爱吱声

标题: 美国会丢失人工智能科技高地吗 [打印本页]

作者: 晨枫    时间: 2022-9-20 09:08
标题: 美国会丢失人工智能科技高地吗
本帖最后由 晨枫 于 2022-9-20 09:40 编辑
6 h% {8 b1 F0 U+ t' W6 y1 h& h$ D# R5 A
2021年5月,美国国会指派、有谷歌前CEO埃里克·施密特和美国前国防部副部长罗伯特·沃克领导的人工智能事务国家安全专门委员会发表了长篇报告,指出美国在硬件、算法、人才方面领先,中国在应用、整合、数据方面领先。报告认为,美国的算法领先在5-10年内会被中国赶上,但美国在总体上还略微领先。
/ d: P8 s$ ?5 h0 }  F2 S) N( z( U" H; ]! \, w' _* V
9月12日,委员会发表了竞争力研究特别报告,再次强调美国的人工智能优势正在迅速消失。8 N  l+ v" l( s. [' g/ Q4 K
5 Y! F$ u8 O* e- V
美国的担心是有道理的。
$ P* M' Z! h% k4 [( I
; `0 J8 v+ `( {4 Y! R6 N人工智能还是野蛮生长的领域。各种应用搞得热火朝天,但缺乏统一、严格的理论框架,理论严重落后于实践。最大的问题是难以分析、预测、设计系统的性能,使得人工智能的决策难以理解,难以信任。“阿尔法狗1.0”和2.0在与人类棋手大战的时候,都走出一些匪夷所思的步子。事后分析好像是好棋,又说不出好在哪里,更是想不出什么思路能走出这样的步子。这只是下棋,看不懂棋路不是大问题。要是人工智能用于国家核导弹自动发射控制,也给你来几步人类看不懂的反应,那问题就大了。
6 `) h! {4 p, L4 r- j0 V/ y3 t$ W1 S+ g6 r! k3 G5 b3 M5 n
在缺乏理论指导的情况下,算法成为各家的“手工艺”。手工艺不可怕,可以在大量实践中精益求精,很多工业技术(包括尖端科技)都有这样只可意会不可言传的手工艺成份,事实上成为技术壁垒的重要部份。0 \; u" q3 Y' n9 n  G, ]9 z: ?/ b
8 Z& ?0 |$ Y# B* m0 b' W5 A
问题是,人工智能的最大量实践是在中国,不是在美国。在美国和西方眼里,中国的人工智能就是用于大数据人群监控的,这是意识形态偏见。中国的人工智能应用正在野蛮生长中,头条、抖音的推送就是人工智能,这只是冰山一角。形成商业利益后,人工智能不再是纯学术或者纯政府行为,具有强劲的自我增殖能力,不仅引发更多的应用,也推动算法的发展。' f( v; F# L, e  s" d4 A% s) A# f4 b

; D" a& b. P8 z, {8 }在美国,人工智能应用依然主要由军方拉动,商业人工智能缺乏自我发展的动力。美国试图把私营资本拉入人工智能竞赛,但风险较大、没有明确的盈利前景,私人资本没有理由加入。华尔街能承受风险,但风险大,回报还慢,这就没有干劲了。这是美国各种“公私合作”设想的共同问题。  L2 s$ ~5 Z1 l) B/ }+ l5 b

  m& {+ Y  Y- A# L0 Z" c片面依靠军方拉动正是苏联科技发展的问题根源,大力依靠民用需求拉动则是美国的成功经验。有意思的是,美国在走苏联的路,而中国在走美国的路。
- Q; J! i6 X( C. q
, P0 a! L" C+ l% r0 s所以施密特-沃克报告清楚地看到,中国将迅速赶上美国的算法优势,如果不是在理论框架上首先突破的话。$ A7 W6 ^- u/ \( K$ Q6 h6 A

5 t% J5 _0 ?7 Q/ l* O; @. }3 K理论突破需要人才,但美国人工智能人才是否领先中国,是一个一言难尽的问题。如果把具有中国血统和教育的人统统排除,美国人工智能人才圈大概立刻坍塌一半。同时,中国人工智能在大量实践中,中国人工智能教育、科研、人才形成良性互动,中国人工智能人才赶上美国不是梦。% ]- Q' Z' i2 W5 n1 l
$ I; w& ^! i& n* X: _7 W& i
有意思的是硬件。中国还在先进芯片困境中,美国对英伟达和AMD高端芯片对中国禁运,就是冲着人工智能来的。但这些芯片在本质上是图形处理芯片,并行处理能力恰好与人工智能运算的要求符合,但本身未必是为人工智能优化的。
+ `2 v* Y2 ^: H9 f9 C: V
) g4 \. v0 D7 ?/ `# X, h4 a中国芯片在闯关中,一方面是7nm、2nm等更高集成度的硬技术,另一方面是在专用芯片方面实现架构突破。中国超算就是通过精巧的架构设计,在较低的硬件技术水平上实现世界领先。尤其重要的是,这样的架构突破需要在实践中得到思路,在实践中检验成效。
* r7 i2 `' p9 g- J' M/ _; b' z9 I# j+ [
在现在,中国还在大量采用来自美国的算法成果,硬件上也对美国有依赖,但历史上有过先例:要是在总体实践上掉队,核心技术的领先并不保证持续领先。4 d7 m" ?7 c. W$ F- L! y' f) _

# k: j  M, b: U  F! n1 E在40年代,英国与德国同时发明喷气式发动机,德国抢先一步,首先将Me262投入使用,但英国紧随其后,只是因为战争大局已定,就不急于将格洛斯特“流星”战斗机投入实战了。但罗尔斯-罗伊斯的“尼恩”涡喷在40年代末代表最先进技术,苏联引进后,用于米格-15,从此苏联航空科技一骑绝尘。  W! {: z& D- m; h* `" L
# y" o. s7 W0 f! t
发动机是航空科技的核心。苏联战斗机借用英国技术起飞后,在大量实践中迅速将“尼恩”改进为克里莫夫VK-1,以后克里莫夫和留里卡一起,成为苏联战斗机发动机的哼哈二将,罗尔斯-罗伊斯也在进步,但英国战斗机再也没有赶上过。
7 j- T2 d1 W% ~3 S& i7 L
7 U- z- V% M: D  [6 x, r4 R4 C7 G另外,人工智能现在一根筋搞大数据学习,是存在“数据困境”的,尤其是工业应用。要使得人工智能有效、准确,需要大量历史数据;但产品一直在转换,大同小异但毕竟不一样。等训练出来了,也该转产了。绕了一大圈又回来了当然很好,但这是可遇而不可求的。单纯靠学习,可能跟不上变化的现实。这是大问题。  p! R' Z; L* c2 g2 y& \$ l7 F4 p
6 I: ^* ?$ u9 Z6 T
但变化与变化不一样。大部分变化是变表不变本的,本的变化缓慢得多。这也是人类思维善于适应变化的环境的道理。在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,无视了变化的环境。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。1 N* n$ g, R& p/ o

* T+ o0 p/ i! K, B/ T7 p& Y0 j人工智能需要在框架上形成演绎能力才好。这是巨大的挑战,但很可能不是从纯理论的空想中产生,而是从大量实践的摸索中完善。% k6 i, {1 n' _6 k& r

9 a" ^4 l) [- U如果说芯片、软件是当今科技高地的话,人工智能是未来科技高地。美国很担心中国会抢占这个高地,担心就对了。
) o! x8 H& W7 Q' P6 |' @5 W. s6 ]/ R: ]* Q8 y
报告还提到,中国在5G、商用无人机、高超音速、锂电池方面领先,美国在生物科技、量子计算、商用航天和云计算方面领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。
, r& a; h; y0 e2 J8 y: F( e* H, x/ H  q" F0 P/ v& l+ e& K8 M5 O

作者: moletronic    时间: 2022-9-20 09:51
美国在生物科技、量子计算、商用航天和云计算方面勉强领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。

. T0 L9 j8 C& w$ S# c这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就starlink,还是生造出来的。
作者: 晨枫    时间: 2022-9-20 10:59
moletronic 发表于 2022-9-19 19:51
- Z0 \) A) [0 S这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就sta ...
8 S" o2 s5 F- N3 W
为什么说中国生物很难翻盘呢?
1 \" s4 A, ]' T% Y5 `7 ]+ |
  U* z: \+ B5 L  G% S' k) _0 Z( L商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。
作者: moletronic    时间: 2022-9-20 11:07
晨枫 发表于 2022-9-19 18:59
9 D" {' m, w4 c' ~& d为什么说中国生物很难翻盘呢?
2 j- @4 w; P8 m7 r& A
  ~0 H/ y7 M% K0 H商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。 ...
" S1 H8 P2 H& d" k! D1 F3 P
俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。
作者: 晨枫    时间: 2022-9-20 11:18
moletronic 发表于 2022-9-19 21:07
7 g* O# G- p- ^- F' A: B* z俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。 ...

3 b7 P& l& D2 L. g这事要一分为二地看。回国多,说明国内机会多,上升空间大;另一方面,要是国内已经很强了,反馈就该说国内已经很卷了,回去的人反而也多不起来了。
作者: huma    时间: 2022-9-20 12:56
还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已经后悔回去了,准备在出来。
作者: 晨枫    时间: 2022-9-20 13:09
huma 发表于 2022-9-19 22:56' j  X; Y6 M2 c0 I1 R% `% k$ p
还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已 ...

5 _( ~+ O& t$ e& o然后再后悔又出来了
作者: testjhy    时间: 2022-9-20 15:34
一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是多品种,小批量。当你收集到足够的样本的时候,流水线说不定已经转产下一品种了,图形、花色都可能重大变化,当然,你可以慢慢累积成样本库,但企业特别是中小企业是不会有兴趣陪你长时间玩的。我们在考虑根据少量样本,采用瑕疵产生原理生成一批伪样本,目前对质量要求不太高的产品可能有效,但对高质量产品还感觉不太成功,前者比喻开始瑕疵检出率80%,然后几天内提升到90-95%,后者如果一上来就要求95%,大概率要失败。/ A: z' `$ \% M% _# e9 V7 z5 g8 }
其实,最好是传统计算机视觉方法与深度学习相结合,前面偏原理分析,但非常繁杂,现在年轻一代都想省事,找一批样品扔进学习平台完事。我这个老古板属于看人挑担不吃力型,没办法。
作者: 晨枫    时间: 2022-9-20 22:17
本帖最后由 晨枫 于 2022-9-20 08:21 编辑 1 F; Y! L  t& H# @' C: Z
testjhy 发表于 2022-9-20 01:34
+ i* `2 N0 o* G9 `! ]  n8 n一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是 ...
8 Q5 [& u+ g7 ~( `  `8 s! j9 i1 s
9 F2 |: k- |% T7 @$ @! O
太对了!4 H- o  M) p' i( A+ H

) {; x) L! V. D1 }2 ~7 |9 R' c9 s人工智能现在一根筋搞大数据学习,正是数据问题。用自控术语来说,这是对有历史积累的时不变系统有效,时变系统就抓瞎了。0 h5 C/ m: e( F/ N& V8 I
1 l( w3 `6 U& I8 U7 I4 d$ G
在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,不看变化的条件。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。' s9 W3 i# L. F7 H5 s8 h( n
+ }( W2 x0 k, J
人工智能还需要在框架上形成演绎能力才好。怎么做到?嘿嘿,我要是知道,还在这里瞎耽误功夫嘛。4 D/ `* N: ?2 q+ a! w
: _  W  L& }: w3 ~2 z7 f
在自控和建模中,也曾经流行过纯数据驱动的黑箱模型。后来发现不行,robustness太差。后来转灰箱了,在具有机理背景的模型结构上,加一个黑箱尾巴,用机理模型解释大部分数据,黑箱尾巴只管“扫尾”,情况就好得多。不过实施也难得多,可以丢给“数据绞肉机”就不管的好处没了一大半。
9 j1 o. ]0 [" t$ y. h' i. c6 b7 @
这就回到我一直在想的“复杂性守恒定理”。复杂问题如果存在简单的解决办法,一定是把复杂性隐藏到另一个方向了,最终还是绕不过去的。
作者: 老财迷    时间: 2022-9-20 22:44
“罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。”
; s: _) j3 D5 d0 {少了一个“没”字吧?意思不对了, d4 c& I, _8 T% `- |
罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。
作者: 方恨少    时间: 2022-9-21 02:31
晨枫 发表于 2022-9-20 13:09
8 S) L" Q. B9 ?. J5 _6 n- K( I然后再后悔又出来了
  l, X8 ]2 m, A
你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据
作者: 晨枫    时间: 2022-9-21 02:47
方恨少 发表于 2022-9-20 12:31
5 _- u* W( G; D$ f你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据
( |" ?! B, _. @! v3 {8 p1 j
开车?开什么车?




欢迎光临 爱吱声 (http://aswetalk.net/bbs/) Powered by Discuz! X3.2