [: C& X/ H7 H$ P6 f5 f4 b9 U: s2 u7 X6 V
        This is where the function calls itself with a smaller or simpler version of the problem.
* }8 ?/ o$ Z  ^4 D0 D1 R' k' r" w; D2 N# B5 L9 u
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ x# i$ ]+ T# I6 ?& Q, x, V& v

  e# G. v$ N8 T/ Q5 P) ?7 lExample: Factorial Calculation
  h, i8 l1 @8 F" Q: U$ o+ K9 L$ S9 ^5 c4 Y! q
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
) Y5 ?8 h' @1 U6 c$ R( {3 T  C# a* s3 ~$ ^9 j' u
    Base case: 0! = 1
2 P: c$ a! V- {# C
! i: Q( }$ t* [! s    Recursive case: n! = n * (n-1)!# B6 C) I* M1 L/ [

. ]7 B1 |+ o( F& OHere’s how it looks in code (Python):& F0 z) C* Y" c) {
python
% ~7 p6 d1 n+ {: k- ?& x1 P# n6 K- }
0 I  [( `' D% V
( Q+ S8 B0 t) x% ?3 Z) Cdef factorial(n):
3 W) H7 [- v( N7 U    # Base case
$ i# a( m% @- n" F( n    if n == 0:. m5 o2 z, }6 R! G9 L# [7 m0 N& J0 I
        return 1
- A. w9 c2 s! M' O3 @9 ], j    # Recursive case
$ m- O: `7 F0 |0 S    else:# j1 W( m* g5 O/ }
        return n * factorial(n - 1)
( z- Z+ M) e' ?4 g% i: k1 I' F0 k
* d4 d: f/ X; `* c5 ^# Example usage
( Z$ Z; G' H" Cprint(factorial(5))  # Output: 120
7 q3 \, d% ~7 u
# X, B" @3 Q. F7 T1 o! UHow Recursion Works
0 z* ]/ ?0 x" \6 M( @$ S' |/ X) W$ ^" T; @8 T( [2 B
    The function keeps calling itself with smaller inputs until it reaches the base case.
' x  l/ n& q) _2 f. f/ e: Y& D4 M% h( |0 t
    Once the base case is reached, the function starts returning values back up the call stack.
& T5 w2 C- x4 I2 X9 E9 B' I0 a
; `5 R& @4 w$ _. \. }# D    These returned values are combined to produce the final result.4 C# I% G, @+ J& j7 r, C: j
% C; b# f, T1 ?$ e
For factorial(5):
3 U( D! v8 p8 T: c& i% T
7 f2 Z1 S9 ~2 j' o% R) E3 ?) |8 P+ P/ t7 r. w
factorial(5) = 5 * factorial(4)/ }5 ]/ T  f: y9 T0 M
factorial(4) = 4 * factorial(3)
% m/ p7 N9 p0 L3 {( c0 Sfactorial(3) = 3 * factorial(2)
0 E0 q& t8 k' e6 G( bfactorial(2) = 2 * factorial(1)
) M& L& v' O3 r: v- Y& sfactorial(1) = 1 * factorial(0); {0 s' t" p5 b
factorial(0) = 1  # Base case: _- m& ~; e( E: y
: u7 z/ ]! _' O; Y
Then, the results are combined:
9 Y5 e# ?) s% r" J  l5 G7 g' ?: H. O, s+ s

# o4 V, U9 T' g4 e: y& Qfactorial(1) = 1 * 1 = 1
) R" @. O4 D, _2 X) b2 q% h" j, u9 zfactorial(2) = 2 * 1 = 2
! A9 y2 M: I" B& d- rfactorial(3) = 3 * 2 = 64 T( X+ E2 h. l0 A+ j% B- \1 ]0 K9 Q/ ]
factorial(4) = 4 * 6 = 243 P( ^# b( t, D& i( q9 s" H+ t
factorial(5) = 5 * 24 = 120
: g# k; S: N* a, `5 j% K; b
! s8 Y1 [  d4 h) \7 KAdvantages of Recursion+ q, `; D# N: s9 @7 h
6 t: R8 R) d$ D' e  q
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
2 v  {) R# X( f' I: n
9 }, h8 G7 i. r/ |0 @    Readability: Recursive code can be more readable and concise compared to iterative solutions.1 g0 V8 H/ n# a  A6 M  T  h. M* N

: Q& Y$ ?; N+ k& T' }Disadvantages of Recursion4 Q3 C( x1 D1 ~2 ]7 E5 t+ P1 q
6 I8 i2 V+ H! j' E  C% e7 K$ ^
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
7 B+ K" V' W7 k7 }& }' q# h  Z( L/ Y/ c4 k
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: ~, j9 O4 I2 p' @& E& [/ Q- \. C
. R+ G" p' @$ _9 p
When to Use Recursion3 v2 g! \: r2 {: g- O: H8 D1 }

- {/ z/ h% N0 J    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).- @9 j7 f/ d1 U  ^$ |1 N

5 G) V8 U' E. U7 N    Problems with a clear base case and recursive case.9 L; A" M" R( x9 N+ X

8 |: |. w8 E6 K3 J3 T+ L" zExample: Fibonacci Sequence
5 F* Z& U* l# E1 d6 q3 Y* Y, ]4 U1 N! N' v& L+ Z1 M6 y6 F8 S% K
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:7 T1 W, q8 ~- q4 N: ~8 P! x
0 I1 ?$ D$ D- _9 Q: S2 l
    Base case: fib(0) = 0, fib(1) = 10 S# t6 M( [" H8 I" ?$ o# X+ o) M

' `1 y. O" D% R" N! @    Recursive case: fib(n) = fib(n-1) + fib(n-2)5 [- C( m* `7 Z" {" Y

! F% @3 ?4 ?1 [! H# ~2 Fpython
' x" v# d) k4 u8 b9 c' m  S) F9 o( i

/ ?+ p- H" N6 U: H7 Tdef fibonacci(n):8 N: N& c6 Q7 [: R7 N, t: P
    # Base cases
% T: Y; T! B4 g! }. n    if n == 0:* d3 M& l; Q- r3 {( q
        return 0
2 q3 ]7 n  A- y' c    elif n == 1:
$ I# v" m( J$ i' ~5 C        return 1/ N* y- ?0 l( L
    # Recursive case
7 K% r; G0 V, p2 s2 ?    else:3 c1 `$ @3 W0 ?- O8 N6 o8 b
        return fibonacci(n - 1) + fibonacci(n - 2)7 I' x2 e' n. O

* y% }5 |+ \& a! V* d$ U9 d' L# Example usage
: S4 C+ p; t0 H+ u/ Cprint(fibonacci(6))  # Output: 8
/ P4 w5 t4 V# O; s6 ?9 U7 o
, x5 k. a! `8 L  F& G- L: F% ^- {+ H1 sTail Recursion
& B! w# P& i  x0 S0 r7 i6 G
, d( d0 U' Q. a; ?& q. [: D1 TTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
- z! Y6 R% H/ Y4 c& [, a/ \- q" k6 s, }! j/ F3 o+ v; c' x( L- }
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://aswetalk.net/bbs/) Powered by Discuz! X3.2