标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 0 O. G. _& x G8 a0 w1 Q2 x |8 _4 ? o \, N% ]$ X解释的不错8 A" I- W) h8 s4 Q7 T
5 z, D6 u9 ~' i! ]" X, @0 U递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。7 m- L, a6 o4 m, |$ ?! M
3 f3 k3 b" S5 W& `' W ]1 h, ? 关键要素 " r4 e8 k q( \' S4 @# D; {1. **基线条件(Base Case)** : v. l+ h! i/ l7 K4 }: n( k - 递归终止的条件,防止无限循环 $ F8 L8 B7 c9 Z, y0 y: O; e0 A5 m - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 . [& K; C' `! V- u- V2 h7 S% u: n, t
2. **递归条件(Recursive Case)**/ H" i* [" ^0 f# K7 W
- 将原问题分解为更小的子问题 1 W3 J, ^$ P' y- D7 p/ t - 例如:n! = n × (n-1)!1 U% _, T$ I' W$ H3 c/ M ^# n+ u; f
$ @9 D6 ]$ U" V4 E8 _3 p+ c
经典示例:计算阶乘( G5 M5 t- r- R9 |; C
python 2 V6 ]! U7 b4 [) _! i1 a! ~7 Odef factorial(n): & F. Z% ]4 a" ~) u if n == 0: # 基线条件" O, t7 P w7 M* H9 U
return 1 6 z8 [5 ?0 D$ I0 k& U' M else: # 递归条件3 v* N! `6 c9 ~( o
return n * factorial(n-1) 8 B$ t. i( o$ s' c执行过程(以计算 3! 为例):6 f0 p& j7 F3 a2 K
factorial(3) ) [" E- {8 M1 c% d6 G3 v( h3 * factorial(2)5 F2 }1 E0 s* L% h
3 * (2 * factorial(1))- v. C4 K2 |8 G" ]
3 * (2 * (1 * factorial(0)))6 z6 p* ^1 A$ R2 L% l. j9 t
3 * (2 * (1 * 1)) = 6 j) j S) P3 [5 I# k4 f) c
" g: P* [, o8 d
递归思维要点 7 {% M, N0 R/ J1. **信任递归**:假设子问题已经解决,专注当前层逻辑8 ]) p! r% b1 ^# U, ~1 s! M) k7 F
2. **栈结构**:每次调用都会创建新的栈帧(内存空间) 3 S5 R) P# {6 d+ S8 x( v3 p3. **递推过程**:不断向下分解问题(递) 4 E, s y8 a4 H1 N/ \+ ^4. **回溯过程**:组合子问题结果返回(归) $ r4 a3 C7 T3 i* q. ? $ i& e6 y8 J e/ Z! C 注意事项 % R+ P4 z7 m7 z& r o1 I3 _必须要有终止条件8 u8 [" n% G) E$ f
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* ]" E* D8 G5 m" d0 \6 d
某些问题用递归更直观(如树遍历),但效率可能不如迭代 4 g: O! Q. N% a尾递归优化可以提升效率(但Python不支持)) E. f; ]% D: f& v! F/ K2 b
@# n( \, U2 l# a8 `8 { 递归 vs 迭代0 T' p2 m9 D) r. A# T
| | 递归 | 迭代 | - F: ?2 B" u- S9 C" d$ Q; Y V|----------|-----------------------------|------------------|" P$ o) L4 A, J! K/ L
| 实现方式 | 函数自调用 | 循环结构 | $ E. v6 I# z# D* b5 h( M1 X| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 | }, S0 S; P6 z4 P1 b# k; H1 R| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | y1 `# |+ B5 L% K9 E9 v$ P: @
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | + o5 f2 x, I* ~ - B; p; ?( `: w 经典递归应用场景 6 A! r" [# F1 ^; f- K1. 文件系统遍历(目录树结构) : ` l) Q( j* C( H1 b2. 快速排序/归并排序算法" E, j5 j8 [$ S* f' D
3. 汉诺塔问题/ u+ m x! A A" p$ }
4. 二叉树遍历(前序/中序/后序): o, p- n+ n3 s9 }" B
5. 生成所有可能的组合(回溯算法); o9 i- m9 ?3 v9 [# ]+ i
1 S! f) y% m: r7 ^/ Y5 \试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,: N6 _" i: _' L* d" S. v9 n
我推理机的核心算法应该是二叉树遍历的变种。/ `, P& S/ d' T) r: f
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: / F' I0 |, a) p( B/ KKey Idea of Recursion. X H6 f; p; b( u* h6 k5 C2 I
1 T" a! K$ a' W; f0 `* z' OA recursive function solves a problem by:& F% q J$ m& I" L( l
1 I" a) w+ p# {9 b6 {, F9 i
Breaking the problem into smaller instances of the same problem. : E) q. V& H! B; [2 a# i3 d& a% F- i& B$ l
Solving the smallest instance directly (base case). ) }: t. k; @2 z 5 S9 x" C2 D/ Y; _5 ? Combining the results of smaller instances to solve the larger problem.! H+ g; t. Q' w+ o
, ^# `) i* C3 z9 U' J0 _% ?# sComponents of a Recursive Function n% v3 P! F4 J9 R- s. h7 B8 ^1 J4 m4 {: P1 r$ h2 f( {
Base Case:! o5 _7 g3 ?; ~; i) o
3 j0 Y3 u' s: m
This is the simplest, smallest instance of the problem that can be solved directly without further recursion. % o" }: m$ }$ H $ f7 o5 e$ F$ G2 [: Z; w It acts as the stopping condition to prevent infinite recursion. [( s) Y0 j" l. X" y6 C/ L3 o4 J 2 H0 \- C# b7 R( D Example: In calculating the factorial of a number, the base case is factorial(0) = 1. ) s$ w4 v9 R2 {" N+ B + {5 J$ x/ K9 R* S* c/ ~- c Recursive Case: c# u. q6 Y- H, |
0 L# F; ?5 w; \
This is where the function calls itself with a smaller or simpler version of the problem. 6 Z6 t- b/ L2 K! Y- j# _. C- e& F/ }5 {) B+ c4 A2 \3 D3 @" n) j
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." m% _4 p1 o( z
( {7 u* x x6 `; a/ Y2 W# cThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: * h6 h7 n2 D. ` D6 ]- a9 `3 x2 b- {+ j" Q/ D
Base case: 0! = 1 ! J7 U% j; t+ U# L2 N$ o X0 W: [/ [. ^/ ~$ h6 E6 C( L
Recursive case: n! = n * (n-1)! 6 ^ M/ k. o( u* C- b4 J9 b2 ? 7 K; u( b' ?) E8 ~: `Here’s how it looks in code (Python): 3 a6 D" @! K8 e. O4 ?, Upython ' I3 o' Z! r4 B! x7 P! E# ^0 s1 K$ c' [. h- ~/ \( z' R
5 I5 r* O9 P J, r* idef factorial(n): - L: X+ X1 [+ T" C v2 s # Base case8 j9 I2 r! ?; s x6 K- u
if n == 0:. [6 Q0 Z4 l+ y6 m. {- P: z: S
return 19 |! G1 H, f4 Y
# Recursive case ; t& l) G' x; k8 z else:- f8 M; m* x( [- e
return n * factorial(n - 1)4 m2 O4 j/ w9 W2 t* E/ [
4 B2 R% F, R5 A: u" Z# Example usage , H& k+ b% L3 o6 j4 E ~* @print(factorial(5)) # Output: 120. O$ O2 f: }" f# V
6 _# z6 u. e4 ^% y) H. l
How Recursion Works3 `3 S$ `+ ~8 C7 c
1 O; M9 e# B' { K The function keeps calling itself with smaller inputs until it reaches the base case.6 d% C d0 P7 {
2 O0 X2 T5 n+ O* t! P; B( q& K, N+ S9 ^
Once the base case is reached, the function starts returning values back up the call stack., G8 C* A! ~( M' Z7 b2 @# l
$ E- y1 V U; X1 _4 y9 p These returned values are combined to produce the final result.; T* J( u" J! I' P. w/ I9 m/ R
: q9 w4 z v4 W2 J! } t
For factorial(5):5 R& ?4 W; N8 L: s
9 ^( T, V' z, l& Q1 n
* s: |1 }& m0 _2 N
factorial(5) = 5 * factorial(4) + R/ F8 R* w$ r; V" B0 q$ Vfactorial(4) = 4 * factorial(3) & v' W9 W9 P. B0 Z( \$ O$ |factorial(3) = 3 * factorial(2) * I' S+ {( a% M8 d" R' ofactorial(2) = 2 * factorial(1) & W S. S$ c s3 s( Pfactorial(1) = 1 * factorial(0)5 H; ~; ]* {: Q9 R9 C3 M% l& [
factorial(0) = 1 # Base case% v$ R: F( P: P9 k/ e, Y: q
g$ ~, l$ ^6 l0 l3 @
Then, the results are combined: ' ]- ^2 m! N' S" c( O+ a" e, H2 i+ w' N6 p" ~
, D/ o7 P4 q( _" }8 K+ B. i
factorial(1) = 1 * 1 = 1 : T' K, C+ H& e5 B8 Q Dfactorial(2) = 2 * 1 = 2& ?# h! R) I; |2 l* ~9 S
factorial(3) = 3 * 2 = 65 |- l ]+ ]% }' R# u
factorial(4) = 4 * 6 = 24 $ n/ V$ @( t9 Sfactorial(5) = 5 * 24 = 120 9 b* f2 N m* j! r* Q * i8 q, E, v' ?4 d, [3 y7 P& wAdvantages of Recursion ; D7 x1 Q0 n# k N& _! ^1 G. Y- z0 u, |
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). }" N% v2 G$ M2 ~ 1 W4 P2 ?% r3 p8 G Readability: Recursive code can be more readable and concise compared to iterative solutions. - g. N h- {; h; C- |/ x7 k6 U' T0 Y
Disadvantages of Recursion: ~! k# l* n. q! k" {) `. Y7 x
1 Z/ [/ _" @- K7 d
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* q d1 s+ [ Q. o F( F
3 |* k1 f7 ?) x% s- l9 q- C Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). . V, J- P) r3 {% ?8 ~( E* D/ K* m5 Y
When to Use Recursion , T* y5 X* {. ]6 |0 E& I" ?9 y; P; Q$ d
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). |$ q m; O4 a9 P / ]0 A! w# n' y/ S) F; t% E Problems with a clear base case and recursive case., c5 z( K. i7 V' A$ H
6 Q9 T7 P! Y0 Z7 e. g) S" cThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: , F# V6 F3 K; ?" \9 ~6 P$ @8 S# i0 A+ o P1 L5 ]
Base case: fib(0) = 0, fib(1) = 12 q9 O" `: b& t3 y& M3 |7 [/ j
- Z5 P" i! [ [. `: O N9 d ^ Recursive case: fib(n) = fib(n-1) + fib(n-2). ^) Z2 `& J+ S: a! f
$ J2 E& o- l$ edef fibonacci(n):8 L& O) |7 P7 e+ r
# Base cases * V. M, f d9 S A& m# ?0 t if n == 0:6 U$ y2 h6 {1 Z. ?7 H
return 0 . u: p' t, ?& n8 \8 B elif n == 1: 8 z }; r; v- u8 O2 C8 C; ^; _4 K return 13 M* C- ?. B$ S8 C1 U# C
# Recursive case 3 `( Y: r$ t- h# b* G5 t* Y else: * N" D) V" S- k5 D& D8 R1 ], f return fibonacci(n - 1) + fibonacci(n - 2)! y% F% S4 D6 y* J7 w$ s9 n% e
* c2 [, s, q3 w, _& u5 Z/ J
# Example usage6 {4 z' E3 s6 Q
print(fibonacci(6)) # Output: 8 # k: S. I7 r; ]8 t6 k& l2 Y9 Z" L {. {2 T/ J: N+ X8 O6 A" |1 u) oTail Recursion) L4 h; I! M: m) k" W2 S; G
1 w5 d- Q0 ~- U m3 g9 FTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). ! |/ v6 v3 I+ N4 I: q- U* ` ( N! @8 ?9 P' HIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。