爱吱声

标题: 美国会丢失人工智能科技高地吗 [打印本页]

作者: 晨枫    时间: 2022-9-20 09:08
标题: 美国会丢失人工智能科技高地吗
本帖最后由 晨枫 于 2022-9-20 09:40 编辑 : ~5 T0 {) S+ [# V; X. X
# J4 v# \# L5 G+ E# i/ w+ @1 }
2021年5月,美国国会指派、有谷歌前CEO埃里克·施密特和美国前国防部副部长罗伯特·沃克领导的人工智能事务国家安全专门委员会发表了长篇报告,指出美国在硬件、算法、人才方面领先,中国在应用、整合、数据方面领先。报告认为,美国的算法领先在5-10年内会被中国赶上,但美国在总体上还略微领先。
% \) b0 G4 y4 q  q2 S  S0 G; _) ]% b+ g6 ~" E
9月12日,委员会发表了竞争力研究特别报告,再次强调美国的人工智能优势正在迅速消失。
4 ~6 b2 Q$ @% J2 G7 d) R& }3 B: Q7 v& y  L
美国的担心是有道理的。
6 ?: D: W# g% ^- W  x5 x  v- q1 _4 Y( [4 c% }9 N  u
人工智能还是野蛮生长的领域。各种应用搞得热火朝天,但缺乏统一、严格的理论框架,理论严重落后于实践。最大的问题是难以分析、预测、设计系统的性能,使得人工智能的决策难以理解,难以信任。“阿尔法狗1.0”和2.0在与人类棋手大战的时候,都走出一些匪夷所思的步子。事后分析好像是好棋,又说不出好在哪里,更是想不出什么思路能走出这样的步子。这只是下棋,看不懂棋路不是大问题。要是人工智能用于国家核导弹自动发射控制,也给你来几步人类看不懂的反应,那问题就大了。( ?. h! E$ e* D; a) z
8 L; E$ C4 a7 V( G  ^. N1 M
在缺乏理论指导的情况下,算法成为各家的“手工艺”。手工艺不可怕,可以在大量实践中精益求精,很多工业技术(包括尖端科技)都有这样只可意会不可言传的手工艺成份,事实上成为技术壁垒的重要部份。. i; T6 ]+ _) G0 h/ B) N& ~

4 t( C9 b6 |, ]* n1 j" ^9 o' k( W问题是,人工智能的最大量实践是在中国,不是在美国。在美国和西方眼里,中国的人工智能就是用于大数据人群监控的,这是意识形态偏见。中国的人工智能应用正在野蛮生长中,头条、抖音的推送就是人工智能,这只是冰山一角。形成商业利益后,人工智能不再是纯学术或者纯政府行为,具有强劲的自我增殖能力,不仅引发更多的应用,也推动算法的发展。
& S/ A3 w/ w  A
! }+ |, Q5 n; H1 s7 y& i5 l在美国,人工智能应用依然主要由军方拉动,商业人工智能缺乏自我发展的动力。美国试图把私营资本拉入人工智能竞赛,但风险较大、没有明确的盈利前景,私人资本没有理由加入。华尔街能承受风险,但风险大,回报还慢,这就没有干劲了。这是美国各种“公私合作”设想的共同问题。" ^% u# H' C. X$ |
  @1 i) v, D6 d& l1 s
片面依靠军方拉动正是苏联科技发展的问题根源,大力依靠民用需求拉动则是美国的成功经验。有意思的是,美国在走苏联的路,而中国在走美国的路。
$ v1 E1 f! x2 j4 h" E( _' x) `* C( H( T; F
所以施密特-沃克报告清楚地看到,中国将迅速赶上美国的算法优势,如果不是在理论框架上首先突破的话。# t, D/ q  y0 L

$ y0 }7 h+ T) [9 |$ C. B* r5 N6 K理论突破需要人才,但美国人工智能人才是否领先中国,是一个一言难尽的问题。如果把具有中国血统和教育的人统统排除,美国人工智能人才圈大概立刻坍塌一半。同时,中国人工智能在大量实践中,中国人工智能教育、科研、人才形成良性互动,中国人工智能人才赶上美国不是梦。
& `7 t- G8 A  W, T
% i' A8 ^  i7 h& w+ q有意思的是硬件。中国还在先进芯片困境中,美国对英伟达和AMD高端芯片对中国禁运,就是冲着人工智能来的。但这些芯片在本质上是图形处理芯片,并行处理能力恰好与人工智能运算的要求符合,但本身未必是为人工智能优化的。
- U/ }' a% ~+ w% P+ d- h/ j5 Y+ _( V" T0 x
中国芯片在闯关中,一方面是7nm、2nm等更高集成度的硬技术,另一方面是在专用芯片方面实现架构突破。中国超算就是通过精巧的架构设计,在较低的硬件技术水平上实现世界领先。尤其重要的是,这样的架构突破需要在实践中得到思路,在实践中检验成效。
1 c0 ?/ I/ {* Z) q+ v
9 ?* v9 [# x( ~  R在现在,中国还在大量采用来自美国的算法成果,硬件上也对美国有依赖,但历史上有过先例:要是在总体实践上掉队,核心技术的领先并不保证持续领先。
6 \6 e% k8 v2 H  c* f
+ F/ T2 A$ x  _9 H在40年代,英国与德国同时发明喷气式发动机,德国抢先一步,首先将Me262投入使用,但英国紧随其后,只是因为战争大局已定,就不急于将格洛斯特“流星”战斗机投入实战了。但罗尔斯-罗伊斯的“尼恩”涡喷在40年代末代表最先进技术,苏联引进后,用于米格-15,从此苏联航空科技一骑绝尘。
. e; B; l9 S: c4 T/ h- p& W  y  J( C4 r6 Z* d2 g* I$ N
发动机是航空科技的核心。苏联战斗机借用英国技术起飞后,在大量实践中迅速将“尼恩”改进为克里莫夫VK-1,以后克里莫夫和留里卡一起,成为苏联战斗机发动机的哼哈二将,罗尔斯-罗伊斯也在进步,但英国战斗机再也没有赶上过。! k8 H7 x- Z- y( ]" c

6 n$ H- o4 Q9 z另外,人工智能现在一根筋搞大数据学习,是存在“数据困境”的,尤其是工业应用。要使得人工智能有效、准确,需要大量历史数据;但产品一直在转换,大同小异但毕竟不一样。等训练出来了,也该转产了。绕了一大圈又回来了当然很好,但这是可遇而不可求的。单纯靠学习,可能跟不上变化的现实。这是大问题。
3 v( f6 _9 Y* u/ |  O9 l, A  W) d8 o/ q( h
但变化与变化不一样。大部分变化是变表不变本的,本的变化缓慢得多。这也是人类思维善于适应变化的环境的道理。在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,无视了变化的环境。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。% t! U( r# Z  Q$ R; N1 x
& P# Z# C) w. o9 }" B
人工智能需要在框架上形成演绎能力才好。这是巨大的挑战,但很可能不是从纯理论的空想中产生,而是从大量实践的摸索中完善。
' }# F$ r& O3 \9 i; @0 J+ h1 I* i( t4 Z
如果说芯片、软件是当今科技高地的话,人工智能是未来科技高地。美国很担心中国会抢占这个高地,担心就对了。
9 T2 w0 I- Z  D' J9 Z4 \' y4 Z- D: f3 {5 ]# {, `$ G6 M9 q
报告还提到,中国在5G、商用无人机、高超音速、锂电池方面领先,美国在生物科技、量子计算、商用航天和云计算方面领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。8 l3 M9 E0 X. D) x0 r$ e3 h

* G' L3 a  l. D
作者: moletronic    时间: 2022-9-20 09:51
美国在生物科技、量子计算、商用航天和云计算方面勉强领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。
+ a% w  e, C5 T3 z3 z8 I) f( H; W) {
这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就starlink,还是生造出来的。
作者: 晨枫    时间: 2022-9-20 10:59
moletronic 发表于 2022-9-19 19:51
/ E$ l+ q2 m: P/ L/ [. j) b这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就sta ...
, _5 T+ r5 Z' G; G9 C
为什么说中国生物很难翻盘呢?/ M2 E+ \/ ~; k- [& ^: V! T

6 ]# ~4 c: _3 N/ T商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。
作者: moletronic    时间: 2022-9-20 11:07
晨枫 发表于 2022-9-19 18:59" m$ `( @4 N  j* X  T! j/ K9 F
为什么说中国生物很难翻盘呢?
, }8 A( _& Z; @2 q4 C$ t4 F
4 Z' |' _2 t; i: O( B9 K# R商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。 ...

$ {1 N* v3 b* b俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。
作者: 晨枫    时间: 2022-9-20 11:18
moletronic 发表于 2022-9-19 21:07
! m  ]% v8 R% d" ~3 R俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。 ...
3 u" t( k; p! H8 D
这事要一分为二地看。回国多,说明国内机会多,上升空间大;另一方面,要是国内已经很强了,反馈就该说国内已经很卷了,回去的人反而也多不起来了。
作者: huma    时间: 2022-9-20 12:56
还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已经后悔回去了,准备在出来。
作者: 晨枫    时间: 2022-9-20 13:09
huma 发表于 2022-9-19 22:56
8 _+ G  t* i# }5 L: ?9 Y还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已 ...

- z) `* h  \9 S( _) X9 \& \然后再后悔又出来了
作者: testjhy    时间: 2022-9-20 15:34
一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是多品种,小批量。当你收集到足够的样本的时候,流水线说不定已经转产下一品种了,图形、花色都可能重大变化,当然,你可以慢慢累积成样本库,但企业特别是中小企业是不会有兴趣陪你长时间玩的。我们在考虑根据少量样本,采用瑕疵产生原理生成一批伪样本,目前对质量要求不太高的产品可能有效,但对高质量产品还感觉不太成功,前者比喻开始瑕疵检出率80%,然后几天内提升到90-95%,后者如果一上来就要求95%,大概率要失败。
7 e& _. a. E' }4 k9 Q0 K其实,最好是传统计算机视觉方法与深度学习相结合,前面偏原理分析,但非常繁杂,现在年轻一代都想省事,找一批样品扔进学习平台完事。我这个老古板属于看人挑担不吃力型,没办法。
作者: 晨枫    时间: 2022-9-20 22:17
本帖最后由 晨枫 于 2022-9-20 08:21 编辑
6 U; n. f5 o1 d- x" D9 T2 q6 e
testjhy 发表于 2022-9-20 01:34
# H% ?: \2 w! e" M一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是 ...

0 z+ v% A- \( [8 l1 l6 q& \4 Z3 o5 b9 ]0 d
太对了!
, [- ~& |$ v% N6 f' }7 n! T
2 E7 e) z  S& ]% ^4 W7 h人工智能现在一根筋搞大数据学习,正是数据问题。用自控术语来说,这是对有历史积累的时不变系统有效,时变系统就抓瞎了。5 F6 ?- o! L# `: T! H. F% S8 m5 v

! h0 E3 Y! m$ l* S) Y. {: w在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,不看变化的条件。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。
5 h' ^6 C. }9 M0 r
' e( k; `( I1 n* G" ^1 v人工智能还需要在框架上形成演绎能力才好。怎么做到?嘿嘿,我要是知道,还在这里瞎耽误功夫嘛。5 p; J0 ?5 F1 t5 J
0 b& j, I3 F$ P
在自控和建模中,也曾经流行过纯数据驱动的黑箱模型。后来发现不行,robustness太差。后来转灰箱了,在具有机理背景的模型结构上,加一个黑箱尾巴,用机理模型解释大部分数据,黑箱尾巴只管“扫尾”,情况就好得多。不过实施也难得多,可以丢给“数据绞肉机”就不管的好处没了一大半。) w4 R2 n/ o: d  d4 _2 V! x
; T" B( _) C. C: r% n6 Q8 Q
这就回到我一直在想的“复杂性守恒定理”。复杂问题如果存在简单的解决办法,一定是把复杂性隐藏到另一个方向了,最终还是绕不过去的。
作者: 老财迷    时间: 2022-9-20 22:44
“罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。”0 W8 _6 O& B( b
少了一个“没”字吧?意思不对了. u! c! v8 ?* S: `5 u4 g# L
罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。
作者: 方恨少    时间: 2022-9-21 02:31
晨枫 发表于 2022-9-20 13:09
% d; R  w, t7 U/ H9 A7 p. A然后再后悔又出来了
9 L  ~; K/ R7 C3 |. o$ w' ]
你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据
作者: 晨枫    时间: 2022-9-21 02:47
方恨少 发表于 2022-9-20 12:311 h/ j4 \  Z7 c
你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据

( ~- t2 l+ ^* b1 `+ P开车?开什么车?




欢迎光临 爱吱声 (http://aswetalk.net/bbs/) Powered by Discuz! X3.2