爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 ! H4 p$ ?' f" w) D$ T8 F6 r
8 `: ]& A/ m2 E/ K. _4 |0 b7 V
解释的不错
, N- G$ n6 \5 k' ~1 f1 L7 ?' s; h' t  B8 W' y" r
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。: d! h) n3 G7 B; ]) L

( o8 W4 G$ k5 n$ g 关键要素, D' T$ M$ x# Y) h/ @" C  n7 Q$ t
1. **基线条件(Base Case)**
- e: t- ^' c) h6 O# i# X: a   - 递归终止的条件,防止无限循环
( h3 i: }  J- X   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 h! M( I0 j; w; ^: P
# W/ e0 v: k: j/ Q* O* ~! M1 g2 \
2. **递归条件(Recursive Case)**
! k& s8 W, r. p( |! W3 p7 A   - 将原问题分解为更小的子问题* s$ s6 G& K( @+ l2 j8 v- F
   - 例如:n! = n × (n-1)!
; i# g9 v2 W9 Q8 y  ^3 q% Q8 f
- A) M2 [0 R# i% T% O 经典示例:计算阶乘
. J3 m8 X- l) n6 N* Epython2 c  x( \! y- u1 u; y
def factorial(n):: u$ |. H; v" {6 W1 Y: v0 b* \
    if n == 0:        # 基线条件
: Y: ~- e. F0 I& m3 m1 [0 r2 B! T        return 1
4 s2 a( G! _2 @; x    else:             # 递归条件8 K; K0 Q8 e2 ?8 X7 g8 S  l
        return n * factorial(n-1)
8 x' @% ~) H" a8 K执行过程(以计算 3! 为例):. `4 D6 q( c6 V
factorial(3)9 f6 r4 k. c! S/ F' q4 }* \
3 * factorial(2)* T7 L2 x6 r: j. L; {+ h7 A
3 * (2 * factorial(1)): x! e- D2 d" k$ Z$ Z& |8 h: }& S1 S
3 * (2 * (1 * factorial(0))), ]5 D; P3 z7 t& [
3 * (2 * (1 * 1)) = 6& w% b: K* K; h

! `) |- I& p6 m6 f7 m( c; o- U) q 递归思维要点4 z: P. h% S+ V% M
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
8 d# Y7 g: e) O0 B/ p2. **栈结构**:每次调用都会创建新的栈帧(内存空间)0 x) W0 K( W$ }, k+ r
3. **递推过程**:不断向下分解问题(递)
$ L: T/ M2 u  Y- \: O5 p0 E4. **回溯过程**:组合子问题结果返回(归)! P$ D) D+ b! o: u0 @

( r9 l7 ^( W- J; }  B 注意事项0 d/ i6 ]5 _" F
必须要有终止条件  R- _" ?2 C, k. n% v, |6 o- E
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)4 y  i) l' N& M, l
某些问题用递归更直观(如树遍历),但效率可能不如迭代' |4 ?5 n0 `. m/ w7 x+ @
尾递归优化可以提升效率(但Python不支持)
, o# u& l( W9 E2 B" q  @6 Y
1 g1 O6 w/ n$ U( H3 ] 递归 vs 迭代
2 p7 p& T/ C) a6 @' F, t|          | 递归                          | 迭代               |
. x' c! t8 j+ v|----------|-----------------------------|------------------|
+ y, m; Y% Z' i* B) I; g! d, s0 w' G| 实现方式    | 函数自调用                        | 循环结构            |
  m' z- W- k, r) j2 h, _| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |4 v: G% T7 G' |  e1 D6 g
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
2 B; Y' x4 w. R* \/ I, j| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |# ^  F; u4 t- w/ g$ Z. g1 A* O/ e

0 Z0 n! B3 f# w. N; r 经典递归应用场景5 c  H4 U' I; U
1. 文件系统遍历(目录树结构)
7 l4 N" r0 ~; n& |  S' d1 ~2. 快速排序/归并排序算法5 O# w9 u* D/ \
3. 汉诺塔问题
6 l6 u7 ^2 g8 }" N0 R8 F3 t4. 二叉树遍历(前序/中序/后序)' A6 O" E. }5 K0 D, }) |7 D
5. 生成所有可能的组合(回溯算法)
$ G, v5 p' I7 A, V$ Q: y+ M, ?. N0 j, ?/ B! a
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ E' r, |5 L) D; \
我推理机的核心算法应该是二叉树遍历的变种。
) q8 N$ Y+ B$ S- J/ I$ k, Q3 k另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
/ u4 K0 N# R: t& `( }2 i$ {$ tKey Idea of Recursion! B! {2 F/ r! j; [- [6 l, o2 w

* ~; \# m: h* d5 ^: aA recursive function solves a problem by:( S- `4 V9 \) h

8 t; e/ j$ o" Y, H    Breaking the problem into smaller instances of the same problem.) h  F8 D% z7 k+ m4 Q- }; B

$ Y# {' z# a$ }/ B0 p- H    Solving the smallest instance directly (base case).
' i! Y& p/ ]6 I+ w( O. @2 h' p$ W% z8 I# ~' X4 d0 j0 v# I
    Combining the results of smaller instances to solve the larger problem.
. u8 O  U* q+ [% s8 [, z2 i4 m4 q4 K" e& d8 W0 d* ^
Components of a Recursive Function% e" v2 ]' X! s, f* h* E* ]6 D% I8 w

, }- p  L  f! ?9 X" `    Base Case:
6 o/ o2 \: Y0 c! t. x3 r! v6 G: c; _- L; A; P2 L1 r% Y' r
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.1 L( X7 C) q+ z

( I+ N7 }- \. }% ]+ o        It acts as the stopping condition to prevent infinite recursion.
0 k' k6 ?" k; g, w3 t5 [" `9 |3 d* c( ]; f. ?0 J! h: D
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.- n) J6 ^+ }3 o& N$ p9 h# ~9 X

2 V, j/ x8 E' e: x  i# d  |    Recursive Case:
- R& V* }- n- ~, b4 c) x. |# d: f2 z8 g5 S8 P
        This is where the function calls itself with a smaller or simpler version of the problem.; S+ Q: o2 s" R( R

( f  L. ]. b& p  @        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
1 o) o6 K0 v  I- ~/ Q7 Q
5 ^& P; K# p3 i5 TExample: Factorial Calculation% J( V: y6 F" ^, V) f2 }

* ]! a9 o! A% g: C7 _The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
* T8 Z$ q# V3 S; F9 O3 e* Z
% {6 v; W$ T! a: Y# U  v6 v! f    Base case: 0! = 14 V1 E9 Y3 D0 E' x# }  p1 u

+ W6 m6 B# p5 t. w' Z    Recursive case: n! = n * (n-1)!8 w$ h/ [) Y) C% S* L* ?- a. W% Y

' m; P* y* Z" k0 N: b& x* MHere’s how it looks in code (Python):  m/ K3 B1 G6 M1 Z: {
python# C: J+ |/ D/ n% G: @$ o0 N

- V* L/ @4 Z6 m2 a5 o- V: t8 y* o. b' U, C' |/ f
def factorial(n):
4 R) J5 Z: o- ]  p) Q9 _' a/ A; B  g# t    # Base case
3 w% X. L+ ]6 X( g    if n == 0:
* Y2 {8 }- H5 v4 V* g        return 1& b8 z0 }1 x1 P9 d( g, e" K/ N
    # Recursive case$ y. B' S$ o! y$ ]' q1 c- h
    else:" `' a% Z1 a2 p! R. W! F. R
        return n * factorial(n - 1)
' s- y: b! x; r5 h9 \5 G3 m3 L3 g: X5 Z
# Example usage9 Z, X! }+ p  p4 @; k# ?
print(factorial(5))  # Output: 120% L) l2 u. m  ?  r. T7 b
5 \# J, Y6 B% X( E! O6 ~
How Recursion Works$ {8 m6 \* Z/ h1 H

, Y- k: o2 D9 @; C+ W    The function keeps calling itself with smaller inputs until it reaches the base case.
; H3 I0 M6 e" _+ Z, t0 C. }" o9 B. {- Q, M  ^, P  _
    Once the base case is reached, the function starts returning values back up the call stack.6 f9 ~* ~& V+ ~* T: U

8 K1 i5 e5 r3 p/ v1 Q+ e    These returned values are combined to produce the final result.
  r8 F/ q& P* y, w$ ^: {$ g
! {% z8 R$ [* a; e# @+ G, hFor factorial(5):
9 M& o( y( {; m: y6 Y( P* c% Y3 N; ?
( M$ `- O; ]1 e0 X; E. e* B  J" a. Q+ v5 S( x4 B
factorial(5) = 5 * factorial(4)
* B; y- x3 l& p+ V0 Afactorial(4) = 4 * factorial(3)
9 p1 {+ V0 H) y& L3 `' ^9 H0 Yfactorial(3) = 3 * factorial(2)* ~3 Q" }3 h/ T
factorial(2) = 2 * factorial(1)
4 d0 J% R4 Q, D3 ]" j1 J6 `/ Ffactorial(1) = 1 * factorial(0)  `9 b; T' @9 a+ Z2 b: a/ D
factorial(0) = 1  # Base case
8 Y% h3 Y9 Z0 a
& |- `% I1 }. v" LThen, the results are combined:. \: l" N* f; g

2 P1 v$ ?/ ~3 |
" g3 j8 O! W3 g, u  v7 q# A' Mfactorial(1) = 1 * 1 = 1* X7 v9 a- t) {' V1 H6 p
factorial(2) = 2 * 1 = 22 F* w5 l4 W' L" u/ c
factorial(3) = 3 * 2 = 6
; s( n) N' r$ M: e8 b# ^factorial(4) = 4 * 6 = 24
2 @8 m0 C4 N1 _3 ]7 G0 kfactorial(5) = 5 * 24 = 120
! r6 M4 Z% a0 O0 j* R# z* v: {9 o6 P2 w5 z) S
Advantages of Recursion0 M0 z1 n0 X+ p9 U. I& P' \( q/ Z  w
; E/ G. l& Y# Y( A3 g
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).. {& c( u  w$ M7 J/ q
# ^! k1 a9 ^4 T4 [
    Readability: Recursive code can be more readable and concise compared to iterative solutions., B# I" o; O! t0 |
* y$ E3 U7 R$ z" H5 s; b! I
Disadvantages of Recursion
5 `/ U, w4 v2 E
' n3 f7 _, E" c& S# Y+ o7 l$ e    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
% j- `3 Z& L6 l) Y8 a$ B( @* p
/ w8 _; R8 U/ o) B% |, U    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).1 u* w% T$ n1 G- k

; N) J4 @( ^! t4 aWhen to Use Recursion
7 h. p; N0 S% T0 s8 u% f3 l8 U1 y2 R4 f& y( S
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).9 ?# L  |5 e# u: D1 H
" }! _0 s7 x! A$ D/ I$ a/ U, m
    Problems with a clear base case and recursive case.
" A6 y: C; Z8 y& F
3 _( V8 v# S. ?4 G( fExample: Fibonacci Sequence
9 k  s5 G$ w9 v
( t4 R4 |8 \: \  j- {' y2 HThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& w) z* j8 Q% y  F# ~0 G. N

; x; T+ a$ ]8 Q3 l" y* I+ P+ }. H    Base case: fib(0) = 0, fib(1) = 1
/ w# E! q2 c- O& ~3 U4 A! L% p9 J' f
    Recursive case: fib(n) = fib(n-1) + fib(n-2)5 u  U. _* E# o4 F! E, d) V9 k
. n  J! h0 @# E
python
: k3 o- G, [+ Y6 r5 B7 R
( L; e0 M/ w. V/ j5 V
2 C2 Q7 T) @% j1 h) Ydef fibonacci(n):2 U. u  O, B8 v, }) V1 V( x
    # Base cases
/ n! j- n4 r9 N, n5 h    if n == 0:# l2 e2 [9 I/ n" a$ T- m
        return 0: y, ^( R  p1 r: l/ s" Z
    elif n == 1:; N& {, \/ S7 r4 q) i
        return 1* d' I- B0 ?& [# S4 M6 Z
    # Recursive case
5 i3 G$ S7 l  i    else:5 Z7 O% A* c2 y9 E. [7 c
        return fibonacci(n - 1) + fibonacci(n - 2)+ F2 O& u5 h4 o5 B+ Z* I
6 l$ g( D4 M5 p& Z) S
# Example usage
; J1 }: C: g6 x6 vprint(fibonacci(6))  # Output: 84 \. |0 g. y1 b) ?

, a7 ~( U2 r- {5 ]" a; |  ZTail Recursion- E3 E. x7 J5 V- c% t0 y
2 S8 S9 \2 I" I5 h2 t
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
! L/ s6 `; {% ]( A) S3 I' h7 ^: a; q' S  V* V% r: x8 O$ a9 h6 ?! h4 Z
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://aswetalk.net/bbs/) Powered by Discuz! X3.2