爱吱声

标题: 美国会丢失人工智能科技高地吗 [打印本页]

作者: 晨枫    时间: 2022-9-20 09:08
标题: 美国会丢失人工智能科技高地吗
本帖最后由 晨枫 于 2022-9-20 09:40 编辑 * `! e3 ^/ x0 W: t' ?

1 r% z1 d! `0 W6 t# m( ^2021年5月,美国国会指派、有谷歌前CEO埃里克·施密特和美国前国防部副部长罗伯特·沃克领导的人工智能事务国家安全专门委员会发表了长篇报告,指出美国在硬件、算法、人才方面领先,中国在应用、整合、数据方面领先。报告认为,美国的算法领先在5-10年内会被中国赶上,但美国在总体上还略微领先。: M  W- ~/ |5 x, k0 G
* c, M+ b+ ]) @) R- i" t9 U7 W
9月12日,委员会发表了竞争力研究特别报告,再次强调美国的人工智能优势正在迅速消失。, L. T+ g7 n& L+ o) y) Q* a( {, g1 i2 e

5 j$ b5 J' M  F) z美国的担心是有道理的。
1 |' [$ k$ I- q, e: o
3 c2 {, |  N3 j) Y; y2 P3 g* i/ b人工智能还是野蛮生长的领域。各种应用搞得热火朝天,但缺乏统一、严格的理论框架,理论严重落后于实践。最大的问题是难以分析、预测、设计系统的性能,使得人工智能的决策难以理解,难以信任。“阿尔法狗1.0”和2.0在与人类棋手大战的时候,都走出一些匪夷所思的步子。事后分析好像是好棋,又说不出好在哪里,更是想不出什么思路能走出这样的步子。这只是下棋,看不懂棋路不是大问题。要是人工智能用于国家核导弹自动发射控制,也给你来几步人类看不懂的反应,那问题就大了。
+ ~6 `8 y! P8 c8 o& }. j5 H( L# P! g0 D
在缺乏理论指导的情况下,算法成为各家的“手工艺”。手工艺不可怕,可以在大量实践中精益求精,很多工业技术(包括尖端科技)都有这样只可意会不可言传的手工艺成份,事实上成为技术壁垒的重要部份。7 ]' ~' A! B& J# _% ]6 ]! o( y

, n! D9 H7 l; y+ x9 t* _# p; a问题是,人工智能的最大量实践是在中国,不是在美国。在美国和西方眼里,中国的人工智能就是用于大数据人群监控的,这是意识形态偏见。中国的人工智能应用正在野蛮生长中,头条、抖音的推送就是人工智能,这只是冰山一角。形成商业利益后,人工智能不再是纯学术或者纯政府行为,具有强劲的自我增殖能力,不仅引发更多的应用,也推动算法的发展。3 {' y+ b! }- u7 h5 y1 ]5 ?
) N8 a! N  i( E. m/ _$ S
在美国,人工智能应用依然主要由军方拉动,商业人工智能缺乏自我发展的动力。美国试图把私营资本拉入人工智能竞赛,但风险较大、没有明确的盈利前景,私人资本没有理由加入。华尔街能承受风险,但风险大,回报还慢,这就没有干劲了。这是美国各种“公私合作”设想的共同问题。; \2 {8 P8 d' T/ h& U1 j% G- V4 I0 H

9 \+ \3 s" N( w8 E9 X/ ^7 J) J8 z8 c片面依靠军方拉动正是苏联科技发展的问题根源,大力依靠民用需求拉动则是美国的成功经验。有意思的是,美国在走苏联的路,而中国在走美国的路。- M8 F+ M: ~0 o1 K
6 |+ c4 B2 W. C
所以施密特-沃克报告清楚地看到,中国将迅速赶上美国的算法优势,如果不是在理论框架上首先突破的话。: j" H& u: M% l& z1 h+ X% l
8 |: n+ S) g4 w& b% c9 T. K
理论突破需要人才,但美国人工智能人才是否领先中国,是一个一言难尽的问题。如果把具有中国血统和教育的人统统排除,美国人工智能人才圈大概立刻坍塌一半。同时,中国人工智能在大量实践中,中国人工智能教育、科研、人才形成良性互动,中国人工智能人才赶上美国不是梦。0 F! j) q6 s4 I" R- i

: t# i  z, @: \& M* f" m有意思的是硬件。中国还在先进芯片困境中,美国对英伟达和AMD高端芯片对中国禁运,就是冲着人工智能来的。但这些芯片在本质上是图形处理芯片,并行处理能力恰好与人工智能运算的要求符合,但本身未必是为人工智能优化的。
' ?5 g3 Z/ @- I9 a, k
5 w* \7 X* T: i5 w  C% @中国芯片在闯关中,一方面是7nm、2nm等更高集成度的硬技术,另一方面是在专用芯片方面实现架构突破。中国超算就是通过精巧的架构设计,在较低的硬件技术水平上实现世界领先。尤其重要的是,这样的架构突破需要在实践中得到思路,在实践中检验成效。2 i/ w$ b: f  z1 [

. Z2 F# d# |" Q3 T在现在,中国还在大量采用来自美国的算法成果,硬件上也对美国有依赖,但历史上有过先例:要是在总体实践上掉队,核心技术的领先并不保证持续领先。
, I( N* e: f; c' x, m: h% C, U% s, P9 ?4 E5 ]. ~8 e
在40年代,英国与德国同时发明喷气式发动机,德国抢先一步,首先将Me262投入使用,但英国紧随其后,只是因为战争大局已定,就不急于将格洛斯特“流星”战斗机投入实战了。但罗尔斯-罗伊斯的“尼恩”涡喷在40年代末代表最先进技术,苏联引进后,用于米格-15,从此苏联航空科技一骑绝尘。+ y7 @2 X$ \. `3 I

  ~7 Z5 [! J6 W# u4 l发动机是航空科技的核心。苏联战斗机借用英国技术起飞后,在大量实践中迅速将“尼恩”改进为克里莫夫VK-1,以后克里莫夫和留里卡一起,成为苏联战斗机发动机的哼哈二将,罗尔斯-罗伊斯也在进步,但英国战斗机再也没有赶上过。6 {* f- B7 O# L2 V. Y

7 W/ t/ a2 b# N  Z. H  I6 u另外,人工智能现在一根筋搞大数据学习,是存在“数据困境”的,尤其是工业应用。要使得人工智能有效、准确,需要大量历史数据;但产品一直在转换,大同小异但毕竟不一样。等训练出来了,也该转产了。绕了一大圈又回来了当然很好,但这是可遇而不可求的。单纯靠学习,可能跟不上变化的现实。这是大问题。/ x/ d( k, q: E' N* U
7 J1 d' E; p5 K% x3 p& |6 X
但变化与变化不一样。大部分变化是变表不变本的,本的变化缓慢得多。这也是人类思维善于适应变化的环境的道理。在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,无视了变化的环境。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。# _. _9 |3 G- W7 c7 b+ L3 R
3 N& j. [7 M: e* i$ v2 u3 \$ B
人工智能需要在框架上形成演绎能力才好。这是巨大的挑战,但很可能不是从纯理论的空想中产生,而是从大量实践的摸索中完善。
2 [+ i7 g2 q+ f
: Y5 Y- k6 k  V: [6 [( {如果说芯片、软件是当今科技高地的话,人工智能是未来科技高地。美国很担心中国会抢占这个高地,担心就对了。
- ]$ ~) L3 o, W) X$ |& H2 Q1 L" T! Z: K+ A- c/ F0 J
报告还提到,中国在5G、商用无人机、高超音速、锂电池方面领先,美国在生物科技、量子计算、商用航天和云计算方面领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。2 Y; P3 m, z* L! J" k

8 w8 M) A. w3 W0 p# T  t
作者: moletronic    时间: 2022-9-20 09:51
美国在生物科技、量子计算、商用航天和云计算方面勉强领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。

+ L& ~) U/ H! U4 M这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就starlink,还是生造出来的。
作者: 晨枫    时间: 2022-9-20 10:59
moletronic 发表于 2022-9-19 19:51$ P3 K. T" E0 [8 T  q9 B5 s5 l( h
这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就sta ...

1 p' S6 Q4 r& W! Y5 s7 X1 ?为什么说中国生物很难翻盘呢?
9 f0 E+ H' P$ ^8 u5 X6 ~% l  a0 f' |" S4 `# s. k/ ~  a
商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。
作者: moletronic    时间: 2022-9-20 11:07
晨枫 发表于 2022-9-19 18:595 J( T1 S/ }. `" R7 v# i' |
为什么说中国生物很难翻盘呢?5 _, X0 x/ i- `: v$ o* C

1 d  V! L/ \0 ?- V# L1 A- W" m商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。 ...
2 a5 Q  C8 e, b" X- `5 B  A; E
俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。
作者: 晨枫    时间: 2022-9-20 11:18
moletronic 发表于 2022-9-19 21:07% @" f7 H3 t, A3 f6 j
俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。 ...
- D& I' S3 Q" w2 [
这事要一分为二地看。回国多,说明国内机会多,上升空间大;另一方面,要是国内已经很强了,反馈就该说国内已经很卷了,回去的人反而也多不起来了。
作者: huma    时间: 2022-9-20 12:56
还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已经后悔回去了,准备在出来。
作者: 晨枫    时间: 2022-9-20 13:09
huma 发表于 2022-9-19 22:56
6 L8 d7 r" f' J: `! h) y还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已 ...
7 B5 p5 [( V5 r% o1 a
然后再后悔又出来了
作者: testjhy    时间: 2022-9-20 15:34
一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是多品种,小批量。当你收集到足够的样本的时候,流水线说不定已经转产下一品种了,图形、花色都可能重大变化,当然,你可以慢慢累积成样本库,但企业特别是中小企业是不会有兴趣陪你长时间玩的。我们在考虑根据少量样本,采用瑕疵产生原理生成一批伪样本,目前对质量要求不太高的产品可能有效,但对高质量产品还感觉不太成功,前者比喻开始瑕疵检出率80%,然后几天内提升到90-95%,后者如果一上来就要求95%,大概率要失败。
1 w+ S/ h8 @6 ]; ?" s0 X$ M其实,最好是传统计算机视觉方法与深度学习相结合,前面偏原理分析,但非常繁杂,现在年轻一代都想省事,找一批样品扔进学习平台完事。我这个老古板属于看人挑担不吃力型,没办法。
作者: 晨枫    时间: 2022-9-20 22:17
本帖最后由 晨枫 于 2022-9-20 08:21 编辑
* T* i: U+ L9 f/ i9 Y
testjhy 发表于 2022-9-20 01:34
' C" ?4 t- k- _6 l- U; U一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是 ...

; m' D  I0 b8 ~, K+ @+ q1 ~6 |7 \' p
太对了!
4 Q; x8 K, `; _0 W7 N. p
, `% j; Y) K3 h人工智能现在一根筋搞大数据学习,正是数据问题。用自控术语来说,这是对有历史积累的时不变系统有效,时变系统就抓瞎了。
' i9 u5 z. w4 P  J5 e7 M$ ~" Y8 _2 X' g8 B
在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,不看变化的条件。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。* C! |# e3 W/ a, i6 G

7 ?2 i+ Q) {& w2 v+ C  T人工智能还需要在框架上形成演绎能力才好。怎么做到?嘿嘿,我要是知道,还在这里瞎耽误功夫嘛。9 O$ T- v! T+ q3 P8 G
1 l- t0 A/ H: W" k
在自控和建模中,也曾经流行过纯数据驱动的黑箱模型。后来发现不行,robustness太差。后来转灰箱了,在具有机理背景的模型结构上,加一个黑箱尾巴,用机理模型解释大部分数据,黑箱尾巴只管“扫尾”,情况就好得多。不过实施也难得多,可以丢给“数据绞肉机”就不管的好处没了一大半。
. \! o& X5 Z- P+ Z2 b/ i# s  k1 W. @( V7 j/ y2 U
这就回到我一直在想的“复杂性守恒定理”。复杂问题如果存在简单的解决办法,一定是把复杂性隐藏到另一个方向了,最终还是绕不过去的。
作者: 老财迷    时间: 2022-9-20 22:44
“罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。”
- t2 ^4 M( @( v7 e: a! ^1 P: _. I少了一个“没”字吧?意思不对了) @/ c2 c, r& N; H1 D, Y
罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。
作者: 方恨少    时间: 2022-9-21 02:31
晨枫 发表于 2022-9-20 13:09" g9 W0 [  \) T% G6 `
然后再后悔又出来了
: Z( O3 Z) R  l+ p. h! M4 E1 H
你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据
作者: 晨枫    时间: 2022-9-21 02:47
方恨少 发表于 2022-9-20 12:31, w, \( ?3 K( S+ m2 n, S
你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据

! ~, ?3 g4 `4 Q' B7 w1 P, Z开车?开什么车?




欢迎光临 爱吱声 (http://aswetalk.net/bbs/) Powered by Discuz! X3.2