/ T3 E4 Z* T4 vMeta和Fair研究人员的论文《Can Go AIs be adversarially robust?》选择以围棋AI为切入点来研究AI系统的鲁棒性问题,主要基于以下考虑:首先,与开放式任务相比,在围棋这样一个狭窄领域内实现AI系统的鲁棒性应该更容易一些。其次,围棋是一个零和博弈,这意味着理论上存在一种策略可以在保持良好平均性能的同时实现完全的鲁棒性。相比之下,图像分类等问题在原始样本和对抗样本上的准确率之间存在着根本的权衡。此外,围棋在推动AI领域进步方面有着良好的历史记录,曾激发了AlphaZero、MuZero等算法的诞生。因此,围棋AI的鲁棒性研究有望为开发鲁棒的AI系统提供重要启示。+ ?3 f1 z0 n c% w